TRS 92: Introduction to Functions

Gordy is training for a half marathon. He is following a training regimen that sets how many miles he should run each day. The regimen for the first week is given below:

\# of Day	1	2	3	4	5	6	7
\# of Miles	5	5	10	15	0	8	8

1. The relation is graphed below.
a. Based on the graph, define the independent and dependent variables. Assign letters to the variables.

Independent: \qquad
Dependent: \qquad

b. Gordy says he ran 8 miles yesterday. Given the relation, can you specifically determine which day this was in the program? Why or why not?
c. Can you specifically determine the day on which Gordy will run 10 miles? Why or why not?
d. Can the independent variable in this relation always be used to determine the dependent variable?
2. The same relation is graph below.
a. What has been changed about the graph?

b. Gordy says he is in Day 4 of the program. Given the relation, can you specifically predict the number of miles he ran? Why or why not?
c. Can you specifically predict how many miles Gordy will run on Day 7? Why or why not?
d. Can the independent variable in this relation always be used to predict the dependent variable?

Relations can be represented in verbal form, graphs, tables or equations (sometimes called a rule, model or formula). For each relation on the following page, indicate if the independent variable can always be used to predict/determine the dependent variable.

