Reversibility

Part A: Rational Exponents

Complete the table below.

	Radical Form	Rational Exponent Form
1.	\sqrt{x}	
2.		$3^{\frac{1}{5}}$
3.		$3^{\frac{2}{5}}$
4.	$\sqrt[7]{y^{2}}$	
5.	$\sqrt[5]{x^{2} y^{3}}$	$x^{6} y^{\frac{1}{3}}$
6.		

For the problems below, first convert the expression to rational exponents and then simplify using the rules of exponents.

$7 . \sqrt{x^{3}} \cdot \sqrt[4]{x}$	$8 . \frac{\sqrt[3]{y^{2}}}{\sqrt[5]{y^{2}}}$

Part B: Reversibility in Equations

Reversibility is also an important concept in solving equations. In solving the following equation, 3 is added to both sides of the equation in order to reverse the subtraction.

$$
\begin{aligned}
& 2 x-3=5 \\
& 2 x-3+3=5+3 \\
& 2 x=8
\end{aligned}
$$

This concept holds true whether you are working with variables or numbers.
9. Solve the following equations for x showing each step:
$2 x-5=12$
$\mathrm{mx}-\mathrm{n}=\mathrm{k}$
10. Write responses to the two questions in complete sentences:
a. What is the same about the two processes?
b. What is different?

