CORRECTION TO TRANSLATION GROUPOIDS AND ORBIFOLD COHOMOLOGY

DORETTE PRONK AND LAURA SCULL

This note concerns an error in the proof of Lemma 8.1 of the paper *Translation Groupoids and Orbifold Cohomology*, Canadian J. Math Vol 62 (3), pp 614-645 (2010). This was pointed out to the authors by Li Du of the Georg-August-Universität at Gottingen, who also suggested the outline for the following corrected proof.

The lemma in question reads:

Lemma 8.1. The class of essential equivalences between Lie groupoids satisfies the 3-for-2 property, i.e., if we have homomorphisms $\mathcal{G} \xrightarrow{\varphi} \mathcal{K} \xrightarrow{\psi} \mathcal{H}$ such that two out of $\{\varphi, \psi, \varphi \circ \psi\}$ are essential equivalences, then so is the third.

The given proof of this lemma is incorrect in the case where $\psi \circ \varphi$ and ψ are essentially equivalences. There it is stated:

It is a standard property of fibre products that if any two out of (A), (B), and the whole square are fibre products, so is the third.

This is incorrect in general; in particular, when φ and $\psi \circ \varphi$ are merely fully faithful it is not necessary that ψ is also, and counter-examples can be created. Below is a corrected proof of the case in question.

Proof. We consider the case where φ and $\psi \circ \varphi$ are essential equivalences. Since $\psi \circ \varphi$ is essentially surjective, the map $G_0 \times_{H_0} H_1 \to H_0$ is a surjective submersion. This map factors as the top arrow in the following diagram,

$$\begin{array}{cccc} G_0 \times_{H_0} H_1 \longrightarrow K_0 \times_{H_0} H_1 \longrightarrow H_1 \stackrel{t}{\longrightarrow} H_0 \\ & & & & \downarrow & & \downarrow s \\ G_0 \stackrel{\varphi_0}{\longrightarrow} K_0 \stackrel{\psi_0}{\longrightarrow} H_0 \end{array}$$

and we see that this implies that the composite of the last two maps, $K_0 \times_{H_0} H_1 \rightarrow H_0$ is a surjective submersion.

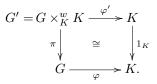
Next we consider the following diagram

$$\begin{array}{c|c} G_1 & \xrightarrow{\varphi_1} & K_1 & \xrightarrow{\psi_1} & H_1 \\ (s,t) & & (A) & (s,t) & & (B) & & (s,t) \\ G_0 \times G_0 & \xrightarrow{\varphi_0 \times \varphi_0} & K_0 \times K_0 & \xrightarrow{\psi_0 \times \psi_0} & H_0 \times H_0. \end{array}$$

Since φ and $\psi \circ \varphi$ are essential equivalences, the left square (A) and the entire rectangle are both pullbacks. We want to show that the right square has to be a pullback as well. As indicated by the discussion above, the fact that φ is essentially

surjective is an important ingredient. In fact, we would like to assume that φ_0 is actually surjective.

If φ_0 is not surjective, then consider the weak pullback groupoid



Since φ is an essential equivalence, so is φ' . In addition, π is also an essential equivalence, because it is a weak pullback of an identity arrow (which is obviously an essential equivalence).

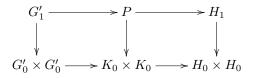
So we replace (A) by a new square (A'), which is again a pullback:

$$\begin{array}{c|c} G_1' & \xrightarrow{\varphi_1'} & K_1 & \xrightarrow{\psi_1} & H_1 \\ (s,t) & & & & & \\ (s,t) & & & & & \\ G_0' \times G_0' & \xrightarrow{(A')} & K_0 \times K_0 & \xrightarrow{(B)} & H_0 \times H_0. \end{array}$$

Furthermore, the entire rectangle is again a pullback: Note that $\psi \circ \varphi' \cong (\psi \circ \varphi) \circ \pi$. The latter is an essential equivalence as a composite of essential equivalences and hence so is the former, because it is isomorphic to an essential equivalence. We have also that the map $\varphi': G'_0 = G_0 \times_{K_0} K_1 \times_{K_0} K_0 \to K_0$, defined by $(x, k, t(k)) \mapsto t(k)$, is surjective since φ is essentially surjective.

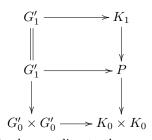
Now consider the pullback

Since the map $s\pi_1$ is a surjective submersion, this pullback is a smooth manifold, and we get a smooth map $K_1 \to P = K_0 \times_{H_0,s} H_1 \times_{t,H_0} K_0$. Next consider the diagram



We know that the right square is a pullback, and therefore the left square is a pullback if and only if the whole rectangle is a pullback. But the whole rectangle is a pullback as we just observed and so the left square is a pullback.

So now consider



The bottom square is a pullback according to the previous argument, and we know that the whole rectangle is a pullback since $\varphi' : G' \to K$ is fully faithful. Therefore, the top square is also a pullback.

Now the bottom map is a surjective submersion (it is surjective as argued above and it is submersion because the groupoids are étale), and therefore the pullback map $G'_1 \to P$ is also a surjective submersion. Then looking at the top square, we see that the pullback of the map $K_1 \to P$ is the identity map, and hence a diffeomorphism. Therefore the original map must have also been a diffeomorphism. So $K_1 \cong P$ and so the original square (B) is a pullback as required. \Box