Exponents II

1. Refer back to your Day 4 activity. Record the population of each continent in scientific notation rounding to two decimal places. Then convert the area of the continent to scientific notation.

Continent	Population in Scientific Notation	Area in Standard Notation $\left(\mathrm{km}^{2}\right)$	Area in Scientific Notation $\left(\mathrm{km}^{2}\right)$
Europe		$9,938,000$	
Asia		$43,998,000$	
Africa	$29,800,000$		
North America		$24,250,000$	
South America		$18,840,000$	
Oceania		$7,690,000$	

Use the factor tiles to create a model for each problem and find the simplified answer.

1. $\frac{x^{6}}{x^{4}}=$	2. $\frac{y^{5}}{y}=$
3. $\frac{6 y^{4}}{4 y^{2}}=$	4. $\frac{3 x^{5} y}{2 x^{2} y}=$
5. $\frac{x}{x^{3} y^{2}}=$	$6 . \frac{4 x^{2} y^{3}}{10 x^{3}}=$

7. How would you explain a "shortcut" for dividing expressions with exponents?
8. Use your shortcut to complete the problem discussed earlier in class: What is the population density of Europe?
9. A company needs to move 1.25×10^{5} crates of oranges. A single truck can transport 2×10^{3} crates. Using your shortcut, how many trucks are needed to transport all of the crates?

An exponent of 0 is difficult to visualize and is unique. To explore this, use tiles to model each of the following expressions and simplify.

$10 . \frac{x^{3}}{x^{3}}$	11. $\frac{2^{3}}{2^{3}}$	12. $\frac{y^{4}}{y^{4}}$

Now use your shortcut from \#7 to write each of the expressions as a base raised to a power.

13. $\frac{x^{3}}{x^{3}}$	14. $\frac{2^{3}}{2^{3}}$	15. $\frac{y^{4}}{y^{4}}$

16. What is the value of any base raised to the 0 power?

Simplify the following expressions.

17. $(9 x)^{0}$	$18.9 x^{0}$	$19 .\left(5 x^{2} y^{6}\right)^{0}$	$20.5\left(x^{2} y^{6}\right)^{0}$

Other types of operations are used with exponents. In the following problems, a power is raised to another power. Use the factor tiles to create a model for each problem and find the simplified answer.

21. $\left(x^{2}\right)^{4}$	22. $\left(x^{4}\right)^{2}$
23. $\left(x y^{2}\right)^{3}$	24. $\left(x^{2} y w^{2}\right)^{3}$
25. $(3 x y)^{2}$	$26.3(x y)^{2}$

27. How would you explain a "shortcut" for raising a power to a power?
