Reversibility

Part A: Rational Exponents

Complete the table below.

	Radical Form	Rational Exponent Form
1.	\sqrt{x}	
2.		$3^{\frac{1}{5}}$
3.		$3^{\frac{2}{5}}$
4.	$\sqrt[7]{y^2}$	
5.	$\sqrt[5]{x^2y^3}$	
6.		$x^{6}y^{\frac{1}{3}}$

For the problems below, first convert the expression to rational exponents and then simplify using the rules of exponents.

Part B: Reversibility in Equations

Reversibility is also an important concept in solving equations. In solving the following equation, 3 is added to both sides of the equation in order to *reverse* the subtraction.

$$2x - 3 = 5$$

 $2x - 3 + 3 = 5 + 3$
 $2x = 8$

This concept holds true whether you are working with variables or numbers.

9. Solve the following equations for x showing each step:

2x - 5 = 12 mx - n = k

10. Write responses to the two questions in complete sentences:

a. What is the same about the two processes?

b. What is different?