

mage mage <thmage< th=""> mage mage <th< th=""><th></th><th>Reduction Half-Reaction</th><th></th><th>E= (0)</th><th></th></th<></thmage<>		Reduction Half-Reaction		E= (0)	
$ \begin{array}{c} \mbox{Min} & \mbox{Min}$	Sec. 1	$F_{1}(p) + 2c^{-}$	$\longrightarrow 2F'(ag)$	2.87	Minhor
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	exideing agent	H-O-(ac) + 2H ⁴ (ac) + 2e ⁻		1.78	reducing agent
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$P(0,(i) + 4R^{2}(ai) + 50^{2}(ai) + 2r^{2}$		1.60	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	_	Math. Tesh + 4 H*Lesh + 3.4"		1.68	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_	$MnO_{-}(a_{0}) + 8 H^{2}(a_{0}) + 5 e^{-}$	$\longrightarrow 3m^{2*}(ac) + 436.000$	1.51	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_	he ³⁴ (ad # bc'	man hadel	1.50	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_	Mch.(4) + 410"(+4) + 74"		1.44	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_	(1/0 A 1/	ma NT(ad)	1.16	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		CODE THE & MILLION & AVE		1.11	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$D_{1}(a) + A B^{2}(a) + A c^{2}$		1.25	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	_	Math (a) + 4 H ² (a) + 7 a ⁻¹		1.21	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_	No. Test & 6.8" (as) & 5.4"		1.20	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_	Build a lat	The second	1.00	
$\label{eq:results} \begin{split} & \mathbf{N}_{11} _{1} = i + i \log \left[i + i + i + i + i + i + i + i + i + i $		V0. "(ad # 70"(ad # c"		1.00	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_	ND 744 + 18744 + 147		1.06	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_	Children C	- 10000 - 1200000		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_	have a second second	- Coj cap	0.97	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_	and the second second	- MgCO	4.32	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_	0.(0 + 18 ² (m) + 1c ²	- No Gap	0.17	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_	Net Training - 14	man Press	0.00	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_	100 a 75	- Mintel	0.50	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_	Contract to an	- 11 Opt	0.04	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_	Cal (ap) + a	- Calif	0.40	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	_	coltrar a 14	- Cold	0.14	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_	50 (lap) = 20 50 (lap) = 40 ² (lap) = 1c ²		0.74	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	_	office and	- npopping - npop	0.14	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	_	CP (ap) + P	- Cir Gigi	0.10	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		56' (ap) + 24	Nr. Sala		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		201 (ap) + 24			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_	re unit + re		-0.06	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_	address a bet		-0.17	
$a^{(1)}q_{1}+1_{1}^{(1)}$ \longrightarrow $a^{(1)}d_{1}^{(1)}=1_{1}^{(1)}$ \longrightarrow $b^{(2)}d_{1}^{(1)}=1_{1}^{(1)}$ \longrightarrow $b^{(2)}d_{1}^{(2)}=1_{1}^{(2)}$ \longrightarrow $b^{(2)}d_{1}^{(2)}=1_{1}^{(2)}$ $b^$	_	Ser Sap + 24		-0.14	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_	No sap + 24		-0.25	
$0^{-1} a_0 + i^{-1} = \cdots = 0^{-1} a_0 = \cdots = 0^{-1} a_0$ $0^{-1} a_0 + i^{-1} = \cdots = 0 a_0 = \cdots = 0 a_0$ $2^{-1} a_0 + i^{-1} = \cdots = 2 a_0 = \cdots = 0 a_0$ $2^{-1} a_0 + i^{-1} = \cdots = a_0 = \cdots = 0 a_0$ $0^{-1} a_0 + i^{-1} = \cdots = 0 a_0$ $0^{-1} a_0 + i^{-1} = \cdots = 0 a_0$ $0^{-1} a_0 = -i^{-1} a_0$	_	Cer (ap) + 2e		-0.40	
$0^{(2)}(q) + 1r' \longrightarrow 00^{(2)}33$ $1r^{(2)}(q) + 1r' \longrightarrow 50^{(2)}55$ $1r^{(2)}(q) + 1r' \longrightarrow 50^{(2)}55$ $1r^{(2)}(q) + 1r' \longrightarrow 50^{(2)}10$ $0^{(2)}(q) + 1r' \longrightarrow 50^{(2)}10$ $0^{(2)}(q) + 1r' \longrightarrow 50^{(2)} - 10$	_	Re (ap) + 24	NO)	-0.05	
$h_{1}^{(1)}(m) + 2c^{-} \longrightarrow 0(0) = -105$ $2b^{(1)}(m) + 2c^{-} \longrightarrow 0(0) = -105$ $2b^{(1)}(m) + 2c^{-} \longrightarrow 0(0) + 20t^{-}(m) = -105$ $h_{2}^{(1)}(m) + 2c^{-} \longrightarrow 0(0) = -105$ $h_{2}^{(1)}(m) + 2c^{-} \longrightarrow 0(0) = -105$	_	O ² (w) # 1c		-6.90	
$2h^{\prime\prime}(a) + 2e^{-} \longrightarrow 56(0) -0.55$ $2h^{\prime\prime}(b) + 2e^{-} \longrightarrow 56(0) -0.55$ $3h^{\prime\prime}(a) + 2e^{-} \longrightarrow 56(0) -1.18$ $h^{\prime\prime}(a) + 3e^{-} \longrightarrow 56(0) -1.66$ $M_{0}^{\prime\prime}(a) + 2e^{-} \longrightarrow 50(0) -2.57$	_	er orgen ver		~6.0	
$2i\partial_t \partial u = i d$ $\longrightarrow m_{0}(g) \neq 2i d$ $i d g = -i d d$ $Ma^{(2)}(g) \neq 2i^{(2)}$ $\longrightarrow Ma(i)$ $= -1.0$ $M^{(2)}(g) \neq 32^{(2)}$ $\longrightarrow Ma(i)$ $= -1.6$ $M^{(2)}(g) \neq 2i^{(2)}$ $\longrightarrow Mg(i)$ $= -2.57$	_	2e* (ag) + 2e		-0.76	
$M^{\alpha} \cap (a) = 2e^{-}$ $\longrightarrow M(c)$ -1.16 $M^{\beta} \cap (a) = 5e^{-}$ $\longrightarrow M(c)$ -1.66 $Mg^{\beta} \cap (a) = 2e^{-}$ $\longrightarrow M(c)$ -2.57	_	28900 + 24	#12(g) + 2011 (ag)	-680	
$M^{-}(ag) + 2e^{-}$ $\longrightarrow Mg(g)$ -2.37	_	Mir (ap + 24		-1.18	
$Mg^{*}(a) + 2e^{$		$M^{-1}(ag) + 3c^{-1}$	* A3(x)	-1.66	
and the second		$Mg^{\alpha}(ag) + 2e$	- MgLO	-2.57	
$N_{1} \exp i \psi e \longrightarrow N_{1}(e) = -271$		Na sagi + e	Nat.17	-2.71	
Gr*(a) + 2 € G(0) -236		Certage + 24	+ G60	-2.56	
■ N [*] (A) + 10 → N() -19 ■		BC SAD 7 24	Bull(2)	-2.90	+
Wesler $K^*(a) + e^- \longrightarrow K(a) = -2.92$ Stronger	Weaher	$X_{-}(ag) + e$	K(3)	-2.92	Stronger

$$Mg_{(s)} + 2 HCl_{(aq)} \longrightarrow Mg^{2+}(aq) + H_{2(g)} + 2 Cl^{-}_{(aq)}$$

Pb (s) + 2Ag⁺ \longrightarrow Pb²⁺ + 2Ag (s)

Recall $E^{\circ}_{cell} = E^{\circ}_{cathode} - E^{\circ}_{anode}$ and $E^{\circ}_{cell} = RT/nF$ (ln*K*) - calculate *K* and ΔG°

Calculating the cell potential of a concentration cell

An electrochemist builds a galvanic cell consisting of a Zn/Zn^{2+} half cell and an H_2/H^+ half cell under the following conditions:

 $[Zn^{2+}] = 0.010 \text{ M}$ $[H^+] = 2.5 \text{ M}$ $P_{H2} = 0.30 \text{ atm}$

Calculate E_{cell} at 25°C...

Tro 18.7 Putting galvanic cells to use: E	Batteries and their applications
Uses	Constraints
 Portable radios and CD players 	cost, shelf life, safety
•Toys	size, rechargeable,
 Flashlights 	constant output, low or
•Watches	zero maintenance
•Calculators	
•Automobiles	
•Computers	
http://www.alternative-energy power/	-news.info/technology/battery-
ACS org	

Voltages of Some Voltaic Cells				
Table 21.1 Voltages of Some V	/oltaic Cells			
Voltaic Cell	Voltage (V)			
Common alkaline battery	1.5			
Lead-acid car battery (6 cells = 12 V)	2.0			
Calculator battery (mercury)	1.3			
Electric eel (~5000 cells in 6-ft eel = 750 V)	0.15			
Nerve of giant squid (across cell membrane)	0.070			

TABLE 18.2 Energy Density and Overcharge Tolerance of Several Rechargeable Batteries					
Battery Type	Energy Density (W \cdot h/kg)	Overcharge Tolerance			
NiCad	45-80	Moderate			
NiMH	60-120	Low			
Li ion	110-160	Low			
Ph storage	30-50	High			

