Solving Non-Linear Systems:

1. Refer back to your Day 37 Activity \#7b. Using your graphing calculator, determine how long it will take for Sherri's account to double in value. For your window, use:

Xmin: -10
Xmax:100
Xscl: 20
Ymin=-10
Ymax=2,500
Yscl=100

2. In the Land of the Lost, there are two different populations. Let the independent variable represent the time in years since 1974, \boldsymbol{t}, and let the dependent variable represent the total population, \boldsymbol{S} for number of Sleestaks, and \boldsymbol{P} for number of Pakuni. Below are the functions for each population.

$$
\begin{aligned}
& S(t)=75(1.042)^{t} \\
& P(t)=215-22.5 t
\end{aligned}
$$

a. Using your graphing calculator, determine how long it will take for the Sleestaks' population to reach 200. For your window, use:

Xmin: -10
Xmax:50
Xscl: 10
Y min=-10
Ymax=500
Yscl=100
b. Using your graphing calculator, find the intersection of $S(t)$ and $P(t)$. For your window, use:

Xmin: -10
Xmax:30
Xscl: 10
Ymin=-10
$Y \max =250$
Yscl=100
c. Interpret the intersection you found in part \mathbf{b} in the context of the problem.

