TRS 92: Exponential Functions and Half-Life Time

1. Uranium-234 has a half-life of 1.2 minutes (source: http://en.wikipedia.org/wiki/Radioactive_decay), which means that the amount of Uranium-234 decreases at a rate of about 44% per minute.
a. Create an exponential equation that models this decrease if you start with 150 grams of Uranium-234. Also define the independent and dependent variables you use.
b. How much Uranium- 234 will be left after 5 minutes? Show your work.
c. Using guess and check, how long will it take for there to be 0.5 grams left? Show your work.
2. If you drink a cup of coffee containing 100 milligrams of caffeine, the amount of caffeine left in your body will decrease by about 13% each hour.
a. Create an exponential equation that models this situation. Also, define the independent and dependent variables you use.
b. Determine the half-life time of the caffeine in your body using the equation you wrote in part a. Show your work and/or write an explanation about how you found the half-life time.

Use the Walgreen article for the following problem.
3. Using the revenue statement in Paragraph 7,
a. Determine what the previous revenue amount was before the 9% increase.

Let \boldsymbol{t}, the independent variable, represent time in quarters. Let \boldsymbol{R}, the dependent variable, represent the revenue in billions of dollars.
b. Write the exponential equation for this situation using the revenue amount calculated in part a.
c. Using the equation you wrote in part \mathbf{b}, find $R(8)$ and interpret this in the context of the problem.
d. Using the equation you wrote in part \mathbf{b}, use guess and check to find when revenue will reach $\$ 30$ billion, if this trend continues.

Complete MML: Exponential Functions

