Ruminant Digestive System

#Complex structure with four compartments

FIGURE 1-9. Digestive system of the ruminant (cow).

Source: Animal Feeding and Nutrition (Jurgens)

Ruminant Characteristics

Primarily herbivores
 Cattle, sheep, goats, deer, elk
 Camelids are "pseodu" ruminants

#60-75% of ingesta fermented by microbes before exposed to gastric juices

Mouth

#Tongue

○Used more by cattle and goats (also use lips)
※Teeth

►No upper incisors

└─Used more by sheep (use lips to "sort" feed)

% Saliva

△Continual production

Cattle: 12 gal/d vs Sheep: 2 gal/d

No enzymes; High pH

₭ No sphincter valve

∺Opens into reticulum and rumen

Huscle contractions move in both directions

Stomach compartments

A higher proportion of a ruminant's digestive system is stomach

Reticulum characteristics

#Located next to heart **Honeycomb** appearance Catches metal and hardware **#**Pathways Esophagus Rumen Omasum

%No enzymes secreted

Rumen Characteristics

HLeft side of abdomen **#**Papillae lining #Muscular pillars **#**Fermentation vat Primarily anaerobic Some aerobic microbes **K**Not functional at birth

Rumen Functions

#Storage **#**Soaking Physical mixing and breakdown **#**Fermentation ─Synthesizes some vitamins Synthesizes AA and protein Breaks down fibrous feeds into VFAs

Volatile Fatty Acids (VFAs)

% Acetic Acid

** Manyplies"
** No enzymes from walls
** Function
• Reduce particle size
• Absorb some water

"True stomach" that secretes enzymes from walls

∺Glandular stomach like monogastric fundic region

- ⊡HCL, Mucin
- △ Pepsinogen, Rennin and Lipase

Small and Large Intestine

Ruminant Differences

₭Esophageal Groove

By passes reticulum and rumen in young animals

Rumination

○ Chew their cud (food bolus)

⊡Up to 8 hours/day

☑ Decrease particle size for microbes

⊠Increases saliva production to buffer rumen

△About 30 times/day

Ruminant Differences con't

#Eructation (belching)

- \square CO₂ and Methane
- △Produced by microbial population in rumen
- Rumen contracts and forces gas out
- △Bloat can result if ruminant doesn't belch

Bloat

Gas can't escape

Animal dies from suffocation because of distended rumen

Digestive Fluids

#Saliva

#Gastric juices from stomach

- Pepsinogen
- Rennin
- ☐Lipase

Digestive Fluids con't

% Pancreatic secretions

Amylase

☐Lipase

─ Buffers

#Liver Secretions

△Bile salts; No enzymes

Digestive Fluids con't

#Intestinal enzymes

Aminopeptidase, Dipeptidase, Nucleases

⊠ Denaturing proteins

Maltase

△Lactase

─Sucrase

Microbial Fermentation

Short Life cycle Synergistic relationship HTypes of microbes △Starch fermenters ⊠Amylotic microbes ○ Cellulose/roughage fermenters **⊠**Cellulolytic microbes △ Adjust according to diet

Microbial Fermentation con't

Categories of microbes

Bacteria

Protozoa

⊡Fungi

△Bacterial viruses

Note: Type present depends on diet being fed

Microbial Fermentation

Regulation of microbes Bacteria vs Protozoa Competition Acidic environment \bigtriangleup Shifts with diet △Shifts with consumption

Rumen Activities

FIGURE 1-3. Volatile fatty acid formation in the rumen.

Source: Animal Feeding & Nutrition (Jurgens)

Volatile Fatty Acids (VFAs)

#Acetic Acid (Acetate)

Most comes from cellulose

☐Important to milk fat in dairy cows

% Propionic Acid (Propionate)

Most comes from starch

Butyric Acid (Butyrate)

Derived from Acetic acid

Notes on VFAs

₩Pyruvic Acid

Acetic Acid

 \triangle CO₂ and CH₄ given off

#Ionophore Feed additives

☐Increases production of propionic acid

Decreases production of acetic acid

Quick Diet Changes

Causes of Lactic acidosis:

#Quick diet changes to high concentrates
#Removal from feed
#Restriction of feed intake during stress
#Voluntary feed aversion
Palatability
Character

₭ All of these cause microbial imbalance

Questions to ponder....

Review what happens when you suddenly switch from high <u>roughage</u> to high <u>grain</u>.....

₩hat happens to an animal if you suddenly switch from a high grain to a high roughage diet?

End products of Ruminant Digestion

%VFAs △ Main energy source for cows HCO_2 H_4 (Methane) **∺**NH₃ (Ammonia) **#**Microbes

Importance of pH in Digestion

 \Re Optimum is 6.8 **#**Factors affecting pH **Diet** ⊠Hay versus Grain \triangle Level of intake △Frequency of intake **#**Regulating pH

Starch Fermenters

% Cellulose/roughage Fermenters

Understanding consequences of quick changes in diet

Rumen Development

¥48 -100 liters of liquid
△Larger in cows on a forage diet
○Forage-fed calves have larger rumens
¥15-21% of mature cow weight is rumen contents

DIGESTIVE TRACT CAPACITY

		HEN	PIG	HORSE	COW
1.	STOMACH (%)	57	29	8	67
	A. RUMEN				53
	B. RETICULUM				3
	C. OMASUM				5
	D. ABOMASUM				6
	E. CROP	43			
	F. PROVENTRICULUS	0.3			
	G. GIZZARD	14			
2.	SMALL INTESTINE (%)	26	34	25	20
3.	CECUM (%)	6	4	18	3
4.	LARGE INTESTINE (%)	10	32	48	9
	TOTAL CAPACITY (GAL.	.).02	7	45	80

 $\widehat{}$

and the second second

Rate of Passage

Head Definition

How fast food passes through the rumen

∺General trends with various feedstuffs

☐Ground vs Stem Hay

Concentrates

₩Why important?

Last tidbits on Microbes

#Microbe development in young ruminants
#Probiotics

- △Definition- Feed additive for steers
- ─ Purpose
- % Antibiotics
 - △Effects on microbes