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Abstract

The equivariant fundamental groupoid of a G-space X is a category which generalizes the fundamental groupoid of a space to
the equivariant setting. In this paper, we prove a van Kampen theorem for these categories: the equivariant fundamental groupoid
of X can be obtained as a pushout of the categories associated to two open G-subsets covering X . This is proved by interpreting
the equivariant fundamental groupoid as a Grothendieck semidirect product construction, and combining general properties of this
construction with the ordinary (non-equivariant) van Kampen theorem. We then illustrate applications of this theorem by showing
that the equivariant fundamental groupoid of a G-CW complex only depends on the 2-skeleton and also by using the theorem to
compute an example.
c© 2008 Elsevier B.V. All rights reserved.

MSC: Primary: 55P62; secondary: 55P91; 18G05

1. Introduction

The fundamental groupoid of homotopy classes of paths in a space X is a category which is closely related to the
more famous fundamental group, but considers paths between different points in X . The advantage of the groupoids
is that they more gracefully accommodate disconnected spaces and multiple basepoints. This is particularly relevant
when studying equivariant homotopy theory, looking at spaces which have an action of a group G. If a G-space has
no fixed points, then there is no good choice of a single basepoint. Moreover, the G-equivariant homotopy type of a
space X depends on the structure of all of its fixed sets X H

= {x ∈ X |hx = x ∀h ∈ H} for closed subgroups H of G;
and a space which is itself connected may have disconnected fixed point sets. Therefore we cannot avoid the problem
of disconnected spaces by looking at connected components separately.

The equivariant fundamental groupoid is a category we associate to a G-space X which generalizes the fundamental
groupoid. It is designed to encompass information about the fixed sets of X as well as the space itself. This category
was defined by tom Dieck [11] and has been used in a variety of equivariant constructions such as covering spaces
and orientations [3,4]. Despite the name, this category is not itself a groupoid, but rather constructed out of groupoids
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via the Grothendieck semidirect product construction [6,8]; thus it has the structure of what are called variously
‘catégories fibrées en groupoids’ (Grothendieck [7]) or ‘bundles of groupoids’ in the topological setting (Costenoble,
May and Waner [4]).

In this paper, we prove a van Kampen theorem which describes the equivariant fundamental groupoid of a G-space
X as a pushout of the categories associated to two open G-subsets covering X . The proof follows from the ordinary
van Kampen theorem [1] using general properties of the Grothendieck semidirect product construction. We then apply
this theorem to show that the equivariant fundamental groupoid of a G-CW complex only depends on the 2-skeleton;
and also illustrate the use of this theorem by computing an example.

The organization of this paper is as follows. The basic definitions and the statement of the main theorem are given
in Section 2. Section 3 talks about the Grothendieck semidirect product construction as a weak colimit, and uses this to
show that this construction commutes with pushouts (and in fact general colimits). Section 4 puts together the results
of Section 3 and the ordinary van Kampen theorem, to prove the main result. Section 5 gives the application to G-CW
complexes, and Section 6 contains the example calculation.

2. Equivariant fundamental groupoids

If X is a G-space, its equivariant homotopy type depends not only on the space itself but also on the homotopy
type of the fixed spaces X H for the various closed subgroups H of G. So we often think of a G-space as a collection
of the spaces {X H

}, together with the inclusions and relations induced by the G-action; and any equivariant invariants
defined should include information about these spaces and their relations to each other. This is the starting point for
trying to define an equivariant fundamental groupoid. We start by quickly reviewing some important aspects of this
theory [5,9].

One way of organizing this fixed point data is using the orbit category OG . This is the category whose objects are
the canonical orbit types G/H for closed subgroups H of G, and whose morphisms are the equivariant maps between
them. The idea is that any equivariant ‘point’ x of a G-space X comes with an entire orbit {gx |g ∈ G}, and this will
be isomorphic to one of these canonical orbit types. Thus the orbit category contains building blocks for all G-spaces
and the equivariant maps between them.

A little group theory reveals the form of the equivariant map between orbits G/H → G/K . Any such map has
the form α : gH 7→ gαK for some α ∈ G such that α−1 Hα ⊆ K , and two such maps are the same if and only if
αK = α′K . Thus the morphism set OG[G/H, G/K ] is isomorphic to (G/K )H . It is also useful to observe that any
morphism in OG is the composite of an automorphism of conjugacy classes G/H → G/gHg−1 and a projection
G/H → G/K for H ⊆ K .

To relate the orbit category to the fixed point data, we observe that a G-map x : G/H → X is equivalent to a
point in X H under the correspondence x ↔ x(eH). Moreover, it is easy to check that if x ∈ X H then αx ∈ XαHα−1

;
therefore if α : G/H → G/K defines a map inOG for α−1 Hα ⊆ K , we can define a map X K

→ X H by x → αx . So
we can describe the diagram of the fixed sets and their relations as a functor Oop

G → Spaces defined by G/H → X H .
Thus our first attempt to define an equivariant fundamental groupoid might be to look at all of the fundamental

groupoids of all the fixed sets, and define a functorOop
G → Cat by Π X (G/H) = Π (X H ), giving an object of CatO

op
G .

Working with these functors can be somewhat awkward, however, and we often instead create a single category out
of all of these groupoids.

To do this, we use the Grothendieck semidirect product construction, which gives a method for taking a functor
F : Cop

→ Cat and combining the image categories F(C) together into a single category. The Grothendieck
semidirect product

∫
C F is a category whose objects are pairs (C, X), with C an object in C and X an object in F(C),

and whose arrows (C, X) → (C ′, Y ) are pairs ( f, υ) with f : C → C ′ an arrow in C, and υ : X → F( f )(Y ) an
arrow in F(C). This category has an obvious projection functor to C, so this construction turns a functor F ∈ CatC

op

into an object in the slice category Cat/C; the projection retains information about the different pieces F(C) used to
create it. This category is also universal in a sense that will be discussed in Section 3.

If we apply this construction to the functor Π X defined by Π (X−), we get a category ΠG(X) =
∫
OG

Π X , the

equivariant fundamental groupoid of X . Explicitly, the objects of this category are pairs (G/K , x) where x ∈ X K is
a point; and the morphisms (G/K , x) → (G/H, y) are defined by pairs (α, γ ) where α : G/K → G/H and γ is a
homotopy class of paths γ : I → X K from x to αy. This is precisely the original definition given in tom Dieck [11,
Definition 10.7]; we learned about the Grothendieck interpretation of this category from [10].
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Note that even though all of the categories Π (X−) are groupoids, ΠG(X) itself is not, since it includes morphisms
(α, γ ) for which the map α is not invertible. Geometrically, this is coming from the fact that the ‘points’ in ΠG(X)

come labeled with a subgroup H such that x ∈ X H . However, it is entirely possible for the same point to be fixed
by more than one subgroup, and therefore to appear multiple times labeled with different subgroups. In fact, since
if H ⊂ K , then any point in X K will also be fixed by H . Thus we can have a non-invertible path (α, γ ) where
α : G/K → G/H is a projection, and γ is a path in X K which ends at a G/H -labeled point y ∈ X K

⊆ X H (note
that αy is just y ∈ X H relabeled with (G/K ).

However, we can recover the groupoids Π (X H ) by looking at the projection to OG , and restricting to the
subcategory over an object G/H and its identity map. In fact, ΠG(X) has more structure coming from the fact that
the component categories are groupoids.

Definition 2.1 ([7]). A category fibred in groupoids over a base category C is a small category D in Cat/C such that
for any choice of morphism f : C ′

→ C of C and lifting D of C , there is a ‘pullback’

D′

π

���
�
�

f̂ //___ D

π

��
C ′

f // C

which is unique up to unique isomorphism: if f̂ ′
: D′′

→ D is another pullback of D over f , then there is a unique
isomorphism θ : D′′

→ D′ over idC ′ such that f̂ ′
= f̂ ◦ θ .

This definition implies that if we fix an object C of C, the fibre subcategory over C and its identity map is a
groupoid: if f : D′

→ D is a morphism over idC , then D′ is a pullback of D over idC . But clearly id : D → D
is also such a pullback, and so Definition 2.1 states that there is a unique isomorphism g : D → D′ over idC such
that f g = id. Then since g is an isomorphism, g−1 exists and so f = g−1g f = g−1. Thus any map over idC has an
inverse map.

Conversely, it is easy to see that for any functor F : Cop
→ Gpd, the Grothendieck construction

∫
C F is a category

fibred in groupoids over C: if f : C ′
→ C is a map in C and (C, D ∈ F(C)) is an object of

∫
C F , then a pullback

(C ′, D′) can be defined by taking D′
= F( f )D with the map ( f, id); so f : C ′

→ C and id : D′
→ F( f )D as

required. Then the invertibility of all maps in the groupoid F(C) can be used to show that the pullback map is unique
up to unique isomorphism.

In particular, the equivariant fundamental groupoid category ΠG(X) is fibred in groupoids over OG ; the pullback
of (G/H, x ∈ X H ) along α : G/K → G/H can be defined by (G/K , αx), since αx ∈ XαHα−1

and K ⊆ αHα−1.
Notice also that this construction allows for a morphism from (G/H, x) to (G/K , y) to be described by a path γ

which ends at αy for a point in the orbit of y. Thus we are looking at each orbit as a single piece, and paths go from
one orbit to another. This also means that if x is fixed by α ∈ G, we have non-trivial ‘constant’ paths from (G/H, x)

to itself over α : G/H → G/H , since (α, cx ) is a path from x to x = αx . More generally, we always have constant
‘relabel’ maps from an orbit to itself, since there is a morphism from (G/H, x) to (G/α−1 Hα, α−1x) defined by
(α, cx ).

Homotopic paths in X are identified in the fundamental groupoid. For a compact Lie group G, we may also have
homotopic ‘constant’ paths coming from the topology on the morphisms ofOG . In certain contexts we want to identify
these. Thus we consider the following construction.

We observed earlier that the morphisms OG[G/H, G/K ] ' (G/H)H , and so inherits a topology from G. Thus
OG is a category enriched over topological spaces, and we can form the homotopy category hOG by replacing
the maps OG[G/H, G/K ] with π0OG[G/H, G/K ]. Similarly, the Grothendieck category

∫
OG

Π X is also enriched
over spaces, with the topology coming from the topology on OG : since the morphisms are given by (α, γ ) where
α : G/H → G/K and γ : x → αy, we can think of this as a product topology where the morphisms of Π X
are discrete. Therefore we can again consider the homotopy category h

∫
OG

Π X ; this is the discrete equivariant

fundamental groupoid Π d
G(X). It is a category fibred in groupoids over the homotopy orbit category hOG .

Explicitly, we can describe this category as follows. Suppose that (α, γ ) : (G/H, x) → (G/K , y) is one map in∫
OG

Π X , and (α′, γ ′) is another. A path between these objects is given by (σ,Λ) where σ : α → α′ is a path in
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OG[G/H, G/K ] and Λ : I × I → X H describes a homotopy of paths Λ(t, −) = γt where γ0 = γ , γ1 = γ ′ and γt is
a path from x to σ(t)y. That is, we have the following diagram:

x

x

γ0
αy

σ yΛ

x
γ1

α′y

We identify (α, γ ) and (α′, γ ′) in the homotopy category h
∫
OG

Π X = Π d
G(X), and recover the original definition of

the discrete category given by tom Dieck [11, Definition 10.9].
The definitions above use the full fundamental groupoids on the spaces X H , with paths between all points in X H .

As in the non-equivariant case, we generally want to restrict to a smaller set of basepoints. For each Π (X H ), we can
choose a set AH ⊆ X H and restrict to the full subcategory Π (X H , AH ) with objects given just by points in AH ; if
AH contains at least one point in each connected component of X H , this restriction is an equivalence of categories.

For our semidirect product category, we need to choose enough points AH of X H , and also ensure that these
points are compatible between the various fixed sets. One way to do this is to use a single G-subset A of X such that
X H

∩ A = AH contains enough basepoints for all subgroups H .

Definition 2.2. A G-subset A of X is thorough in X if for each subgroup H of G, there is at least one a ∈ A in each
component of X H .

Then we can restrict the fundamental groupoid ΠG(X) to objects given by the basepoints A; that is, to the objects
defined by all pairs (G/H, a) for a ∈ X H

∩ A. These objects can also be described in the tom Dieck definition as the
equivariant points G/H → X given by eH → a ∈ X H . (Note that the point a of X may show up as multiple objects,
since it might be contained in a number of fixed sets.) Note that on each component groupoid we are restricting to
Π (X H , X H

∩ A), which is a deformation retract of the full groupoid Π (X H ). We denote the full subcategory of
ΠG(X) on these objects by ΠG(X, A).

If a G-subset A is thorough in X , then there is a functor Π X,A : Oop
G → Cat defined by Π X,A(G/H) = Π (X H , A),

and ΠG(X, A) =
∫
OG

Π X,A; and so ΠG(X, A) is also a category fibred in groupoids over OG .

Any equivariant map between G-spaces X → Y gives functors Π (X H ) → Π (Y H ), and so naturally induces a
map ΠG(X) → ΠG(Y ). In particular, if U is a subset of X closed under the action of G, then the inclusion induces a
map ΠG(U ) → ΠG(X). If A is a set of basepoints for X , then for any subset U ⊆ X , we abbreviate ΠG(U, U ∩ A)

by ΠG(U, A).
The main theorem of this paper is:

Theorem 2.3. Suppose that U1 and U2 are open G-subsets of X such that X = U1 ∪ U2 with U1 ∩ U2 = U3; and
suppose that A is a thorough subset of X such that A ∩ Ui is also thorough in each Ui for i = 1, 2, 3. Then

ΠG(U3, A) //

��

ΠG(U1, A)

��
ΠG(U2, A) // ΠG(X, A)

and Π d
G(U3, A) //

��

Π d
G(U1, A)

��
Π d

G(U2, A) // Π d
G(X, A)

are pushout diagrams in Cat, and also in Fib(OG), respectively Fib(hOG) of categories fibred in groupoids over OG ,
respectively hOG .

To prove this, we use the fact that the Grothendieck semidirect product category is a weak colimit to show that this
construction commutes with general colimits, including pushouts. This fact, combined with the ordinary van Kampen
theorem shows that we get a pushout diagram on the equivariant fundamental groupoid categories.
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3. Weak Colimits and the Grothendieck semidirect product

We discuss the universal property of the Grothendieck semidirect product construction. We will use it to show that
the construction commutes with pushouts, a fact that we will use in the proof of our main theorem.

Given functors F, G : Cop
→ Cat, a weak natural transformation α : F ⇒ G consists of a family of functors

αC
: F(C) → G(C), one for each object C in C, and a family of natural transformations

F(C)
αC

// G(C)

⇓ α f

F(C ′)
αC ′

//

F( f )

OO

G(C ′)

G( f )

OO

αC F( f )
α f

+3 G( f ) αC ′

one for each arrow f : C → C ′ in C, satisfying the usual coherence law for composition. We also require that

αidC = idαC . We write CatC
op
w for the corresponding category of functors and weak natural transformations.

It is straightforward to extend the Grothendieck construction to weak natural transformations, so we have a functor∫
C

: CatC
op
w → Cat.

This functor is a left adjoint to the diagonal (or constant) functor P : Cat → CatC
op
w . This in turn means that

∫
C is

a weak colimit, i.e. it has the following universal property: for any functor F : Cop
→ Cat, there is a weak natural

transformation

j : F ⇒

∫
C

F,

given by the unit of the adjunction
∫
C a P (where we have identified a category with the constant functor it

determines). This weak natural transformation consists of a family of functors jC
: F(C) →

∫
C F , one for any

object C ∈ C, and a family of natural transformations j f
: jC0 F( f ) ⇒ jC1 , one for each arrow f : C0 → C1 in C,

such that:

• jidC = idjC .

• (Coherence) For any pair of composable arrow in C, C0
f

−→ C1
g
−→ C2, the following tetrahedron commutes

F(C2)

jC2

��F(g)

����
��

��
��

��
��

��
��

��

F(g f )

��;
;;

;;
;;

;;
;;

;;
;;

;;
;

∫
CF

j f
⇐

jg
⇒ jg f

⇐

F(C1)

jC1oooo

77oooo

F( f )
// F(C0)

jC0 OOOO

ggOOOO

(In this tetrahedron the front face is commutative and the coherence says that jgj f F(g) = jg f .)

Moreover these functors are universal in the usual colimit sense.
We want to use this universal property to show that the Grothendieck construction commutes with pushouts. More

generally, we show that for any small category D, this functor commutes with taking colimits over D. To see this, we

can consider the category of functors and weak natural transformations Cat(C
op

×D)w , and the subcategory CatC
op
w ×D

with the same objects and whose arrows are those weak natural transformations α : F ⇒ G : Cop
×D → Cat which

are strict in the second variable: that is, for any object C ∈ C, the natural transformation

α(C,−)
: F(C, −) ⇒ G(C, −) : D → Cat

is strict.
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Clearly we have an isomorphism CatC
op
w ×D ∼= (CatC

op
w )D and also an inclusion

(CatD)C
op

∼= CatC
op

×D
⊆ CatC

op
w ×D.

Therefore we have diagonal functors

CatC
op
w → CatC

op
w ×D and CatD → CatC

op
w ×D,

and, as usual, the square of diagonal functors

Cat //

��

CatD

��

CatC
op
w // CatC

op
w ×D

commutes. Therefore the square with the corresponding left adjoint functors is also commutative.
Now the left adjoint to the diagonal functor

CatD → (CatD)C
op

⊆ CatC
op
w ×D

takes a functor F : Cop
×D → Cat to the functor in CatD which takes an object D ∈ D to the category

∫
C F(−, D).

So composing through this corner, we see that the adjoint functor of the whole inclusion Cat → CatC
op
w ×D is the

colimit over D of the Grothendieck semidirect products. Composing in the other direction tells us that it is also the
Grothendieck semidirect product of the D-colimits. Therefore these are equal.

Thus we have proved the following.

Proposition 3.1. The Grothendieck semidirect product construction commutes with colimits.

4. Proof of the main theorem

Recall that we are assuming that A is a thorough subset of X such that A ∩ Ui is also thorough in each Ui for
i = 1, 2, 3.

Proof of Theorem 2.3. We first consider the functors of the fundamental groupoids of fixed sets for the various
spaces. If X = U1 ∪ U2 then for any subgroup H of G, the fixed set X H

= U H
1 ∪ U H

2 , and the intersection
U3 = U1 ∩ U2 also satisfies U H

3 = U H
1 ∩ U H

2 .
Now, since A ∩ Ui is thorough in each Ui , i = 1, 2, 3, for each H , the fundamental groupoids Π (U H

i , A) and
Π (X H , A) are deformation retracts of Π (U H

i ) and Π (X H ) respectively. So the ordinary van Kampen theorem [1]
states that the square

Π (U H
3 , A)

i1 //

i2

��

Π (U H
1 , A)

j1
��

Π (U H
2 , A)

j2 // Π (X H , A)

is a pushout of categories. Then, since pushouts in CatO
op
G are computed objectwise and the Grothendieck semidirect

product preserves pushouts by Proposition 3.1, the square∫
OG

Π U3,A = ΠG(U3, A)
i1 //

i2

��

∫
OG

Π U1,A = ΠG(U1, A)

j1
��∫

OG
Π U2,A = ΠG(U2, A)

j2 //
∫
OG

Π X,A = ΠG(X, A)
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is also a pushout diagram in Cat, and consequently in the slice category Cat/OG and in Fib(OG) of categories fibre
on groupoids over OG .).

For the discrete version, we note that the homotopy category of a category enriched in topological spaces is created
by applying the functor π0 to the morphisms; and π0 is the left adjoint of the inclusion of categories Sets → Spaces,
using the discrete topology. So h is the left adjoint of the inclusion of ordinary categories into categories enriched over
topological spaces, and so it commutes with pushouts (and more general colimits). Thus the previous diagram implies
that

Π d
G(U3, A)

i1 //

i2

��

Π d
G(U1, A)

j1
��

Π d
G(U2, A)

j2 // Π d
G(X, A)

is also a pushout diagram in Cat and in Fib(hOG). �

Let us note that, as in the non-equivariant case, the fundamental groupoid ΠG(X, A) is a fibre deformation retract
of ΠG(X) over OG . In fact, the inclusions iH : Π (X H , A) → Π (X H ) fit together to give a natural transformation
i : Π X,A ⇒ Π X ; so, by applying the Grothendieck construction, we have an inclusion∫

OG

i : ΠG(X, A) → ΠG(X).

Moreover, we can define retractions rH : Π (X H ) → Π (X H , A) for each H as follows: given x ∈ X H , there is an
element aH

x ∈ A in the same connected component of x in X H (this is our thoroughness condition). So we can choose
a path γ H

x : x → aH
x ; this gives an isomorphism x → aH

x in Π (X H ). For a ∈ A, we choose the identity path. These
paths can be used to define the retraction rH .

There are many choices involved in the above process, so there is no reason to think that these rH ’s fit together
to give a natural transformation between Π X and Π X,A. We can, however, define a weak natural transformation
r : Π X ⇒ Π X,A. For any map α : G/H → G/K in OG , we just take the natural transformation rα:

Π (X H )
rH // Π (X H , A)

⇓ rα

Π (X K ) rK
//

Π X (α)

OO

Π (X H , A)

Π X,A(α)

OO

defined on x ∈ Π (X K ) by the composition

rα
x : aH

αx
(γ H

αx )−1

−−−−→ αx
αγ K

x
−−→ αaK

x .

Since the Grothendieck construction takes weak natural transformations to functors of categories, we get a functor∫
OG

r : ΠG(X) → ΠG(X, A),

over OG , such that
∫
OG

r
∫
OG

i = id . With a little care, we can fix the natural transformations iH rH ⇒ id to build a
natural transformation

∫
OG

i
∫
OG

r ⇒ id .

We could use the van Kampen theorem on ΠG(X) (coming from the ordinary van Kampen theorem on Π (X H )) and
the above fibre deformation retract to give an alternate proof of the van Kampen theorem for equivariant fundamental
groupoids with restricted basepoints.

5. Application to G-CW complexes

An equivariant G-CW complex X is a colimit of a sequence of intermediate G-spaces, the n-skeletons Xn , where
each Xn is created from Xn−1 by pushouts of G-cells which have the form G/H × Dn , attached along equivariant
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maps from the boundary G/H × Sn . Every G-space can be approximated by a G-CW complex up to weak equivariant
homotopy type, and these spaces possess many properties analogous to ordinary CW complexes, so this is a useful
category to work with for equivariant homotopy [9].

We can use Theorem 2.3 to show that the equivariant fundamental groupoids of a G-CW complex depends only on
the 2-skeleton for any set of basepoints which is contained in the 2-skeleton. Note that for finite groups, the G-skeleton
can be taken to be just the ordinary CW skeleton of the fixed sets X H , since we can arrange a cellular G-action; and
then this fact follows immediately from the fact that each Π (X H ) depends only on the 2-skeleton. For more general
groups, however, the equivariant skeleton is quite distinct from the non-equivariant one, as it is impossible to get a
cellular action; instead the G-skeleton is carrying the topology of G along with it, since the cells G/H × Dn can have
a non-trivial topology coming from the structure of G/H .

Proposition 5.1. Let X be a G-CW complex, and A be a set of basepoints {ai } which is contained in the 2-skeleton
X2. Then the inclusion X2

→ X induces isomorphisms ΠG(X2, A) ' ΠG(X, A) and Π d
G(X2, A) ' Π d

G(X, A).

Proof. We start by looking at the fundamental groupoids of the cells G/H × Dn with basepoints restricted to the
boundary points G/H × Sn−1; note that these boundary points form a thorough set of basepoints.

The objects of ΠG(G/H × Dn, A) are defined by pairs (G/K , p) where p ∈ AK . Since we are taking A to be
G/H ×Sn−1 here, if K ⊆ H we can take any point p = (g, x) where g ∈ G/H and x ∈ Sn−1; otherwise AK is empty.
Given two such objects (G/K1, (g1, x1)) and (G/K2, (g2, x2)), the morphisms between them in ΠG(G/H × Dn, A)

are given by pairs (α, γ ) where α : G/K1 → G/K2 is specified by an element α ∈ G/K2, and γ is a homotopy class
of paths in G/H × Dn from (g1, x1) to (αg2, x2). Hence α ∈ G/K2 must be such that g1 Hand αg2 H are in the same
connected component of G/H , and γ is determined by a homotopy class of paths from g1 H to g2αH in G/H . For
n ≥ 2, there is a unique homotopy class of paths between x1 and x2 for any two points of Dn . So this component does
not add any information to the description of the path γ .

We have a similar description of Π d
G(G/H × Dn, A). Objects are the same as above, and the morphisms are now

determined by an equivalence class of the morphisms of ΠG(G/H × Dn, A); so an equivalence class of morphisms
is specified by a class [α] ∈ π0(G/K2)

K1 such that g1 H and αg2 H are in the same connected component of G/H .
Both descriptions have no reliance on the space Dn beyond the fact that it is connected and simply connected.

In fact, the exact same descriptions give ΠG(G/H × Sn−1) and Π d
G(G/H × Sn−1) for n ≥ 2; so the inclusion

G/H × Sn−1
→ G/H × Dn induces isomorphisms on equivariant fundamental groupoids. Similarly for any set of

basepoints A contained in Sn−1, the inclusion G/H × Sn−1
→ G/H × Dn induces an isomorphism of the equivariant

fundamental groupoids. By Theorem 2.3, the fundamental groupoids of Xn can be calculated from those of Xn−1 as a
pushout along these inclusion maps. Since the pushout of an isomorphism is an isomorphism, we see that the inclusion
X2

→ X gives an isomorphism of equivariant fundamental groupoids for n ≥ 2.

6. Example

In this section we work through an example of how to compute with the equivariant van Kampen theorem. We will
use the group G = Z/2Z; this is a discrete group, so the discrete and regular equivariant fundamental groupoids are
the same. Thus our base category is the orbit category OG of G:

G/e
ρ //

τ

��
G/G, τ 2

= id, τρ = ρ.

We consider the space X = S1 with the G-action given by reflection through the vertical axis. So X has two fixed
points N and S (for north and south pole). We cover X by two open G-sets U1 and U2 where U1 is the upper half and
U2 is the lower half, overlapping in the intersection U3 given by two small open contractible neighborhoods of the
equator points {E, W }. Then τ E = W , and so A = {N , S, E, W } is a G-subset; and A ∩ Ui is thorough in each Ui
for i = 1, 2, 3, and A is thorough in X . We will calculate ΠG(X, A) using this cover.

Firstly, U3 ∩ A = {E, W } and U G
3 is empty, so Π U3,A(G/G) = ∅ and Π U3,A(G/e) has objects E and W .

Therefore ΠG(U3, A) has two objects, (G/e, E) and (G/e, W ), and two non-identity maps: the ‘relabel’ maps
(τ, idE ) : (G/e, E) → (G/e, W ), and s (τ, idW ) : (G/e, W ) to (G/e, E). Since τ 2

= e and τ idE = idW , these
maps are inverse to each other.
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Next, U2 ∩ A = {S, E, W }. The space U2 is contractible, so Π U2,A(G/e) = Π (U2, A) has a unique arrow between
any two objects, and the action of τ switches E and W . The groupoid Π U2,A(G/G) = Π (U G

2 , A) is the single
object S with its identity map, and the map induced by ρ : G/e → G/G is the inclusion of this subcategory. Thus
ΠG(U2, A) has four objects: (G/e, E), (G/e, W ), (G/e, S) and (G/G, S), and the resulting category looks like

(G/e, W )

(ρ,α) ++

(e,α) --
(τ,β−1)

--
(G/e, S)

(ρ,idS)

��

(e,β) --
(τ,α−1)

--

(e,α−1)
mm

(τ,β)

mm
(G/e, E)

(e,β−1)
mm

(τ,β−1)

mm

(ρ,β−1)ss
(G/G, S)

where many of the composite maps have been suppressed. The category ΠG(U1, A) looks the same, except that we
have N instead of S.

Before computing the pushout, we will reduce our categories a little. Any full representative subcategory D′ of D
induces functor r : D → D′ which is a deformation retract, and this property preserved by pushouts over a functor
which is injective on objects [2, Theorem 6.7.3]. Moreover, if these categories are all fibred in groupoids over C, and
D′ is a fibre representative subcategory for which each object D ∈ D has an isomorphism within the fibre to an object
D′

∈ D over idπ(D) in C, then the retract r and its pushout are fibre deformation retracts over C.
Now in ΠG(U1, A), all the objects (G/e, P) are isomorphic over e = idG/e in OG . Thus the full subcategory D′

of ΠG(U1, A) on objects (G/e, E), (G/e, W ) and (G/G, N ) is a fibre representative subcategory. The category D′

has the form

(G/e, W )
φ --
γ

--

ρW &&MMMMMMMMMMM (G/e, E)

ρExxqqqqqqqqqqφ−1mm

γ −1

mm

(G/G, N )

where the abbreviated morphisms stand for: γ = (τ, idW ), γ −1
= (τ, idE ), φ = (e, βα), φ−1

= (e, α−1β−1), ρW =

(ρ, α) and ρE = (ρ, β−1). Using these full descriptions and the semidirect product rule for composition, we can
calculate that φ−1γ = γ −1φ is the non-trivial automorphism of (G/e, W ) over τ , and similarly φγ −1

= γφ−1 is an
automorphism of (G/e, E); and that ρEφ = ρEγ = ρE , and likewise ρW φ−1

= ρW γ −1
= ρW . Since the functor

ΠG(U1, A) → ΠG(X, A) is injective on objects, the full representative category D′ of ΠG(U1, A) gives rise to a full
representative category E ′ of ΠG(X, A), via a pushout diagram.

We make a similar reduction on ΠG(U2, A), and define a fibre representative subcategoryD′′ as the full subcategory
on the objects (G/e, E) and (G/G, S). Then D′′ can be pictured as:

(G/e, E)
η //

γ

��
(G/G, S)

where γ = (τ, α−1β−1) = (e, βα)(τ, idE ) = (τ, idW )(e, α−1β−1) and η = (ρ, β−1), and the compositions are
described by γ 2

= id and ηγ = η; the projection D′′
→ OG is an isomorphism of categories. We can again take a

pushout over ΠG(U2, A) → ΠG(X, A) to get a fibre representative subcategory E ′′.
Now we can form the following diagram, where E is the pushout of the outer square:

ΠG(U3, A) //

i
��

ΠG(U2, A)
r2 //

j
��

D′′

��
ΠG(U1, A)

r1

��

// ΠG(X, A)

r ′

1
��

r ′

2

// E ′′

��
D′ // E ′ // E
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Both inclusions ΠG(U3, A) → ΠG(Ui , A) for i = 1, 2 in the top left are injective on objects; since the pushout
category has objects constructed as the set pushout of object sets, and pushouts in sets preserve injections, the
inclusions ΠG(Ui , A) → ΠG(X, A) are likewise injective on objects for i = 1, 2. Similarly, r1i is injective on
objects, and so r ′

1 j is also. Thus the right rectangle from f g(U2, A) to E is a pushout in which r ′′

2 is a retraction; so E
is a retract of E ′ and hence of the category ΠG(X, A).

Thus we calculate the category E , equivalent to the category ΠG(X, A), as a pushout of the following:

(G/e, W )
γ −1 --

(G/e, E)
γ

mm // (G/e, E)

η��

γ

��

��

(G/G, S)

(G/e, W )
φ−1 --
γ −1

--

ρW ))SSSSSSS (G/e, E)

ρEuukkkkkkkφ
mm

γ

mm

(G/G, N )

It is clear that the resulting pushout category has objects (G/e, E), (G/G, N ) and (G/G, S). Morphisms are
given by strings of composable morphisms from the subcategories, with suitable identifications [12]. Therefore the
automorphisms of the object (G/e, E) are strings of the morphisms γ and φ, subject to the identifications γ 2

= id and
φ = γφ−1γ . From this presentation, we see that this automorphism group is exactly the infinite dihedral group D∞,
where morphisms in the subgroup (φ) project to id : G/e → G/e in OG , and the reflections to the non-trivial map
τ . For morphisms (G/e, E) → (G/G, S), we have a map η and can compose with any automorphism of (G/e, E),
subject to the relation γ η = γ . So this morphism set is D∞/(γ ). Similarly morphisms (G/e, E) → (G/G, N ) are
given by D∞/(φ−1γ ), since φρ = γρ in ΠG(U2, A). The graph of the category E is therefore

(G/e, E)

D∞/(γ )

&&MMMMMMMMMM
D∞/(φ−1γ )

xxqqqqqqqqqq

D∞

��

(G/G, N ) (G/G, S)
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