
CORRECTION TO

TRANSLATION GROUPOIDS AND ORBIFOLD COHOMOLOGY

DORETTE PRONK AND LAURA SCULL

This note concerns an error in the proof of Lemma 8.1 of the paper Transla-
tion Groupoids and Orbifold Cohomology, Canadian J. Math Vol 62 (3), pp 614-
645 (2010). This was pointed out to the authors by Li Du of the Georg-August-
Universität at Gottingen, who also suggested the outline for the following corrected
proof.

The lemma in question reads:

Lemma 8.1. The class of essential equivalences between Lie groupoids satisfies the

3-for-2 property, i.e., if we have homomorphisms G ϕ→ K ψ→ H such that two out of
{ϕ,ψ, ϕ ◦ ψ} are essential equivalences, then so is the third.

The given proof of this lemma is incorrect in the case where ψ ◦ ϕ and ψ are
essentially equivalences. There it is stated:

It is a standard property of fibre products that if any two out of (A),
(B), and the whole square are fibre products, so is the third.

This is incorrect in general; in particular, when ϕ and ψ ◦ ϕ are merely fully
faithful it is not necessary that ψ is also, and counter-examples can be created.
Below is a corrected proof of the case in question.

Proof. We consider the case where ϕ and ψ ◦ ϕ are essential equivalences. Since
ψ ◦ϕ is essentially surjective, the map G0×H0

H1 → H0 is a surjective submersion.
This map factors as the top arrow in the following diagram,

G0 ×H0
H1

//

��

K0 ×H0
H1

��

// H1

s

��

t // H0

G0 ϕ0

// K0
ψ0

// H0

and we see that this implies that the composite of the last two maps, K0×H0 H1 →
H0 is a surjective submersion.

Next we consider the following diagram

G1

(s,t)

��

ϕ1 //

(A)

K1

(s,t)

��

ψ1 //

(B)

H1

(s,t)

��
G0 ×G0 ϕ0×ϕ0

// K0 ×K0
ψ0×ψ0

// H0 ×H0.

Since ϕ and ψ ◦ ϕ are essential equivalences, the left square (A) and the entire
rectangle are both pullbacks. We want to show that the right square has to be a
pullback as well. As indicated by the discussion above, the fact that ϕ is essentially
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surjective is an important ingredient. In fact, we would like to assume that ϕ0 is
actually surjective.

If ϕ0 is not surjective, then consider the weak pullback groupoid

G′ =G×wK K
ϕ′
//

π

��
∼=

K

1K

��
G

ϕ
// K.

Since ϕ is an essential equivalence, so is ϕ′. In addition, π is also an essential
equivalence, because it is a weak pullback of an identity arrow (which is obviously
an essential equivalence).

So we replace (A) by a new square (A′), which is again a pullback:

G′1

(s,t)

��

ϕ′
1 //

(A′)

K1

(s,t)

��

ψ1 //

(B)

H1

(s,t)

��
G′0 ×G′0

ϕ′
0×ϕ

′
0

// K0 ×K0
ψ0×ψ0

// H0 ×H0.

Furthermore, the entire rectangle is again a pullback: Note that ψ◦ϕ′ ∼= (ψ◦ϕ)◦π.
The latter is an essential equivalence as a composite of essential equivalences and
hence so is the former, because it is isomorphic to an essential equivalence. We have
also that the map ϕ′ : G′0 = G0×K0

K1×K0
K0 → K0, defined by (x, k, t(k)) 7→ t(k),

is surjective since ϕ is essentially surjective.
Now consider the pullback

P //

��

H1 ×t,H0
K0

sπ1

��
K0

ψ0

// H0

Since the map sπ1 is a surjective submersion, this pullback is a smooth manifold,
and we get a smooth map K1 → P = K0 ×H0,s H1 ×t,H0

K0. Next consider the
diagram

G′1

��

// P

��

// H1

��
G′0 ×G′0 // K0 ×K0

// H0 ×H0

We know that the right square is a pullback, and therefore the left square is a
pullback if and only if the whole rectangle is a pullback. But the whole rectangle
is a pullback as we just observed and so the left square is a pullback.
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So now consider
G′1 // K1

��
G′1

��

// P

��
G′0 ×G′0 // K0 ×K0

The bottom square is a pullback according to the previous argument, and we know
that the whole rectangle is a pullback since ϕ′ : G′ → K is fully faithful. Therefore,
the top square is also a pullback.

Now the bottom map is a surjective submersion (it is surjective as argued above
and it is submersion because the groupoids are étale), and therefore the pullback
map G′1 → P is also a surjective submersion. Then looking at the top square,
we see that the pullback of the map K1 → P is the identity map, and hence a
diffeomorphism. Therefore the original map must have also been a diffeomorphism.
So K1

∼= P and so the original square (B) is a pullback as required. �


