FUNDAMENTAL GROUPOIDS FOR GRAPHS

T. CHIH AND L. SCULL

ABSTRACT. In this paper, we define a x-homotopy fundamental groupoid for graphs, and prove
that it is a functorial x-homotopy invariant for finite graphs. We also introduce tools to compute
this fundamental groupoid, including a van Kampen theorem. We conclude with a comparison
with previous definitions along these lines, including those built on polyhedral complexes of graph
morphisms.
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1. INTRODUCTION

There are several different definitions of homotopy for graphs in the literature. Two of particular
prominence are X-homotopy [2,10,11,17-20] and A-homotopy [1, 3,14, 22,23]. In this paper, we
focus on x-homotopy. Taking our cue from topology, we define an algebraic invariant that captures
information about the x-homotopy type of a graph. This fundamental groupoid builds on a related
groupoid defined by Kwak and Nedela in [21].

In this paper, we define the fundamental groupoid, and its related fundamental group. We prove
that our fundamental groupoid is both functorial and a homotopy invariant, thus providing us
with an algebraic tool for studying the x-homotopy category of graphs. We also develop tools for
computing our fundamental groupoid, including a van Kampen theorem.

The idea of defining a fundamental groupoid for graphs has been tackled from several angles in the
literature. In addition to the definition in [21] which serves as the starting point for our definition,
a fundamental group which is x-homtopy invariant has been defined specifically for exponential
graphs in [11]. Our definition applies more generally to any graph, and differs somewhat from the
definition of [11] in the way it treats repeated vertices. A more precise comparison is given in
the last section. Additionally, the idea of a fundamental group for A-homotopy theory has been
explored in [1,3,13]. Since A-homotopy is built on a different category of graphs where moprhisms
are allowed to collapse connected edges, these groups measure different properties of graphs. In
particular, these groups treat 3-cycles as contractible, which our groupoid does not.

Our definition of the fundamental groupoid offers a computable tool for studying the x-homotopy
of graphs. In future work we plan to use it to study lifting properties of graphs and homotopy covers
of graphs which allow liftings of x-homotopies. This will be explored in [9], currently in progress.

Our paper is structured as follows. Section 2 contains background results. In Section 3, we
recall a groupoid of walks in G from [21], and show that it is a functor from Gph to Groupoids. In
Section 4, we define our fundamental groupoid as a quotient of the walk groupoid, where morphisms
are homotopy classes of walks. We show that this defines a functor from the homotopy category
of graphs to groupoids, giving a homotopy invariant. In Section 5, we develop further tools for
computing this fundamental groupoid, showing how it behaves with respect to product graphs and
proving a modified Van Kampen Theorem [7,15]. We end with Section 6 describing a variant of our
groupoid for graphs where all vertices are looped. We show that this generalizes the fundamental
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group of the exponential graph defined by Dochtermann [11], and prove there is an equivalence of
categories between the looped groupoid of an exponential graph H® and the fundamental groupoid
of the polyhedral hom space associated with H studied in [2,11,17-20].

2. BACKGROUND

In this section, we summarize background material. A more complete exposition can be found
in [8]. We work in the category Gph of undirected graphs, without multiple edges. Moreover,
throughout this paper, we will assume that graphs are both finite, and contain no isolated vertices.
Graph theory terminology and notation follows [5] and category theory terminology and notation
follows [25].

Definition 2.1. [16] The category of finite graphs Gph is defined by:

e An object is a graph G, consisting of a finite set of vertices V(G) = {vr} and a set E(G)
of edges connecting them. Each edge is given by an unordered pair of vertices. Any pair of
vertices has at most one edge connecting them, and loops are allowed but isolated vertices
are not: each vertex must be connected to at least one other (possibly itself). A connecting
edge will be notated by vy ~ vs.

e An morphism in the category Gph is a graph homomorphism f : G — H, given by a set
map f : V(G) — V(H) such that for vy, vainV (G), if v1 ~ v € E(G) then f(vy) ~ f(v2) €

Throughout this paper, we will assume that ‘graph’ always refers to an object in Gph.

In defining our fundamental groupoids, we will make use of the path graphs, both looped and
unlooped.

Definition 2.2. [5,10] Let P, be the path graph with n+1 vertices {0, 1,...,n} such that i ~i+1
for i = 0,...,n — 1. Let I’ be the looped path graph with n + 1 vertices {0,1,...,n} such that
i~tandt~i+1fori=0,...,n—1.

P,=0—o—— - —o Ié:Q_Q_L...J
"0 1 2 n

0 1 2 n

Definition 2.3. [5] A walk in G of length n is a morphism « : P, — G from «(0) to a(n). A
looped walk in G of length n is a morphism « : I/ — G. Note that we allow length 0 walks,
defined by a single vertex.

We will usually describe a walk by a list of image vertices (vov1vs ... v,) such that v; ~ v;11. In
a looped walk, all vertices along the walk are looped.

Definition 2.4. ([8], Definition 2.1) Given a walk  : P, — G from z to y, and a walk 5 : P,, = G
from y to z, the concatenation of walks a x5 : P+, — G by
. 1) ifi<n
(asB)@) =W - Hisn
Bli—n) ifn<i<n+m
Thus the concatenation (zvivy...v,—1Y) * (ywiws ... Wpm_12) = (TVIV2 ... Vpo 1YW ... Wyp—12).
Contatenation of looped walks is defined in the same way.

Homotopies are defined using the product graph G x If;.
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Definition 2.5. [16] For graphs G and H, the (categorical) product graph G x H is defined by:

e A vertex is a pair (v,w) where v € V(G) and w € V(H).
e An edge is defined by (vi,w1) ~ (v2,w2) € E(G x H) whenever v; ~ vy € FE(G) and
w1 ~ Wy € E(H)

Definition 2.6. [10] Given f,g : G — H, we say that f is x-homotopic to g, written f ~ g, if
there is a map I' : G x IY — H such that Tlaxqoy = f and I'|gx () = 9. We will say I is a length
n homotopy.

Other authors have considered alternate definitions of homotopies of graphs, and this is some-
times referred to as x-homotopy to distinguish it. Since this is the primary version of homotopy
that we will consider in this paper, we will also refer to it simply as ‘homotopy’.

WE can use the notion of honmotopy to define a 2-category Gph.

Theorem 2.7 ([8], Theorem 3.18). We can define a 2-category of graphs as follows:

o Objects [0-cells] are given by objects of Gph, the finite undirected graphs.
e Morphisms [1-cells| are given by the morphisms of Gph, the graph homomorphisms
o 2-cells are defined as homotopies between moprhisms.

It is also shown in [8] that we can create the homotopy category for Gph as a quotient category
of this 2-category, identifying morphisms which are connected by a 2-cell.

Homotopy can also be defined by a looped walk in the exponential graph G¥. A priori, even a
length 1 homotopy (given by a single edge of G) can connect morphisms whose images differ on
many vertices. However, in [8], we analyzed the structure of homotopies to show that we can shift
one vertex at a time.

Definition 2.8 ([8], Definition 4.1). Let f,g : G — H be graph morphisms. We say that f
and g are a spider pair if there is a single vertex x of G such that f(y) = g(y) for all y # x.
If  is unlooped there are no additional conditions, but if x ~ x € E(G), then we require that
f(x) ~g(x) € E(H). When we replace f with g we refer to it as a spider move.

Proposition 2.9 ([8], Proposition 4.4: Spider Lemma). If f, g : G — H are graph morphisms then
f =~ g if and only if is a finite sequence of spider moves connecting f and g.

This result relies on the domain graph G being finite. Since all graphs considered in this paper
are finite, we can apply this proposition here without restriction.

We can also use the framework of spider moves to analyze homotopy equivalences. In the
literature, homotopy equivalence has been linked to the idea of a fold [11,16]. This can be thought
of as a special case of our spider moves.

Definition 2.10 ([6,10,12,16]). If G is a graph, we say that a morphism f: G — G is a fold if f
and the identity map are a spider pair.

Proposition 2.11 ([8], Lemma 6.8). If f is a fold, then f : G — Im(f) is a homotopy equivalence.

In the literature, graphs that cannot be folded are called stiff graphs [4,6]. Since each homotopy
class contains exactly one stiff graph, this gives us a unique choice of representative for homotopy
equivalent graphs. In fact, the subcategory of stiff graphs defines a skeletal category for hFGph,
meaning that in addition to giving a unique choice of representative for each homotopy class, the
inclusion of the subcategory induces an equivalence of categories.
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Theorem 2.12 ([8], Theorem 6.5). The stiff graphs are a skeletal subcategory of the homotopy
category of finite graphs hFGph defined in [8], Definition 5.1.

Thus every graph is homotopy equivalent to a unique stiff graph, and the homotopy classes of
morphisms between graphs can be determined by the homotopy classes of morphisms between their
stiff representatives.

3. THE WALK GROUPOID

In this section we describe the walk groupoid of a graph G. This was first defined by Kwak and
Nedela in [21], where they refer to it as the “fundamental groupoid”. They give a definition and
show it is a groupoid, but do not develop any further properties. Here, we define this groupoid
using the language consistent with how we will later present our homotopy invariant fundamental
groupoid. We also show that it defines a functor.

Definition 3.1. Let a = (vov1v2...v,) be a walk in G. We say that « is prunable if v; = v;49
for some i. We define a prune of a to be given by a walk o’ obtained by deleting the vertices v;
and v;11 from the walk when v; = v;49: if

o = (’Uo'Ul’UQ Ui 1U05410;V543 - - Un)

then the prune of « is
1
o = ('[)()’1)11)2 e Vi—1U0543 . .. ’Un)

We define an equivalence relation on walks in G generated by the prunes. Concretely, a ~ § if
there is a finite sequence of prunings between them: o = 79 ~ 1 >~ v >~ -+ 2 1 2 v, =
where either 7; is a prune of v;11 or v;41 is a prune of ~;.

Observation 3.2. Since any prune always removes two edges, the parity of a prune equivalence
class is well-defined and each prune class of walks consists of all even length or all odd length walks.

Each prune equivalence class has a unique non-prunable representative, as shown by the next
two results. This is described as the reduction of a walk in [21].

Proposition 3.3. Repeated pruning of a walk results in a unique non-prunable walk.

Proof. We proceed via induction. If « is length 0 or 1, then there are no prunings possible and
hence « is itself the unique non-prunable walk. Now consider a walk « : P, — G. If there exists a
unique ¢ such that v; = v;; 9, then pruning « results in a unique o' of length n — 2.

Now suppose that there are two values 4, j such that v; = v;42 and v; = v;49, and hence two
possible prunings of a. We will show that either order of pruning will lead to the same result.
Without loss of generality, assume 7 < j. If i + 1 < j, then the repeated vertices are separated in
the walk and it is easily checked that pruning at ¢ and then j results in the same walk as pruning
at j and then i. If j +1¢ = 1, then « is of the form

o = (’U(ﬂ]l ey Ui—1U054103V541V0544 - - - Un)
Pruning at ¢ removes the first v;v;11 pair, while pruning at j = ¢ + 1 removes the v;;1v; pair. Both
pruning orders result in
0/ = (1)01}1 ey Ui—1U0410544 - - - ’Un)
Thus by induction any choice of successive prunings on « will eventually result in the same non-

prunable walk.
a
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Corollary 3.4. FEach prune class of walks has a unique non-prunable representative.

Proof. If we have two non-prunable walks «, 5 such that [a] = [8] then then there is a sequence
of forward and backward prune moves connecting them: o +— v — v ¢— 3 — ... 7% — 8
where each morphism represents a sequence of prunes in the indicated direction. We induct on k:
if £ = 1 then we have o« +— ;3 — (3, and Proposition 3.3 ensures that o = [ since they both
result from prunings of the same path ~;. If £ > 1, then consider the left portion of the sequence of
prune moves o <— y1 — 72: letting 7/ be the walk that results from completely pruning 7o, we
have that o =+’ by Proposition 3.3 again. But then we have a sequence of prune moves of length
k — 2 connecting v’ to 8, and by our inductive hypothesis we can say that v/ = 3. O

The walk groupoid consists of prune classes of walks under concatenation, as defined in Definition
2.4. To define this, we need:

Lemma 3.5. Concatenation is well-defined on prune classes.

Proof. The endpoints of any representatives of a prune class are always the same, and so the start
and end vertices are well-defined on prune classes. If o prunes to o’ and /3 prunes to 3’ then « * 3
prunes to o’ * ', and by Proposition 3.3 that the order in which the pruning is done will not matter.

a

The following is equivalent to the ‘fundamental groupoid’ of Section 1.2 in [21].

Definition 3.6. For a graph G, we define the walk groupoid of G, 20G, as follows:
e objects of DG are vertices of the graph G
e a morphism from vy to v, in WG is given by a prune class of walks from vy to v,
e composition of morphisms is defined using concatenation of walks.

To see that 20G is a groupoid, observe that concatenation of walks is associative ([8], Lemma
2.17) and the length 0 walk at a vertex v gives an identity morphism from v to v ([8], Observation
2.16.) Lastly, given any walk o = (vov103 . .. v _10,,) We define ™! = (v,0, 1 ... vav10p); it is easy
to see that a * a~! prunes down to a length 0 identity walk.

Since every prune class has a unique non-prunable representative, we can also think of this
groupoid as having morphisms given by non-prunable walks, where the composition operation is
given by concatenation followed by pruning.

To get a group from this groupoid, we can fix a vertex v and consider the isotropy group consisting
of all morphisms from v to v. Any choice of vertices in the same connected component of G will
result in isomorphic groups.

Example 3.7. Consider the graph Cs

0 1

The groupoid 20C5 has objects given by the vertex set {0,1,2,3,4}. We consider the isotropy
group at 0, given by prune classes of walks from 0 to 0. If any walk reverses orientation and goes
from clockwise to counterclockwise or vice versa, there will be a subwalk which can be pruned, and
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so all non trivial walks from 0 to 0 may be represented by strictly clockwise or counterclockwise
walks, generated by (043210) and (012340) respectively. Since the concatenation of these walks
prune to the identity walk (0), these are inverse morphisms. Either of them is a free generators
for the isotropy group, which is isomorphic to Z. Since C5 is connected, the groupoid 20C5 has
isotropy Z for any object.

Theorem 3.8. WG defines a functor from Gph to Groupoids, the category of groupoids.

Proof. If we have a graph homomorphism ¢ : G — H, we can define a functor ¢, : WG — WH
by ¢.(v) = ¢(v) on objects, and ¢, (a) = Py (Vov1v2 ... v,) = (P(vg)P(v1)P(v2) ... P(vy,)); the fact
that ¢ is a graph homomorphism ensures that this a walk in H. If o prunes to o/, then ¢.(a)
also prunes to ¢.(a’), and concatenation is respected, and so ¢, defines a moprhism of groupoids
WG — WH.

To verify functoriality, observe that if id : G — G is the identity, then id, is the identity map on
groupoids; and if ¢ : G — H and ¢ : H — K, then (¢¢). is the same as 9,¢. since they are both

defined by (Yo (vo)e(v1)d(va) ... Yd(vy)).
|

4. THE FUNDAMENTAL GROUPOID

This section defines our primary homotopy invariant, the fundamental groupoid. This groupoid
is a variant of the walk groupoid of the previous section, defined using homotopy classes of walks.

Definition 4.1. Suppose that a, 5 are walks in G from « to y. We say a and  are homotopic
rel endpoints if a and 3 are homotopic via a homotopy where all intermediate walks I'|g, ;3 are
also walks from = to y, so the endpoints of the walk remain fixed throughout the homotopy. A
similar definition holds for looped walks.

Definition 4.2. For a graph G, we define the fundamental groupoid of G, II(G), as follows:

e objects of II(G) are vertices of the graph G

e an morphism from vy to v, in II(G) is given by a prune class of walks from vy to v, up to
homotopy rel endpoints

e composition of morphisms is defined using concatenation of walks.

Example 4.3. Let a = (acbce) and 3 = (ade) be walks in the graph below. Then [o] = [8] € II(G)
since we have a prune of a to o/ = (ace) and then a spider move to 8 = (ade).

a a a

€ € e

In order to verify that this definition gives us a well-defined groupoid, we check the following.
Proposition 4.4. Concatenation is well-defined on elements of II(G).

Proof. We have already shown that concatenation is well-defined with respect to pruning in Propo-
sition 3.5, so we need to check that it respects homotopy. Suppose that we have walks that are
homotopic rel endpoints: « ~ o’ and 8 ~ §’. Then there is a sequence of spider moves connecting
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a to o, and B to 5’. So we can produce a sequence of spider moves connecting a * 8 to o’ * 5’ by
holding 3 fixed and moving a * 3 to o’ * 3, and then holding o’ fixed and moving o/ *  to o’ x 3.
(|

Theorem 4.5. II(G) defines a groupoid.

Proof. The concatenation operation is associative as shown in [8], Lemma 2.17, and given a vertex
v € G we have the length 0 walk (v) acting as an identity element by [8], Observation 2.16. If
a = (Vo1 ...Vn_1v,) then we can define an inverse a=! = (v,v,_1...v1v9) . Then

-1
axa” = (VgU1V2 . . . Vp—2Un—1UpUn—1Vp—2 . .. V2U1 ).

Successive pruning operations will reduce this to the identity walk (vp).
O

Any length 4 closed walk is contractible in II(G) since (zvivavsx) ~ (zvizvsz) = (). Thus
we consider these walks to be special, and give them a name. Any walk of length 4 which can be
pruned would necessarily prune to the trivial walk, so we do not include these in our definition but
focus on the non-prunable but contractible walks.

Definition 4.6. A diamond is a prune-free length 4 closed walk.

Example 4.7. Consider the graph G depicted below.

w z

L )

The length 4 closed walks (wxyzw), (aayza) and (aabba) are prune-free and thus are diamonds.
However the walk (wzwzw) is pruneable, and thus not a diamond.

We can describe the morphisms of II(G) more concretely with the following result.
Lemma 4.8. Let a be prunable at i, so v; = v;yo and « has the form
(VQUT -+« , Vj— 1004100543 « - - Upy)
Then o is homotopic rel endpoints to the walk
(VoV1 « vy Vi—1ViVig2 -« . UpUp—1Up).

Proof. As maps from P, — G, we apply successive spider moves to a to move the repeated vertex
down the walk:

a = (’Uovl <oy Vi1V 100430440545 -« -vn)
=~ (U0U1 <oy Vi—1VVi43VVi4-3Vi4405 - - . Un)
>~ (UoUl ooy Ui—1U030430544V54 3054405 . .. ’Un)

Repeatedly applying spider moves will shift the repeat down to the end of the walk.
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Thus for morphisms of II(G), we can consider only prunes of the last two edges. This allows
us to identify morphisms with homotopy classes of walks of infinite length, which eventually stabi-
lize and end with a string of alternating vertices v,v,_1VnVp—1UpVp—1Yy - ... Two such walks «, 8
will be equivalent if there is some extension of each which become homotopic rel endpoints: if a =
(vov1 ... v,) and B = (wows . .. Wy, ) then there exists extensions (vovy . .. Uy, Vp—1VpUn—1 - . - UnVUp—1Vp)
and (Wow1 . . . Wy Wi —1 Wi Win—1 -« « Wyn Wi —1Wyy, ) Which are homotopic rel endpoints.

As with our walk gropuoid, our fundamental groupoid defines a functor from Gph to groupoids.

Theorem 4.9. II defines a functor from Gph to groupoids.

Proof. Suppose that f : G — H is a graph homomorphism, and define f, : II(G) — II(H) by
applying f to each vertex as in Theorem 3.8. We have shown this is a functor from 2JG, and so
respects prune classes. If & and  are homotopic rel endpoints, there is a sequence of spider moves
connecting them, shifting one vertex (vovy ... v;—10iVit1...0,) to (Vou1 ... V;—10;0;41 ... vy), and
applying f will give a sequence of walks where each pair similarly differs by a single vertex, and
hence is a sequence of spider moves. So f.(a) will be homotopic rel endpoints to f«(3).

Functoriality also follows from the argument from Theorem 3.8.
O

We wish to show that II is actually a homotopy invariant. The homotopy category hFGph is
defined in [8] as a quotient of the 2-category Gph: the morphisms of hFGph are equivalence classes
of morphisms of Gph, where two morphisms are equivalent if there is a 2-cell between them, ie they
are homotopic. Thus in order to prove Theorem 4.10, we will show that we can extend II to a
2-functor from Gph to groupoids which takes 2-cells to natural isomorphisms.

We consider groupoids to be a 2-category by considering them to be a subcategory of the 2-
category of categories: a groupoid morphism is a functor, and a 2-cell is a natural transformation
between functors.

Theorem 4.10. II defines a functor from the homotopy category of graphs hFGph to the category
of groupoids and functors up to natural isomorphism.

Proof. We begin by extending the functor II of Theorem 4.9 to a strict 2-functor from Gph to
groupoids. We have defined IT on objects and morphisms. To define it on 2-cells, we need to assign
a natural transformation of functors to each homtopy of graph morphisms. We know by Proposition
2.9 that any homotopic maps are connected by a sequence of spider moves, so we may assume that
we have morphisms f,g : G — K which are a spider pair, differing only on a single vertex v of G.
We define a natural transformation 7 : f. = g.. This means that for each vertex w in G, we need
an arrow vy, : f(w) — g(w) in I(K).

We define v,, to be the length 0 walk from f(w) = g(w) if w # v. For w = v, choose a vertex v’
such that v ~ v' and define 7, to be the walk (f(v)f(v')g(v)). This walk is independent of choice
of v/, since all choices result in walks that are homotopic rel endpoints, connected by a spider move
shifting the middle vertex of the walk.

To verify the naturality square, consider a walk a = (wowyws ... wy) in G. We need to compare
the walks 7., * g(a) and f(«) * 7y, and show that they define the same morphism in II(K). If the
walk o does not include the vertex v moved by the spider move, or if v = w; for some i # 0,n then
Ywo and Yy, are empty and the walks are either identical or connected by a spider move shifting
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f(w;) to g(w;) (or multiple spider moves, if that vertex shows up multiple times). If v = wg then

Yo * g(@) = (f(0) f(")g(v)g(wi)g(ws) ... g(wn))
= (f() f(v")g(v) f(w1) f(ws) ... f(wy))
= (f(v)f(w1)g(v) f(w) f(ws) ... f(wn))

which prunes to f(a) = f(«) * 7y, . A similar argument gives the equality if v = w,,.

The 2-functor II lands in groupoids, where all morphisms are invertible. So the natural transfor-
mations 7y are automatically natural isomorphisms. Thus II passes to the quotient category and we
obtain a functor hFGph to the category of groupoids and functors up to natural isomorphism. [

Corollary 4.11. The category II(G) is a homotopy invariant, defined up to equivalence of cate-
gories.

Proof. If f : G — H is a homotopy equivalence, then there is g : H — G such that fg ~ id and
fg ~ id. Then there is a natural isomorphism from II(G) to g. f.II(G), and from II(H) to f.g.II(H)
and so f, and g, are equivalences of categories between II(G) and II(H).

O

Corollary 4.12. Let G be a graph, and G’ the (unique) stiff graph which is homotopy equivalent
to G. Then the fundamental groupoid II(G) is equivalent to the fundamental groupoid of TI(G’).

Observation 4.13. We have chosen to work with the fundamental groupoid here. It is easy to
recover a more familiar fundamental group by choosing a basepoint vertex v in G, and looking at
the group II; (G, v) of all morphisms in II(G) which start and end at v; this is the isotropy subgroup
of v in the groupoid. Because II(G) is a groupoid, we have an isomorphism between the isotropy
groups of any two choices of vertex in the same component of G.

Example 4.14. Let G be the graph from Example 4.3:

By Corollary 4.12 we have II(G) 2 II(K3), since K5 is the stiff homotopy equivalent representa-
tive of G.

o
0 1

The objects of II(K3) are the vertices 0,1 and the morphisms are identity morphisms given by
length 0 walks at 0 and 1, and the length 1 walks between them. Any other walk would consist of
alternating 0’s and 1’s, and may thus be pruned to a length 1 walk. Choosing a basepoint, we get
a trivial fundamental group.

We can describe the fundamental group II; (G, v) as a quotient of the isotropy subgroup of the
walk groupoid 20G.

Theorem 4.15. The fundamental group I1;(G,v) can be defined by I,/D where I, denotes the
isotropy group of v in WG, and D is the normal subgroup generated by all diamonds as defined in
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Definition 4.6. Explicitly, the subgroup D consists of products of walks of the form % (v1vavsvivy ) *
v~ for (vivevsvavy) a diamond and v a walk from v to vy.

Proof. We observed that all diamonds are contractible and thus any element of D is trivial in
II(G). Conversely, if two walks from v to v are homotopic, then there is a sequence of spider moves
connecting them. Each spider move will shift one vertex, so consider

a = (Vwiwg ... Wi— 1 WiWit] - - . Wp—10)

6 = (vw1w2 . .wiflwiwiJ’,l ce ’wn,ﬂ}).

Define v = (vwyws . .. w;_1) and the diamond d = (w;_1®W;w;11w;w;—1) Then ydy~! * o prunes to
B and so « and § are equivalent in 20G/D. O

Example 4.16. Let G be the graph depicted below:

a

d Cc

By Theorem 4.15, II; (G, z) can be calculated by I,,/D where I, is the isotropy of x in the walk
groupoid, given by the free group with generators e; = (zabx),es = (xbcx),es = (zedx),eq =
(zdex),es = (zeax). The diamonds are given by (zabcx), (xbedz), (xedex), (xdeax), (xeabz) which
are equal to ejes, eses, eseq, 465, ese1. This means that in 111 (G, ), es = el_l, and ey = 651, ete.
Thus we find that e; = e3 = e5 and e; = ¢4 = 61_1 and the group is generated by a single generator
e; under the relationship e = 1. Thus II;(G,z) = Z/2. This also shows that our fundamental
group can contain torsion, even if G does not contain loops.

5. FUNDAMENTAL GROUPOID OF PRODUCT AND UNION GRAPHS

In this section we further examine the structure of our fundamental groupoid II(G), looking
deeper into the parity structure of even and odd length walks and analyzing the fundamental
groupoid of product and union graphs. We observed earlier that the parity of the walk is independent
of the choice of representative, and so even and odd length walks are well-defined in II(G). Now
we examine this phenomenon a little deeper.

Let T be the terminal object of Gph which has one vertex and one loop edge 7 as shown in
[16,24]. Then II(G) is a groupoid with one object, hence a group, and it has two morphisms: the
identity morphism given by the length 0 walk, and the length 1 walk (7). The walk (77) can be
pruned to the identity empty walk, so as a group we have 72 = id and so II(T) is isomorphic to
Z/2.

The parity structure of the fundamental groupoid is connected to the fact that the terminal object
of Gph has a groupoid which is not the terminal identity groupoid. Every graph G has a unique
canonical morphism to 7', and so we have a groupoid morphism II(G) — II(T") and our fundamental
groupoids live in the category of groupoids over Z/2, with all morphisms of groupoids induced by
graph maps respecting this structure. Explicitly, we have that the canonical map II(G) — Z/2
takes even length walks to id and odd length walks to 7, and every map from II(G) — II(H) that
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comes from a graph map G — H will commute with the map to II(T') and hence preserve parity.

We can define the even subgroupoid ev(II(G)) = p~1(id).
The product G x H is the pullback over the terminal object

|

Functoriality says that the projections p1 : GX H — G and py : G x H — H give maps II(Gx H) —
II(G) and II(G x H) — II(H) and so we will have the following diagram:

G

H——>

N<—X

II(G x H)

~

(&)

I(T) = 7Z/2

where II(G) xz/, II(H) denotes the pullback groupoid. Explicitly, the pullback is defined as fol-
lows: the objects are the product of the objects of II(G) and TI(H), and morphisms are given by
{(a, B)|p1 () = p2(5)}, meaning (v, B) such that the parity of the walks are the same.

Theorem 5.1. The induced map ® : II(G' x H) — TI(G) x7/2I1(H) is an isomorphism of groupoids.

Proof. Objects of TI(G x H) are given by vertices of G x H which is the set V(G) x V(H), the
objects of II(G) xz/o II(H), so this is an isomorphism on objects.

On morphisms, the map is defined by ®(w) = («, 8) where p;(w) = o in G and py(w) = B in
H. We need to show that this is both full and faithful (injective and surjective). To show that
® is surjective on morphisms, suppose we have («a, ) € II(G) xz/, II(H) given by o € II(G) and
B € II(H) with the same parity. Take the shorter one and repeat the last two vertices to extend so
that both representative walks have the same length. This will create a walk w in G x H such that
O(w) = (o, B).

If ®(w) = ®(w') then @ = o in II(G) and g = B’ in II(H). This means there are extensions of
a, ' which are homotopic rel endpoints in G (via '), and extensions of 3, 3" which are homotopic
rel enpoints in H (via I'). We are assuming that these have the same parity, and so by extending
further, we may assume all are the same length. Then we can combine the homotopies I' x I to

get a homotopy in G x H. This shows that the functor is also injective on morphisms.
O

Example 5.2. Let G = P, H = K5 and consider G x H:
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G
*————90
0 1 2

(0,1) (1,1) (2,1)

(0,0) (1,0) (2,0)
GxH

There is an odd length walk from (0,0) to (1,1) since there is an odd length walk from 0 to 1 in
both G and H. Similarly, there is an even length walk from (0,0) to (2,0). However, there is no
walk from (0, 0) to (1,0), since the walks from 0 to 1 in G and 0 to 0 in H have different parity.

If we consider reflexive graphs (where all vertices have loops) then the parity plays less of a role
and our fundamental groupoid winds up with odd and even portions isomorphic to each other. To
make this precise, we look at a product groupoid X x Z/2. The objects of this product are the same
as the objects of X and the morphisms from z to z’ are defined by (a,id) and (a, 7) for a: x — 2/,
with composition definied by X in the first coordinate and multiplication in Z/2 in the second.

Proposition 5.3. Suppose that G is a reflexive graph, and II(G) = 11 is its fundamental groupoid,
and E = ev(II(Q@)) its even subgroupoid. Then Il ~ E X Z/2.

Proof. Define W : 11 — E X Z/2 by: a — («,id) if « € E and o — (au,,7) if « is odd, where v,
is the last vertex of the walk . Thus if « is odd, we repeat the last vertex (which we can do since
all vertices are looped) to create an even walk.

The map V¥ is an isomorphism on objects, since the objects of E are the same as the objects of
IT. We check that it is a functor. If « is even then it is easy to see that U(af) = U(a)¥(5). If «
is odd and f is even we need to compare av, 8 with afw,. But these are homotopic rel enpoints,
since all vertices are looped and so we have a sequence of spider moves that move the repeated
vertex down through £ to the end. Similarly, if & and  are both odd we are comparing aw,, fw,
to af; again we have a sequence of spider moves that take the repeated vertex to the end to get
afw,w, which prunes to af.

We define an inverse map A(a,id) = a and A(a, 7) = aw,. Then AV and WA are identities since
on evens they are identities and on odds they send a to aw,v, which prunes to «, showing that ¥
is an isomorphism.

|

Now we look at a graph created from a union and prove a modified van Kampen theorem [7,15].
Recall that the classic van Kampen theorem allows us to calulate the fundamental groupoid of a
pushout of two spaces using the free product of the fundamental groupoid of the component spaces,
amalgamated over the fundamental groupoid of the intersection. We obtain the analogous result
here for the union of graphs provided a technical condition on diamonds is met.

Theorem 5.4. If G = G1 U G4 and all diamonds (as in Definition 4.6) of G are fully contained
in either G1 or Ga then TI(G) = II(G1) *m(c,na,) IH(G2), the free product of TI(G1) and TI(G2)
amalgamated over the common subgroupoid II(G1 N Ga).

Proof. We verify that II(G) has the universal property for a pushout diagram: suppose we have two
groupoid maps @1, @2 : II(G;) — R for some groupoid R. Then we can define a map ¢ : II(G) — R
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as follows. For any morphisms o = (vwjws ... w), we can break it up into pieces o = ay * asas . ..
where each piece is contained in either G; or Go. Then we define p(a) = @;(ay) where we apply
the map ¢1 to pieces in G7 and 2 to pieces in Go. This is well-defined, since if any piece is in
both G; and Gy then ¢ = s, and any spider move will take place in either G; or G5 by our
diamond condition. It is unique since the functor ¢ needs to agree with ¢; and @2 and respect
the concatenation operation. Thus II(G) is the groupoid pushout, given by the free product with
amalgamation. O

Example 5.5. Let G be the graph depicted below:

V3 Wy
X w3
V2
Yy Wz
Ul wl
G

The graph G is the union of subgraphs G; = (5, G2 = Cs who have an intersection K = K.
Since the original graph G does not contain diamonds, all diamonds of G are vacuously contained
in G1 or Gs.

U3

V2

U1

Gy

The objects of II(Gy) are {x,y,v1,vs,v3}, and given any of these objects, the isotropy group
is isomorphic to Z. Thus II(G1) has a Z worth of morphisms between any objects. Similarly
the objects of II(G3) are {2/, y', w1, w2, w3, ws} and the isotropy groups are Z, with a Z worth of
morphisms between objects. The objects of II(K) are {z”,y”}, and since the isotropy is trivial
here, the only morphisms are z”y” and y"z".

So when we take IT; (G1) xx II(Gs2), we identify the objects =, z’, 2"’ to be a single object, and sim-
ilarly identify y,y’,y”. This gives us a groupoid whose objects are {x,y, vy, va, U3, W1, Wa, W3, W4 }.
Since the isotropy of K is trivial, we have that the isotropy of any element is the free product Z  Z.
Thus, the morphisms between elements of II(G) are in 1-1 correspondence with Z * Z.

6. COMPARISON WITH OTHER FUNDAMENTAL GROUPS FOR (GRAPHS

Fundamental groups and groupoids based on A-homotopy have been studied by [1,3,13]. These
are all based on a different category of graphs, in which the morphisms allow two connected vertices
to be collapsed. Because the underlying category of graphs for this theory is different, we did
not make a direct comparison functor between our fundamental group and these constructions.
However, we observe that the definitions are similar, but the fundamental group of A-homotopy
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theory treats both 3- and 4-cycles as contractible, while our fundamental group contracts 4-cycles
but not 3-cycles. The parity related patterns that we see with our definition thus do not appear in
the A-homotopy setting.

There is another fundamental group which has been defined based on x-homotopy by [11]. This
relates to a looped version of our fundamental groupoid which we sketch here. Our fundamental
groupoid II(G) is based on homotopy classes walks defined by P, — G. It is also possible to define
a looped fundamental groupoid based on homotopy classes of walks I/ — G, so that all the vertices
in the objects and in any walk need to be looped.

Definition 6.1. Let a = (vov1vs...v,) be a looped walk in G. We say that « is -prunable if it
is prunable or if v; = v;41 for some i. We define a /-prune of «a either to be a prune or to be given
by a walk o’ obtained by deleting one of the repeated vertices v; from the walk when v; = v;1q: if

a = (VgU1V2 . . . Vj—10;V;0i42Ui43 « . . Up)
then the /-prune of « is
/
o' = (VpU1V2 ... V;_1VViya ... Up)

Then we can make the following definition.

Definition 6.2. For a graph G, we define the looped fundamental groupoid of G, He(G), as
follows:

e objects of IT*(G) are looped vertices of the graph G

e a morphism from vy to v, in IT¥(G) is given by a f-prune class of walks from vy to v, defined
up to homotopy rel endpoints

e composition of morphisms is defined using concatenation of walks

This definition applies to any graph, but will only depend on the induced subgraph of looped
vertices. Verifying that this is a well-defined groupoid and that II¢ defines a homotopy invariant for
finite graphs is a straightforward adaptation of the arguments given in Section 4 for the unlooped
version. However, the looped groupoid is NOT equivalent to the unlooped even if all vertices are
looped, since the requirement for a homotopy of I’ is stricter than that for P, and any spider move
must swap images between connected vertices. This is illustrated in the example below.

Example 6.3. Consider G depicted below:

G

a b

Consider the walk (abc) from a to c. In II(G), this walk is homotopic to (adc) via a spider-move
from b to d. However in IT*(G) (abc) # (adc), since there is no homotopy from I{ taking b to d:
since the vertices of I§ are looped, such a spider move would require an edge from b and d.

We can think of looped walks as infinite length walks which stabilize at some point, so for some
n, then for all m > n the walk is the same vertex v,,. This gives us a presentation that is very similar
to the definition of the fundamental group given by [11] for exponential objects HY, developed in
the context of pointed graphs. In fact, results below will show that the isotropy of our groupoid at
a chosen base vertex coincides with Dochtermann’s based group. Our definition does not require a
choise of basepoint and applies to any graph, not just an exponential one.
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To show that we recover the base group of Dochtermann, we make use of [11], Corollary 4.8
giving a connection to the polyhedral hom complex. We will prove a version of this result that
applies to our groupoids, using the same approximation techniques.

Definition 6.4. [2] The polyhedral complex A = Hom(G, H) has cells indexed by functions 7 :
V(G) — 2VUD\{}}, such that if 2 ~ y € E(G), then n(x) x n(y) € E(H). The boundary
attachments of the cells are defined by inclusions n C 7/’.

The 2-skeleton of this complex is described explicitly by:

e (-cells are indexed by graph homomorphism G — H.

e 1l-cells will have a single vertex f such that |n(f)| = 2. Then n defines a 1-cell connecting
the two 0-cells indexed by the morphisms defined by the two choices of image of v, and
these two are connected by a spider move.

e 2-cells are of two types: A single vertex v with |n(v)| = 3, giving a 2-cell filling in a triangle
of shape (A), or two vertices v, w with |n(v)| = |n(w)| = 2, giving a 2-cell filling in square
of shape (B):
(A4) o f

g2 f (B) gihif g2hi f

7

93f gihof g2hao f

We will use this to show that the fundamental groupoid of Hom(G, H) is equivalent to the looped
groupoid of the exponential graph HY. To do this, we need the following lemma.

Lemma 6.5. Given any four morphisms f,g,d,h : G — H such that (fgh) = (fgh) in I*(H®) we
can fill the interior of the 4-cycle f, g, h,§ in with triangles and squares of the form (A) and (B).

Proof. We induct on the total number of vertices which have different images under one or more
pair of the morphisms f,g,g, f. If K = 1 then all of these morphisms agree on everything but a
single vertex, and we can fill in with triangles of form (A).

Now suppose the images of n vertices differ. We will choose an ordering for these vertices
ai,...,a,, and assume that all morphisms to be discussed will agree on any other vertex of G.
By Proposition 2.9, we have a sequence of n spider moves from f to g, consisting of morphisms
{f1,..., fx} where each f; agrees with f on aj for k > j, and agrees with f on a; for k < j. Thus
as we work through the d;, we move the images of a;, in increasing order. Similarly, we have spider
moves from h to g, consisting of h; changing the images of the vertices in order from A to z; and
fj from f to g, and lastly g; from h to g. We then fill out the 4-cycle with morphisms pi, g; as
follows:
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»fn:g“

f -1 ..-pn:qﬁ'--. hQ\h
f/1 o o f\h
~ . ~.
1 ~_ . R /hl
2 . h2

where p; is defined to agree with f; on all vertices except for a;, and take the same value as g
on ap; and similarly ¢; agrees with h; on all vertices except for a;, and with § on a;. Then the
bars in the diagram above are spider pairs because they only differ on a single vertex (a; for the
vertical bars, and successive ay, for the diagonals), and the squares and triangles between the top
and second lines are of the form (A) and (B).

Thus what remains is paths (flpnizl) and (flgill) who all agree on a1, and thus disagree on n—1

vertices. Our inductive hypothesis fills in the interior of this interior 4-cycle.
O

Theorem 6.6. Let K = HY be the exponential graph, and let A = Hom(G,H) of Definition
6.4. There is an equivalence of categories II*(K) ~ II(A) where TI*(K) is the looped groupoid from
Definnition 6.2, and II(A) is the topological fundamental groupoid of the space A.

Proof. Define ® : TTI*(K) — II(A) as follows: if v is an object of II*(K) then v is a looped vertex of
K = H€ which defines a morphism G — H which corresponds to a 0-cell. Send the object v to the
object represented by this 0-cell in TI(A). If a = (vov1vs . ..v,) represent an morphism of IT*(K),
then v; ~ v;11 in H®, and so we have a sequence of spider moves v; f1f ... fmvir1 connecting the
morphisms v; and v; 41, each connecting morphisms which differ in the image of a single vertex v,
and thus corresponding to a 1-cell of A. Send « to the path along the 1-cells. This is independent
of choice of spider move, since a different choice would correspond to a different order of moving
the vertices one at a time, and we can fill in two such choices with a square of type (B) from the
2-skeleton. Thus two choices of spider realizations are homotopic in A.

Now if [a] = [8] in IT*(K), then they are homotopic rel endpoints up to f-pruning. A prune
comes from a repeated vertex, which would be mapped under ® to a path in A which was constant
at that vertex, homotopic to the walk without the pause. And any homotopy rel endpoints could
be realized by a sequence of spider moves which could be filled in by Lemma 6.5.

To show that ® is essentially surjective on objects, let 2 € TI(A) be an object of the fundamental
groupoid and hence a point in A. Choose any corner y of its simplex and a path ~ from x to y.
Then y is in the image of ® and ~ represents an morphism from z to y.

To show that ® is full on morphisms, suppose that there is a path in A from 0-cell v to w. Then
~ is homotopic to 4/ that lies in the 1-skeleton of A by cellular approximation [15], and 4 is in the
image of ®. to show that ® is faithful on morphisms, suppose that a, 8 : v — w in II(K) given
by paths a = (vvyvs ... w) and 8 = (vwjws ... w), such that ®(a) = ®(B) in II(A). This means
that there is a homotopy from « to £ in A which we may assume lives in the 2-skeleton, so lives on
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triangles of type (A) and squares of type (B). Each of these corresponds to spider moves showing
that [a] = [B] in T*(K). O

Corollary 6.7. The isotropy group of a vertex v in II*(H®) is isomorphic to the based group
(1, QUHY)]« defined in [11].

Proof. Tt is shown in [11] that the based group [1., 2(H%)]« is isomoprhic to the fundamental group
of the simplicial complex 71 (Hom(G, H)). O

7. FUTURE DIRECTIONS

This work is part of a broader effort to understand and develop a theory of x-homotopy for
graphs. This work introduced our fundamental groupoid, a computable x-homotopy invariant.
Future directions for expanding on this include using the fundamental groupoids defined here to
develop a theory of covers and deck transformations of graphs which lift x-homotopy, currently a
work in progress [9]. The definition of the fundamental groupoid also opens up the natural question
of whether it is possible to develop higher homotopy groups for x-homotopy, analogous to those
which have been defined for A-homotopy [1, 3, 22].
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