Exponents III

Use the factor tiles to model each expression and then simplify.

$1 . \frac{x^{3}}{x^{5}}$	2. $\frac{y}{y^{4}}$	$3 . \frac{x^{2} y^{2}}{x^{4} y^{3}}$	4. $\frac{3^{3}}{3^{5}}$

Now, use your rule for dividing bases with exponents to write each expression as a base raised to a power. (Not as a fraction).
5. $\frac{x^{3}}{x^{5}}$
6. $\frac{y}{y^{4}}$
7. $\frac{x^{2} y^{2}}{x^{4} y^{3}}$
8. $\frac{3^{3}}{3^{5}}$

Simplify the following expressions.

9. $\frac{a^{-2}}{a^{5}}$	10. $\frac{3 x^{3}}{6 x^{-2}}$	$11 \cdot\left(\frac{4 a b^{-4}}{a^{-3}}\right)^{2}$

More exploration with powers of $10 \ldots$
In your Day 4 homework, you completed part of the table below. Use the pattern in your previous work to complete the remaining rows. An example is given.

	As a decimal	As a Fraction
$10^{3}=$	1,000	$\frac{1,000}{1}$
$10^{2}=$		
$10^{1}=$		
$10^{0}=$		
$10^{-1}=$		
$10^{-2}=$		
$10^{-3}=$		

