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Introduction

Equivariant algebraic topology uses discrete invariants to study spaces with a spec-
ified group of symmetries, typically assuming that the symmetry group is both Lie
(for actions on manifolds and related spaces) and compact (to make the theory ac-
cessible). Since the invariants are discrete, they depend only on homotopy classes
of G-maps. The domain of equivariant homotopy theory therefore is the homotopy
category of G-spaces and the goal is to describe this category in algebraic terms.
In this paper, we describe a large part of equivariant homotopy theory in algebraic
terms when the compact Lie group G is Abelian.

We state our results in the language of localization. A map of G-spaces X → Y
is an equivariant weak equivalence when the induced map on H-fixed spaces
XH → Y H is a (non-equivariant) weak equivalence for every closed subgroup
H ⊆ G. An equivariant homotopy equivalence is therefore an equivariant weak
equivalence, and a fundamental result is that an equivariant weak equivalence is
an equivariant homotopy equivalence provided the G-spaces are suitably nice, that
is, homotopy equivalent to G-complexes. Most G-spaces of geometric interest (in-
cluding all G-manifolds) satisfy this. If we localize the category of G-spaces by
formally inverting the equivariant weak equivalences, the result is called the equiv-
ariant homotopy category.

! The first author was supported in part by NSF postdoctoral fellowship DMS 9804421.
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We can also consider weaker notions of equivalence: A G-map X → Y is
an equivariant rational or p-adic equivalence if each induced map XH → Y H

is a (non-equivariant) rational or p-adic equivalence, that is, a homology isomor-
phism with rational or Z/pZ coefficients. The category obtained from G-spaces
by formally inverting the equivariant rational or p-adic equivalences is called the
equivariant rational or p-adic homotopy category.

The equivariant rational and p-adic homotopy categories fracture equivariant
homotopy theory into a rational piece and a piece for each prime p. By the (non-
equivariant) Whitehead theorem, a G-map X → Y between G-spaces with simply
connected fixed-point spaces is an equivariant weak equivalence if and only if it
is an equivariant rational equivalence and equivariant p-adic equivalence for all p.
Just as in non-equivariant homotopy theory, much of equivariant homotopy theory
can be recovered from rational homotopy theory, p-adic homotopy theory, and
patching information.

We describe algebraic models for rational and p-adic equivariant homotopy
theory. In the rational case, our description is in terms of diagrams of commutative
differential graded Q-algebras (CDGA’s) of a particular shape. In Section 2, we
describe a category D closely related to the lattice of closed subgroups of G. We
define a D-CDGA to be a functor from D into the category of commutative differ-
ential graded Q-algebras. We define a contravariant functor A0 from the category
of G-spaces to the category of D-CDGAs; the value at each object of D is the
Thom–Sullivan De Rham algebra of the singular complex of a Borel construction
on a fixed point space of the given G-space; see Section 3 for details. We let P 0

be a cofibrant approximation of A0(∗), where ∗ is the one-point G-space; essen-
tially, this is a minimal model for A0(∗). Then we can regard A0 as a functor from
G-spaces to the category of D-CDGAs under P 0. We will see that A0 converts
equivariant rational equivalences to (objectwise) quasi-isomorphisms, and so A0

passes to a functor on the homotopy categories. In the rational case, our main result
is the following.

Theorem A. Let G be an Abelian compact Lie group. There is a functor A0

from the equivariant rational homotopy category to the homotopy category of D-
CDGAs under P 0. On the full subcategory of G-simply connected G-finite Q-type
G-spaces, this functor is full and faithful.

In the p-adic case, we use E∞ F̄p-algebras in place of rational differential
graded Q-algebras, and the cochain complex in place of the De Rham complex,
but otherwise essentially the same outline holds. We prove the following theorem.

Theorem B. Let G be an Abelian compact Lie group. There is a functor Ap

from the equivariant p-adic homotopy category to the homotopy category of D-
E∞DGAs under P p. On the full subcategory of G-simply connected G-finite p-
type G-spaces, this functor is full and faithful.

Here G-simply connected means that each fixed-point space is simply con-
nected in the non-equivariant sense (and may be empty or non-connected). Like-
wise, G-finite Q- or p- type means that each fixed-point space is (non-equivar-
iantly) finite Q- or p- type, that is, its homology with coefficients in Q or Z/pZ
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is finitely generated in each degree. In the case of each of these theorems, we can
describe in homological terms the image of the G-simply connected G-finite type
G-spaces; see Section 3 for details.

Unfortunately, we are less successful at describing the objects P 0 and P p, and
so the models obtained from our main theorems are not very explicit in general.
When dimG = 0, that is, when G is a finite group, we can take P 0 to be the
constant diagram on Q in the rational case and P p to be the constant diagram on F̄p

in the p-adic case. The models we obtain this way are more complicated than the
ones described in [11] (rationally) and in [7] (p-adically), where the methods apply
more generally to non-Abelian finite groups. In the case when G is the circle group
T, we can also describe our rational models explicitly; we do this in Section 4.
This is the algebraic category described in the second author’s 1999 University of
Chicago thesis [9].

1 Diagrams of Spaces

In order to produce algebraic models, we first reduce equivariant homotopy theory
to the study of diagrams of spaces and fibrations, and then apply the algebraic
models of [10] and [6]. Historically the first description of equivariant homotopy
theory in terms of diagrams is the theorem of Elmendorf [5] that explains how
to recover a G-space X up to equivariant weak equivalence from its system of
fixed-point spaces XH and inclusion relations.

To make this precise, consider the orbit category OG of G, whose objects
are the canonical orbits G/H for all closed subgroups H ⊆ G, and whose maps
are equivariant maps between them. Any map in OG(G/H, G/K) is of the form
gH → gaK for some a ∈ G with such that a−1Ha ⊆ K, and moreover that a and
b represent the same map if and only if ab−1 ∈ K. So the maps in this category
are given by

OG(G/H, G/K) ∼= (G/K)H .

We regard OG as a topological category, topologizing the maps by the above iso-
morphism.

Associated to any G-space X there is a contravariant fixed point functor ΦX
fromOG to spaces. This functor has the value ΦX(G/H) = XH , with morphisms
induced by the G-action on the space X . This functor is continuous in the sense
that the map

OG(G/K, G/H)× ΦX(G/H) → ΦX(G/K)

is a continuous map for every pair of objects G/K, G/H of OG. Motivated by
this example we define the category OGU of OG-spaces to be the category of
continuous contravariant functors from OG to spaces. We define weak equiva-
lence, rational equivalence, and p-adic equivalence in OGU objectwise; we say
that a map X → Y in OGU is a weak (resp. rational, p-adic) equivalence if
X(G/H) → Y (G/H) is a non-equivariant weak (resp. rational, p-adic) equiva-
lence for every object G/H of OG. We define the homotopy category, the rational
homotopy category , and the p-adic homotopy category of OG-spaces by formally
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inverting the weak equivalences, rational equivalences, and p-adic equivalences
respectively.

We can interpret Φ as a functor from the category of G-spaces to OGU . The
earlier definitions immediately imply that a map of G-spaces X → Y is an
equivariant weak, rational, or p-adic equivalence if and only if the induced map
ΦX → ΦY is a weak, rational, or p-adic equivalence in OGU respectively. It fol-
lows that Φ factors through the homotopy categories we obtain by inverting these
equivalences. The following result shows that ΦX contains exactly the same ho-
motopy information as the original space X .

Theorem 1.1. (Elmendorf) The functor Φ induces an equivalence of:

(i) The equivariant homotopy category and the homotopy category of OG-spaces,
(ii) The equivariant rational homotopy category and the rational homotopy cate-

gory of OG-spaces, and
(iii) The equivariant p-adic homotopy category and the p-adic homotopy category

of OG-spaces for each prime p.

Proof. Elmendorf [5] constructs a functor C from OG-spaces to G-spaces, and
natural weak equivalences CΦ → Id and ΦC → Id.

For reasons explained in the next section, we find it convenient to work with
a variant of the orbit category that we call the subdivided orbit category ∆OG.
Although Elmendorf’s theorem holds very generally, here we need to restrict to
the case when G is Abelian. In this case, the orbit G/K has an action by the group
G/K. The idea for the category ∆OG is to have many objects corresponding to
each orbit G/K, one for each group G/H that can act on it. We use the symbol
G/K[H] to denote the orbit G/K thought of as a G/H space. Following this idea,
for maps, we have ∆OG(G/K[H], G/K[H]) = G/H . As K varies, we have a
canonical quotient map G/K ′[H] → G/K[H] whenever K ′ ⊆ K. In addition, as
H varies, we have a canonical group-change map G/K[H] → G/K[H ′] when-
ever H ′ ⊆ H . To understand the variance in H (which may appear backwards),
observe that for a contravariant functor X , the map X(G/K[H ′]) → X(G/K[H])
goes from a space with a larger group acting to a space with a smaller group acting.
This leads to the precise definition of the category ∆OG. We emphasize that the
variance in H is opposite to that of K.

Definition 1.2. Let ∆OG be the category that has one object G/K[H] for each
pair of closed subgroups H ⊆ K. Maps are defined by

∆OG(G/K1[H1], G/K2[H2]) =

{
G/H1 if H2 ⊆ H1 ⊆ K1 ⊆ K2

∅ otherwise

Composition of maps is induced by multiplication in G. We define the category
∆OGU of ∆OG-spaces to be the category of continuous contravariant functors
from ∆OG to spaces.
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Again we define weak equivalences, rational equivalences, and p-adic equiva-
lences objectwise, and form the homotopy category, rational homotopy category,
and p-adic homotopy category of ∆OG-spaces by formally inverting the corre-
sponding equivalences.

Regarding the object G/K[H] as the orbit G/K with a G/H-action defines
a (covariant) functor from ∆OG to OG: The functor sends the object G/K[H]
to G/K, and sends the morphism space ∆OG(G/K1[H1], G/K2[H2]) = G/H1

to the morphism space OG(G/K1, G/K2) = G/K2 via the quotient map when
H2 ⊆ H1 ⊆ K1 ⊆ K2. Composing with the functor ∆OG → OG, we therefore
obtain a functor I from OGU to ∆OGU . Clearly I preserves weak equivalences,
rational equivalences, and p-adic equivalences, and so it passes to the categories
obtained by formally inverting these equivalences. In Section 7, we show:

Theorem 1.3. The functor I induces full embeddings of:

(i) The homotopy category of OG-spaces in the homotopy category of ∆OG-
spaces,

(ii) The rational homotopy category of OG-spaces in the rational homotopy cate-
gory of ∆OG-spaces, and

(iii) The p-adic homotopy category of OG-spaces in the p-adic homotopy category
of ∆OG-spaces for each prime p.

In order to understand the embeddings, we also want to identify the image
of I . If we start with an object X in OGU , then by definition IX(G/K[H]) =
X(G/K) for every H ⊆ K. Define the category Im∆ to be the full subcategory
of the homotopy category of ∆OGU consisting of those objects for which any
map X(G/K[H]) → X(G/K[K]) is a weak equivalence for all subgroups H ⊆
K; likewise define Im∆

0 and Im∆
p to be the respective full subcategories of the

rational and p-adic homotopy categories of ∆OGU consisting of those objects for
which any map X(G/K[H]) → X(G/K[K]) is a rational and p-adic equivalence.
In Section 7, we prove:

Theorem 1.4. An object X in the homotopy category, rational homotopy category,
or p-adic homotopy category of ∆OG-spaces is isomorphic to an object in the
image of I if and only if X is in Im∆, Im∆

0 , or Im∆
p respectively.

Thus, we have equivalences of categories between the equivariant homotopy
category and Im∆, the equivariant rational homotopy category and Im∆

0 , and the
equivariant p-adic homotopy category and Im∆

p .

2 Diagrams of Bundles

Since the categories OG and ∆OG are topologized, OG-spaces and ∆OG-spaces
cannot be used directly to produce algebraic models unless G is finite. Dwyer and
Kan [3] showed that equivariant homotopy theory can be reduced to the theory of
diagrams on a certain discrete category and the theory of fibrations. In this section,
we describe a slightly different such reduction that follows similar ideas.
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We say that a map of G-spaces X → Y is an underlying weak equivalence
when it is a non-equivariant weak equivalence. The projection map EG × X →
X is an underlying weak equivalence, and so every G-space is underlying weak
equivalent to a free G-space. A basic tenet of bundle theory is that a G-space X is
determined up to underlying weak equivalence by the classifying map q : EG×G

X → BG. Precisely, X is underlying weak equivalent to the G-space obtained as
the pullback along q of the map EG → BG, as this is again the G-space EG×X .
In an OG-space X , the G/H-space X(G/H) is determined only up to underlying
weak equivalence, and this piece of the structure can therefore be recovered from
a classifying map. The goal is to fit these classifying maps together in such a way
that the whole OG-space can be recovered.

The first difficulty is that the different objects in the OG diagram have actions
of different groups. For an Abelian group G, the universal bundle E(G/H) →
B(G/H) is covariant in G/H , whereas the spaces X(G/H) in an OG-space X
are contravariant. We have introduced the subdivided orbit category ∆OG in the
previous section precisely to deal with this problem. For a map G/K1[H1] →
G/K2[H2], we have contravariance both in the universal bundles

(E(G/H1) → B(G/H1)) ←− (E(G/H2) → B(G/H2))

and the spaces X(G/K1[H1]) ← X(G/K2[H2]). In fact, in contrast to OG-
spaces, we can define a ∆OG-space E by

(2.1) E(G/K[H]) = E(G/H).

The final map E → ∗ is a weak equivalence.
Before proceeding, we should note one other complication. We can recover the

G-space X up to underlying weak equivalence from the classifying map EG ×G

X → BG, even if it is known only up to weak equivalence in the category of
spaces over BG. However, if we know the classifying map only up to rational
or p-adic equivalence, we cannot necessarily recover X up to underlying rational
or p-adic equivalence. An instructive example is the case of X = S2 with the
antipodal action of G = Z/2Z. Here, the map S2 → ∗ is not a rational equivalence
but induces a rational equivalence on Borel constructions. The classifying map
therefore cannot distinguish the free Z/2Z-space S2 from the trivial Z/2Z-space
∗. This problem is directly related to the fact that the group in the example is not
connected. When G is connected, BG is simply connected, and it follows from
the ideas of Eilenberg and Moore [4] that pullbacks along the fibration EG →
BG preserve homology isomorphisms. For this reason, we base our main bundle
constructions on an action of the identity component Ge and separate out the action
of the finite group π0G = G/Ge. Instead of working with the classifying space
BG, we work instead with the π0G-space EG/Ge, which is (non-equivariantly)
equivalent to B(Ge).

Now we combine these two ideas to define a category B of bundle diagrams
whose various homotopy categories are equivalent to the corresponding homotopy
categories of ∆OG-spaces. Motivated by the observations above, the functor from
∆OG-spaces to this new category takes X to a diagram of bundles of the form

E(G/H)×(G/H)e
X(G/K[H]) → E(G/H)/(G/H)e,
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in other words, of the form

E(G/K[H])×(G/H)e
X(G/K[H]) → E(G/K[H])×(G/H)e

∗.

We want our diagrams to be indexed on a discrete category D, and examining how
these bundles fit together leads us to the following definition.

Definition 2.2. Let D be the homotopy category of ∆OG: its objects are the same
as the objects of ∆OG, and maps are

D(G/K1[H1], G/K2[H2]) = π0(∆OG(G/K1[H1], G/K2[H2])) = π0(G/H1)

if H2 ⊆ H1 ⊆ K1 ⊆ K2 and ∅ otherwise. We define the category DU of D-spaces
to be the category of contravariant functors from D to spaces.

We emphasize that although D is a homotopy category, a functor in DU has
codomain the category of spaces as opposed to the homotopy category of spaces.

The prescription

QX(G/K[H]) = E(G/K[H])×(G/H)e
X(G/K[H])

defines a functor Q from ∆OG-spaces to D-spaces. We write B for Q∗, where ∗
is the constant ∆OG-space on the one-point space. We regard Q as a functor from
OGU to DU/B.

Definition 2.3. The category B is the category DU/B of D-spaces lying over B.

In other words, an object of B consists of an object Y of DU together with a
map Y → B. A map in B is a map in DU that commutes with the maps to B.

We define weak equivalences, rational equivalences, and p-adic equivalences
in B objectwise for the underlying D-space. As always, we form the homotopy
category, rational homotopy category, and p-adic homotopy category of B by for-
mally inverting those maps that are weak equivalences, rational equivalences, and
p-adic equivalences respectively. It follows from classical bundle theory (and the
Serre spectral sequence) that the functor Q preserves weak equivalences, rational
equivalences, and p-adic equivalences, and so we obtain induced functors between
the various homotopy categories of ∆OG-spaces and the corresponding homotopy
categories of B. In Section 6, we show:

Theorem 2.4. The functor Q induces equivalences between the homotopy cate-
gory, rational homotopy category and p-adic homotopy category of ∆OG-spaces
and the corresponding homotopy categories of B.

Once again, we also wish to identify those objects equivalent to G-spaces,
or equivalently, to OG-spaces. For an OG-space X , the ∆OG-space IX has the
property that

IX(G/K[H]) = X(G/K) = IX(G/K[K])
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and the structure maps G/K[K] → G/K[H] induce the identity isomorphism. It
follows that for the object QIX of B,

QIX(G/K[H]) = E(G/H)×(G/H)e
IX(G/K[H])

= E(G/H)×(G/H)e
X(G/K)

∼= B(G/H)×B(G/K) E(G/K)×(G/K)e
X(G/K)

∼= B(G/K[H])×B(G/K[K]) QIX(G/K[K]).

With this as motivation, we define ImB, ImB
0 , and ImB

p to be the full subcate-
gories of the homotopy category, rational homotopy category, and p-adic homo-
topy category of B, consisting of those objects Y for which the map

(2.5) Y (G/K[H]) → B(G/K[H])×B(G/K[K]) Y (G/K[K]).

induced by [e] ∈ π0G/K = D(G/K[K], G/K[H]) is a weak equivalence, ratio-
nal equivalence, and p-adic equivalence respectively. In Section 6, we prove:

Theorem 2.6. An object Y in the homotopy category, rational homotopy category,
or p-adic homotopy category of B is isomorphic to an object in the image of QI if
and only if X is in ImB, ImB

0 , or ImB
p respectively.

3 The Algebraization Theorems

Armed with descriptions of the equivariant rational and p-adic homotopy cate-
gories in terms of diagrams on a discrete category, we explain the algebraization
theorems. The basic idea is that any (contravariant) functor from spaces to some
category of algebras defines a functor from the over category B to the category
of (covariant) D-diagrams of algebras lying under the diagram obtained from B.
When the functor preserves rational or Z/pZ homology isomorphisms, it induces
a functor on the rational or p-adic homotopy categories. We apply this observation
to the Thom–Sullivan De Rham and singular cochain functors.

Definition 3.1. Let Ω∗ denote the functor from spaces to commutative differential
graded Q-algebras obtained by applying the polynomial De Rham functor of [10]
to the singular simplicial set of a space. Let C∗ denote the singular cochain functor
from spaces to E∞ F̄p-algebras.

We consider the category of (covariant) functors from D to commutative dif-
ferential graded Q-algebras and likewise to E∞ F̄p-algebras. We call objects in
these categories D-CDGAs and D-E∞DGAs respectively. Weak equivalences in
these categories are maps that are quasi-isomorphisms at each object. Applying the
functors Ω∗ and C∗ objectwise to a D-space, we obtain functors from D-spaces to
D-algebras.

Definition 3.2. Let Ω∗ be the functor from D-spaces to D-CDGAs defined by ap-
plying Ω∗ objectwise. Let C∗ be the functor fromD-spaces toD-E∞DGAs defined
by applying C∗ objectwise.
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If we apply the functor Ω∗ to an object Y of B, we obtain not just a D-CDGA
Ω∗Y , but also a map ofD-CDGAs Ω∗B → Ω∗Y . Since the structure map Y → B
is necessary in the definition of the categoryB to obtain the embedding of the ratio-
nal equivariant homotopy category, we should expect that to obtain an embedding
of the rational homotopy category into a homotopy category in algebra, we should
need some form of the structure map Ω∗B → Ω∗Y . We could look at the category
of D-CDGAs under Ω∗B, but this might not have the correct homotopy category.
An analogy to keep in mind is that the category of spaces under a given space
X typically does not contain all the homotopy types expected from the homo-
topy type of X if X is not homotopy equivalent to a CW complex. Similarly, we
need to look at the category of D-CDGAs under a suitably nice quasi-isomorphic
replacement for Ω∗B.

In [7] it is shown that a diagram category of commutative differential graded
Q-algebras or of E∞ F̄p-algebras is a closed model category. We therefore have a
notion of cofibrant object, and the factoring axioms allow us to choose a cofibrant
approximation P 0 of Ω∗B and a cofibrant approximation P p of C∗B. This is
one precise meaning for the phrase “suitably nice quasi-isomorphic replacement”.
However, to prove the theorems we are after, we do not need to put such a strin-
gent requirement on P 0 and P p; we only need to choose an objectwise cofibrant
approximation. Since we assume that the reader interested in the p-adic case is fa-
miliar with [6], we do not review the definition of a cofibrant E∞ F̄p-algebra. It is
entirely analogous to the definition of a cofibrant commutative differential graded
Q-algebra from [1], which we do review.

Definition 3.3. Let R be a commutative differential graded Q-algebra (CDGA).
We say that R is cellular if there exist graded submodules (X0 = 0), X1, X2, . . . of
the underlying graded module of R such that
(i) The differential of any element in Xn is in the sub- graded algebra generated

by X0,. . . , Xn−1.
(ii) The underlying graded algebra of R is the free graded commutative algebra

on X1 ⊕X2 ⊕ · · · .
We say that R is cofibrant if it is a retract of a cellular CDGA.

A standard trick in model category theory for finding a weak equivalence from
a cellular object to an arbitrary object is called Quillen’s small object argument,
and it is explained for CDGA’s in [1, pp. 20–22]. In this context, it gives a functor
Γ from the category of CDGA’s to itself and a natural quasi-isomorphism Γ → Id
such that for any CDGA R, ΓR is a cellular CDGA. We have an analogous con-
struction for E∞DGA’s. The following proposition is an immediate consequence.

Proposition 3.4. There exists a D-CDGA P 0 and a quasi-isomorphism P 0 →
Ω∗B, such that P 0(G/K[H]) is a cofibrant CDGA for every G/K[H] in D.
There exists a D-E∞DGA P p and a quasi-isomorphism P p → C∗B, such that
P p(G/K[H]) is a cofibrant E∞DGA for every G/K[H] in D.

We choose and fix such objects P 0 and P p. The functors Ω∗ and C∗ now take
objects in B to objects under P 0 and P p. We denote these under-categories as A0

and Ap respectively.



10 Michael A. Mandell, Laura Scull

Definition 3.5. Let A0 denote the functor from B to A0 induced by Ω∗; let Ap

denote the functor from B to Ap induced by C∗. We define the functor A0 from G-
spaces to A0 to be the composite A0 ◦Q◦I ◦Φ, and the functor Ap from G-spaces
to Ap to be the composite Ap ◦Q ◦ I ◦ Φ.

The functor A0 converts rational equivalences to quasi-isomorphisms and the
functor Ap converts p-adic equivalences to quasi-isomorphisms. We therefore ob-
tain functors A0 and Ap on the homotopy categories obtained by inverting these
equivalences.

We can now explain the main theorems of the introduction. We say that an
object Y of B is simply connected if each component of Y (G/K[H]) is simply
connected for all G/K[H]. Likewise, we say that Y is finite Q- or p- type if each
Y (G/K[H]) is finite Q- or p- type. Clearly, when a G-space X is G-simply con-
nected and G-finite type, the object QIΦX of B is simply connected and finite
type. Theorems 1.1, 1.3, and 2.4 show that the functor Q ◦ I ◦ Φ embeds the ra-
tional equivariant homotopy category in the rational homotopy category of B and
embeds the p-adic equivariant homotopy category in the p-adic homotopy category
of B. Therefore, the main theorems are immediate corollaries of the following the-
orem that we prove in Section 5.

Theorem 3.6.

(i) The functor A0 embeds the full subcategory of simply connected finite Q-type
objects in the rational homotopy category of B as a full subcategory of the
homotopy category of A0.

(ii) The functor Ap embeds the full subcategory of the simply connected finite p-
type objects in the p-adic homotopy category of B as a full subcategory of the
homotopy category of Ap.

As a consequence of Theorems 1.1, 1.3, 2.4, and 3.6, we obtain an embedding
of the equivariant rational homotopy category of G-simply connected G-finite type
G-spaces as a full subcategory of the homotopy category of A0. To complete the
picture we need an intrinsic characterization of the D-CDGAs in this subcategory.
For this, recall that a graded commutative algebra is said to be finite type if it is
finitely generated as a module in each degree and simply connected if it is concen-
trated in non-negative degrees and zero in degree 1. We say that it is spacelike if
in degree zero it is a cartesian product of copies of Q. In Section 6, we prove the
following characterization theorem.

Theorem 3.7. Let R be an object of A0. Then R is isomorphic in the homotopy
category of A0 to A0X for some G-simply connected G-finite Q-type space X if
and only if:

(i) H∗R(G/K[H]) is finite type, simply connected, and spacelike for all G/K[H]
in D,

(ii) The natural map H0R(G/K[H]) ⊗ H2P 0(G/K[H]) → H2R(G/K[H]) is
injective for all G/K[H] in D, and
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(iii) The natural map

TorP 0(G/K[K])(P 0(G/K[H]), R(G/K[K])) → R(G/K[H])

is a quasi-isomorphism for all G/K[H] in D.

Condition (i) ensures that each R(G/K[H]) is equivalent to the De Rham
functor applied to a simply connected finite type space. Condition (ii) is needed
because the Borel construction of a (G/H)e-space can be simply connected even
when the original space is not. In condition (iii), Tor denotes the differential tor-
sion product; this condition is the algebraic analogue of the condition 2.5 for an
object of B to be in Im∆

0 .
In the F̄p context, the cohomology of an E∞ algebra has an operation called

P 0; we say that a finite type graded commutative algebra with an operation P 0 is
spacelike when it is generated as an F̄p-module by fixed-points of P 0. We have an
analogous characterization theorem also proved in Section 6.

Theorem 3.8. Let R be an object of Ap. Then R is isomorphic in the homotopy
category of Ap to ApX for some G-simply connected G-finite p-type space X if
and only if:

(i) H∗R(G/K[H]) is finite type, simply connected, and spacelike for all G/K[H]
in D,

(ii) The natural map H0R(G/K[H]) ⊗ H2P p(G/K[H]) → H2R(G/K[H]) is
injective for all G/K[H] in D, and

(iii) The natural map

TorP p(G/K[K])(P p(G/K[H]), R(G/K[K])) → R(G/K[H])

is a quasi-isomorphism for all G/K[H],

In condition (iii), Tor denotes the E∞ torsion product (see for example [6,
3.1]).

4 Simplified Diagrams

The last section described our algebraic models in general, but in the case when the
group G is connected, that is, when G is a torus Tn, we can simplify these models
and use smaller diagrams. The idea is to take advantage of the fact that the map
B(G/H) → B(G/K) is a rational equivalence when the index of H in K is finite
and is a p-adic equivalence when the index of H in K is prime to p. When G is the
circle T = S1, we can specify in detail a choice for the cofibrant approximation P 0

for the simplified diagrams in the rational context, and we recover the T-systems
of the second author’s thesis [9].

Let D0 be the subcategory of D consisting of only those objects G/K[H] with
H connected, and let Dp be the subcategory of D of objects G/K[H] with π0H a
p-group. These subcategories will form the shape of our simplified diagrams. The
inclusion of these categories in D induces functors J0 and Jp from D-spaces to
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D0-spaces and Dp-spaces. We let B′0 and B′p be the over categories DU/J0B and
DU/JpB. We therefore obtain functors J0 : B → B′0 and Jp : B → B′p.

To compare the simplified categories B′0 and B′p to the original B we produce
functors going the other direction. Since we are assuming that G is connected, the
mapping sets in D, D0, and Dp are either empty or a single point. It follows that
we can define a functor K0 : D0U → DU by

K0Z(G/K[H]) = Z(G/K[He]),

where He is the identity component of H . Similarly we can define a functor
Kp : DpU → DU by

KpZ(G/K[H]) = Z(G/K[Hp]),

where Hp denotes the p-Sylow subgroup of H , the subgroup of H consisting of
those components that are in the p-Sylow subgroup of π0H . Since He ⊆ Hp ⊆ H ,
we have maps in D

G/K[H] → G/K[Hp] → G/K[He]

and these induce natural transformations K0J0 → Id and KpJp → Id. Using
these maps on B, we obtain functors K0 : B′0 → B and Kp : B′p → B.

Proposition 4.1. The functor K0 embeds the rational homotopy category of B′0 as
a full subcategory of the rational homotopy category of B. The functor Kp embeds
the p-adic homotopy category of B′p as a full subcategory of the p-adic homotopy
category of B.

Proof. The functors J0, Jp,K0,Kp preserve the relevant equivalences and so in-
duce functors on the relevant homotopy categories. The composite functors J0K0

and JpKp are the identity functors, and the natural transformations K0J0 → Id
and KpJp → Id are isomorphisms on objects in the image of K0 and Kp respec-
tively.

In order to understand the restriction of the functors J0 and Jp to ImB
0 and

ImB
p , we need the following key fact that served as our motivation above.

Proposition 4.2. The map K0J0B → B (resp. KpJpB → B) is a rational (resp.
p-adic) equivalence.

Proof. The map

B(G/He) = B(G/K[He]) → B(G/K[H]) = B(G/H)

is an H/He-bundle. Since H/He is a finite group that acts trivially on the homol-
ogy of B(G/He), this map is a rational equivalence. Similarly, H/Hp is a finite
group with order prime to p that acts trivially on the homology of B(G/Hp), and
so the map B(G/K[Hp]) → B(G/K[H]) is a p-adic equivalence.
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We define Im
B′

0
0 to be the full subcategory of the rational homotopy category

of B′0 consisting of those objects Z for which the maps

Z(G/K[H]) → B(G/K[H])×B(G/K[K]) Z(G/K[K]).

are rational equivalences for all G/K[H] in D0. Likewise, define Im
B′

p
p to be the

full subcategory of the p-adic homotopy category of B′p consisting of those objects
for which the analogous maps are p-adic equivalences for all G/K[H] in Dp.
Then the previous proposition and the Eilenberg–Moore spectral sequence give
the following.

Proposition 4.3. The functors J0 and K0 restrict to inverse equivalences of Im
B′

0
0

and ImB
0 . The functors Jp and Kp restrict to inverse equivalences of Im

B′
p

p and
ImB

p .

In algebra, we have analogous functors J∗ and K∗ between the functor cate-
gories on D and the functor categories on D0 and Dp. We abbreviate J0P 0 and
JpP p to P ′

0 and P ′
p, and we let A′0 and A′p denote the categories of D0-CDGAs

under P ′
0 and ofD-E∞DGAs under P ′

p respectively. The same argument as that of
Proposition 4.1 shows that K0 and Kp embed the homotopy categories of A′0 and
A′p in the homotopy categories ofA0 andAp respectively. We obtain the following
version of our main theorems.

Theorem 4.4. Let G be a torus.

(i) The functor A0 from the equivariant rational homotopy category to the homo-
topy category of A′0 is full and faithful on the full subcategory of G-simply
connected G-finite Q-type G-spaces.

(ii) The functor Ap from the equivariant p-adic homotopy category to the homo-
topy category of A′p is full and faithful on the full subcategory of G-simply
connected G-finite p-type G-spaces.

The obvious analogues of the characterization theorems 3.7 and 3.8 are also
immediate consequences.

Finally, we close this section with a concrete description of the rational models
we obtain when G is the circle group T = S1. Since T has precisely two connected
subgroups, e and T, the category D0 therefore consists of the objects G/H[e] for
H ⊆ T and the object G/T[T]. Observe that J0B(G/H[e]) = BT and the map
induced by G/K[e] → G/H[e] is the identity. J0B(G/T[T]) = B(T/T) = ∗.
Since H∗BT is the polynomial algebra on a generator c in degree 2, choosing
a representing cycle gives a map of CDGA’s from Q[c] to Ω∗BT. The unit map
Q → Ω∗∗ is an isomorphism.

Definition 4.5 (Rational models for the circle group). Define the D0-CDGA P ′
0

by P ′
0(G/H[e]) = Q[c], and P ′

0(G/T[T]) = Q. This is a cofibrant approximation
of J0Ω

∗B. The category A′0 is the under category of D0-CDGAs, under this P ′
0.

This is the category described in [9].
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5 Proof of Theorem 3.6

Theorem 3.6 compares an over category of diagrams of spaces with under cate-
gories of diagrams of algebras. In the present context where our objects are in-
dexed on the discrete diagram D, we can use the singular complex and geometric
realization functors to translate the problem into the analogous problem for sim-
plicial sets. Let S denote the category of simplicial sets, let DS denote the cat-
egory of D simplicial sets, the category of contravariant functors from D to S.
We denote by Bs the singular complex of B; in other words, Bs is the D simpli-
cial set with Bs(G/K[H]) the singular complex of B(G/K[H]). Let Bs be the
category DS/Bs of D simplicial sets lying over Bs. We can regard the singular
complex as a functor from B to Bs; as such, it preserves weak equivalences, ratio-
nal equivalences, and p-adic equivalences. Standard arguments give the following
observation.

Proposition 5.1. The singular complex functor induces equivalences of:

(i) The homotopy category of B and the homotopy category of Bs.
(ii) The rational homotopy category of B and the rational homotopy category of

Bs.
(iii) The p-adic homotopy category of B and the p-adic homotopy category of Bs.

The functors A0 and Apthat we consider in Theorem 3.6 are defined by ob-
jectwise application of a functor on simplicial sets to the singular complex of an
object of B. In other words, both of these functors factor through the category
Bs. We denote the corresponding functors on Bs by the same symbols: A0 applies
the polynomial De Rham functor Ω∗ and Ap applies the cochain functor C∗ ob-
jectwise to an object of B. Thus, to prove Theorem 3.6, it suffices to prove the
following simplicial analogue.

Theorem 5.2.
(i) The functor A0 embeds the full subcategory of simply connected finite Q-type

objects in the rational homotopy category of Bs as a full subcategory of the
homotopy category of A0.

(ii) The functor Ap embeds the full subcategory of the simply connected finite p-
type objects in the p-adic homotopy category of Bs as a full subcategory of the
homotopy category of Ap.

The advantage of working in the simplicial context is that now the functors A0

and Ap have adjoints. In [1], Bousfield and Gugenheim construct an adjoint U0 to
the De Rham functor and essentially the same construction in [6] gives an adjoint
Up to the cochain functor. Let U0 and Up denote the functors from D-CDGAs and
D-E∞DGAs toDS obtained by applying U0 and Up objectwise. An easy exercise
in category theory proves that these functors are then adjoint to the functors Ω∗

and C∗ defined in 3.2. Since U0P 0 is generally not Bs, U0 does not define a
functor from A0 to Bs. On the other hand, the (Ω∗, U0) adjunction does give us a
map Bs → U0Ω

∗Bs → U0P 0, and so we can define a functor V0 : A0 → Bs by

V0R = Bs ×U0P 0
U0R.
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A check of universal properties shows that V0 is adjoint to A0. Similarly, we define
Vp : Ap → Bs by VpR = Bs ×UpP p

UpR, and Vp is adjoint to Ap.
The next obstacle is that the functors V0 and Vp do not preserve weak equiva-

lences. In fact, the functors U0 and Up already do not preserve weak equivalences.
This is handled in [10] by using minimal models, and similarly in [1] and [6] by
using cofibrant approximation. It is shown in [1] and [6] that U0 and Up do pre-
serve weak equivalences between cofibrant objects. In current jargon, the (Ω∗, U)
and (C∗, U) adjunctions form Quillen adjoint pairs, which means that in addition
U0 and Up convert cofibrations to Kan fibrations of simplicial sets. We recall the
definition of cofibration of CDGA’s.

Definition 5.3. Let A → B be a map of CDGA’s. Let A# denote the underlying
graded commutative algebra of A. We say that A → B is cellular if there exist
graded submodules (X0 = 0), X1, X2, . . . of the underlying graded module of B
such that

(i) The differential of any element in Xn is in the sub- graded A#-algebra gener-
ated by X0,. . . , Xn−1.

(ii) The underlying graded A# algebra of R is the free graded commutative A#

algebra on X1 ⊕X2 ⊕ · · · .
We say that A → B is a cofibration (written A ! B) if it is the retract of some
cellular map A′ → B′.

The definition of cofibration of E∞algebras is entirely similar. The definition
of cofibration is just a relative form of the definition of cofibrant: An object is cofi-
brant if and only if the map from the initial object is a cofibration. Although it may
not be obvious from the definition given above, it turns out that the composition of
cofibrations is a cofibration; this is one of the axioms of a closed model category
structure.

A relative form of the construction of the cofibrant approximation functor al-
luded to in section 3 gives a factorization functor that takes a map f : A → B to
the composite of a cofibration A ! B′ and a weak equivalence B′ → B, functo-
rially in f . Functoriality here means that when the diagram on the left commutes,
the construction gives a map B′ → D′ that makes the factorization diagram on the
right commute.

A !!

""

B

""

A !! !!

""

B′ ∼ !!

""

B

""

C !! D C !! !! D′ ∼ !! D

Applying this to D diagrams, we obtain objectwise cofibrant approximation func-
tor in A0.

Proposition 5.4. There exists a functor Γ 0 : A0 → A0 and a natural quasi-iso-
morphism γ : Γ 0 → Id, such that for every R, the initial map P 0 → Γ 0R is an
objectwise cofibration, that is, the map P 0(G/K[H]) → (Γ 0R)(G/K[H]) is a
cofibration of CDGA’s for every G/K[H] in D.
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Similarly, we obtain an objectwise cofibrant approximation functor Γ p in the
category Ap.

Proposition 5.5. The functor V0Γ 0 converts quasi-isomorphisms inA0 to rational
equivalences in Bs. The functor VpΓ p converts quasi-isomorphisms in Ap to p-
adic equivalences in Bs.

Proof. The functor U0 preserves weak equivalences between cofibrant CDGA’s
and converts cofibrations of CDGA’s to Kan fibrations. It follows that U0Γ 0 pre-
serves weak equivalences between objectwise cofibrant objects and converts ob-
jectwise weak equivalences to objectwise Kan fibrations. Thus, U0P p(G/K[H])
is a Kan complex and U0Γ 0R(G/K[H]) → U0P p(G/K[H]) is a Kan fibration
for every R in A0 and every G/K[H] in D. Since Bs is simply connected, U0P 0

is simply connected, and it follows from the Eilenberg–Moore spectral sequence
that the pullback Bs×U0P 0

(−) preserves rational equivalences. We conclude that

V0Γ 0(−) = Bs ×U0P 0
U0Γ 0(−)

converts quasi-isomorphisms to rational equivalences. The p-adic case is entirely
similar.

We obtain an induced functor V0 from the homotopy category of A0 to the
rational homotopy category of Bs, and an induced functor Vp from the homotopy
category of Ap to the p-adic homotopy category of Bs. A standard model category
argument then gives the following result, but we include a self-contained proof.

Proposition 5.6. The derived functors (A0,V0) and (Ap,Vp) are adjoint pairs.

Proof. Let η : Id → V0A0 and ε : Id → A0V0 be the unit and counit of the
(A0, V0) adjunction. We obtain a natural transformation ε′ : Γ 0 → A0V0Γ 0, and
using the natural transformation γΓ 0 → Id, we obtain a natural transformation
η′ : Id → V0Γ 0A0. For an object Y in Bs, the composite

Γ 0A0Y
ε′−→ A0V0Γ 0A0

A0η′

−−−→ A0Y

is the natural transformation γ. Conversely, for an object R in A0, the composite

V0Γ 0R
η′

−→ V0Γ 0A0V0Γ 0R
V0Γ 0ε′γ
−−−−−→ V0Γ 0R

is the identity. In the homotopy category of A0, the natural map γ is an isomor-
phism, and using the inverse natural isomorphism γ−1, an easy check verifies that
the derived functors A0 and V0 are adjoint. The argument in the p-adic case is
entirely similar.

We can now prove Theorem 5.2.
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Proof (Proof of Theorem 5.2). We treat the rational case in detail; the p-adic case
follows by analogous arguments. Using the previous proposition, it suffices to
show that the unit of the adjunction

η′ : Y → V0Γ 0A0Y

is a rational equivalence whenever Y is a simply connected and finite Q-type object
of Bs.

By construction, each CDGA (Γ 0A0Y )(G/K[H]) is a cofibrant approxima-
tion of (A0Y )(G/K[H]) = Ω∗(Y (G/K[H])). The main argument of [1] is that
the map

Y (G/K[H]) → U0(Γ 0A0Y )(G/K[H])

is a rational equivalence since Y (G/K[H]) is a simply connected finite Q-type
space. Since U0 converts cofibrations to Kan fibrations, the map

U0(Γ 0A0Y )(G/K[H]) → U0P 0

is a Kan fibration between simply connected Kan complexes, and it follows that
the maps

Y (G/K[H]) → Bs ×U0P 0
U0Γ 0A0Y (G/K[H]) → U0Γ 0A0Y (G/K[H])

are rational equivalences. Since the first map is η′ on G/K[H], it follows that η′

is a rational equivalence.

6 The Sections Functor and the Proof of the Characterization Theorems

In this section, we prove the characterization theorems 3.7 and 3.8. It turns out
that it is much easier to prove these theorems using the category of ∆OG-spaces
rather than the category B. For this reason, we introduce the sections functor S
inverse to the bundle functor Q. This functor is also exactly what is needed to
prove theorems 2.4 and 2.6 from Section 2, giving the passage from diagrams of
spaces to bundles, and so we begin with the proof of these theorems.

The most concise way to define the functor S is to note that the map that takes a
space to its set of components defines a functor ∆OG → D that allows us to regard
a D-space as a ∆OG-space. Recall that E is the ∆OG-space defined in (2.1) as
E(G/K[H]) = E(G/H), and B is given by B(G/K[H]) = E(G/H)/(G/H)e

(as a π0G space). Then we have a map of ∆OG-spaces E → B. For an object Y
of B, we define

SY = E ×B Y ,

the pullback in the category of ∆OG-spaces. In concrete terms

SY (G/K[H]) = E(G/K[H])×B(G/K[H]) Y (G/K[H])
= E(G/H)×(E(G/H)/(G/H)e) Y (G/K[H]).

Then S defines a functor from B to ∆OGU .
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The map E(G/H) → E(G/H)/(G/H)e is a fibration, and so the func-
tor S preserves weak equivalences. Moreover, E(G/H)/(G/H)e is a model for
B(G/H)e and is therefore connected and simply connected; it follows from the
Eilenberg–Moore spectral sequence that S also preserves rational equivalences and
p-adic equivalences.

Proof (Proof of 2.4). Consider the composite functor SQ. For any ∆OG-space X ,
we have

SQX(G/K[H])
= E(G/K[H])×(E(G/K[H])×(G/H)e∗)(E(G/K[H])×(G/H)e

X(G/K[H]))
∼= E(G/K[H])×X(G/K[H])
= (E ×X)(G/K[H]).

These isomorphisms are natural in G/K[H] and so we obtain a natural isomor-
phism SQX ∼= E × X . The weak equivalence E → ∗ induces a natural weak
equivalence SQ → Id.

Now consider the other composite. By definition,

QSY (G/K[H]) = E(G/H)×(G/H)e
SY (G/K[H])

∼= E(G/H)×(G/H)e
(E(G/H)×B(G/K[H]) Y (G/K[H]))

∼= (E(G/H)×(G/H)e
E(G/H))×B(G/K[H]) Y (G/K[H])

There is a homotopy equivalence

B(G/K[H]) = E(G/H)/(G/H)e → E(G/H)×(G/H)e
E(G/H)

whose composite with both projection maps to B(G/K[H]) is the identity; it
is constructed using the diagonal map of E(G/H). Using this, we can define a
map Y (G/K[H]) → QSY (G/K[H]) which commutes with the projections to
B(G/K[H]), and this map is also a homotopy equivalence. These maps fit to-
gether to give a natural weak equivalence Id → QS.

Proof (Proof of 2.6). An easy bundle argument shows that the functor Q takes
objects in Im∆, Im∆

0 , and Im∆
p to objects in ImB, ImB

0 , and ImB
p . Likewise,

an easy bundle argument together with the Eilenberg–Moore spectral sequence
implies that the functor S takes objects in ImB, ImB

0 , and ImB
p to objects in

Im∆, Im∆
0 , and Im∆

p .

Now we move on to the proof of the characterization theorems.

Proof (Proof of Theorems 3.7 and 3.8).
Let X be a G-simply connected and G-finite Q- or p- type G-space. Then

H∗A0X and H∗ApX are isomorphic as commutative algebras to the cohomol-
ogy of Borel constructions on XK ; since these are simply connected and finite
Q- or p- type spaces, their cohomology satisfies condition (i). We have that each
space XK is (non-equivariantly) homotopy equivalent to the fiber of the map
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IΦX(G/K[H]) → B(G/K[H]), and so its Q- or Z/pZ- cohomology is cal-
culated by the Eilenberg–Moore spectral sequence. Looking at this spectral se-
quence, we see that H1XK is the kernel of the differential

H0XK ⊗H2B(G/K[H]) → H2XK .

Since each XK is simply connected, condition (ii) holds. Finally, we have that
IΦX(G/K[H]) is isomorphic to the fiber product

B(G/K[H])×B(G/K[K]) IΦX(G/K[K])

and the map IΦX(G/K[K]) → B(G/K[K]) is a fibration, and so by [1, 3.1] or
[6, 5.2], condition (iii) holds.

In proving the converse, consider first the rational case. Suppose R satisfies
conditions (i), (ii), and (iii). We can assume without loss of generality that R is
objectwise cofibrant by replacing R by Γ 0R if necessary. Now B is not rational,
but E is, and so (as mentioned above) it is much easier to make the arguments in
the category of ∆OG-spaces than it is in B. Let X = S|V0R| where | · | denotes
geometric realization. Explicitly,

X = E ×B |Bs ×U0P 0
U0R| ∼= (E ×B |Bs|)×|U0P 0| |U0R|.

It is convenient to abbreviate E×B |Bs| to E′. Since E → B is an objectwise fibra-
tion and |Bs| → B is an objectwise weak equivalence, we have that E′ is object-
wise contractible. It follows that X(G/K[H]) is a rational space for all G/K[H].
By condition (i), U0R(G/K[H]) is finite Q-type and simply connected for all
G/K[H], and so X is finite Q-type. To see that X is simply connected, it suffices
to show that H1X(G/K[H]) = 0, and this follows from condition (ii) and the
Eilenberg–Moore spectral sequence (and [1, 3.1]). Finally, condition (iii) implies
that the map

U0R(G/K[H]) → U0P 0(G/K[H])×U0P 0(G/K[K]) U0R(G/K[K])

is a rational equivalence, and so the map

X(G/K[H]) → (E′(G/K[H])×U0P 0(G/K[K]) U0R(G/K[K])

→ E′(G/K[K])×U0P 0(G/K[K]) U0R(G/K[K]) = X(G/K[K]),

obtained by pulling back along the map E′(G/K[H]) → P 0(G/K[H]), is a ra-
tional equivalence. Thus, X is a finite Q-type simply connected object of Im∆

0 .
Therefore X is rationally equivalent to IΦX for some G-simply connected G-
finite Q-type G-space X . We have quasi-isomorphisms in A0

R
∼−→ A0V0R

∼−→ A0QS|V0R| = A0QX - A0QIΦX = A0X.

The p-adic case is identical, with [6, 5.2] taking the place of [1, 3.1].
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7 Proof of Theorems 1.3 and 1.4

In this section, we prove the equivalences of categories claimed in Section 1. We
prove both equivalences together, by constructing a left inverse for I on the various
homotopy categories.

The first step is to construct a functor L from ∆OG-spaces to OG-spaces and
a natural transformation LI → Id that is always a weak equivalence. We construct
L as a homotopy colimit. L preserves weak equivalences, rational equivalences,
and p-adic equivalences, and so it induces a functor on the various homotopy cat-
egories. This gives us retractions. To prove the equivalences, we need to analyze
the other composite IL. Rather than comparing IL to the identity functor directly,
we must construct an intermediate functor Ψ from ∆OGU to itself and natural
transformations

(7.1) Id ψ←− Ψ
α−→ IL

We show that the backwards transformation ψ is homotopy equivalence at each
object. It follows that the functor Ψ preserves weak equivalences, rational equiva-
lences, and p-adic equivalences, and so induces a functor on the various homotopy
categories. The zigzag (7.1) then defines a natural transformation η : Id → IL
in each of these homotopy categories. Finally we show that α is a weak equiva-
lence, rational equivalence, and p-adic equivalence at each object when we restrict
to the subcategories Im∆, Im∆

0 , and Im∆
p respectively. We conclude that η is an

isomorphism exactly for the objects in Im∆, Im∆
0 , and Im∆

p respectively (as it
cannot be an isomorphism for objects not in Im∆, Im∆

0 , and Im∆
p ). Theorems 1.3

and 1.4 are immediate consequences.
Since our arguments make extensive use of homotopy colimits, we begin by

recalling a few facts about them. First, since we are working with contravariant
functors to spaces, we have:

Lemma 7.2. If C is a category with initial object c ∈ C and X is a contravariant
functor from C to spaces, then the inclusion X(c) → HocolimC X is a homotopy
equivalence.

We understand Hocolim always to denote the geometric realization of the
usual categorical bar construction. We will use the following observation exten-
sively to construct maps between homotopy colimits in what follows.

Observation 1. Let C and D be categories, and X and Y contravariant functors
from C and D to spaces respectively. If F is a functor F : C → D, we denote the
composite functor Y ◦F from D to spaces as F ∗Y . Then a natural transformation
from X to F ∗Y induces a map HocolimC X → HocolimD Y .

We use the notion of a left cofinal functor introduced by Bousfield-Kan in [2].
Given a functor F : A → B and an object b ∈ B, let F ↓ b denote the category
whose objects are pairs (a,φ) where a ∈ A and φ : F (a) → b is a map in B.
Morphisms in F ↓ b between (a1,φ1) and (a2,φ2) are given by maps α : a1 → a2

in A such that φ2F (α) = φ1. The functor F is left cofinal if for every object b ∈ B,
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the nerve of the category F ↓ b is contractible. This notion is useful because of the
following:

Lemma 7.3. If F : A → B is a left cofinal functor and X is a contravariant func-
tor from B to spaces, then the induced map

HocolimA F ∗X → HocolimB X

is a weak equivalence.

Proof. The proof follows that of Theorem XI.9.2 in [2]. The only difference is that
we are dealing with contravariant functors and direct limits rather than covariant
functors and inverse limits.

We now describe the construction of L. Let E be the category which has the
same objects as OG but only the maps corresponding to the unit e of G. Therefore
E(G/H,G/K) is either a single map if H ⊆ K, or is empty. We define ∆E
similarly, as the category with objects the same as ∆OG and only the unit maps.
Let EH be the full subcategory of E with objects G/A such that H ⊆ A; let ∆EH

be the full subcategory of ∆E with objects G/B[A] such that H ⊆ A. Define
LX(G/H) = Hocolim∆EH X .

To make L into a functor on OG, observe that if g : G/H → G/K is a map in
OG, then H ⊆ K and ∆EK is a subcategory of ∆EH . Moreover, the action of g
is well-defined on X(G/B[A]) for H ⊆ K ⊆ A ⊆ B, and so g induces a natural
transformation on the restrictions X | ∆EK → X | ∆EH . Using observation 1,
we get induced structure maps LX(G/K) → LX(G/H) from the inclusion of
categories and the twisting action of the natural transformation. This makes LX
into a functor on OG. Therefore L defines a functor from ∆OGU to OGU .

Next we examine the composite functor LI .

Proposition 7.4. There is a natural transformation LI → Id that is a weak equiv-
alence at each object.

Proof. The functor I is defined as composition with the projection ∆OG → OG.
This projection also induces a projection ∆EH → EH . Therefore we have a natural
map Hocolim∆EH IX → HocolimEH X . Observe that for any object G/K ∈ EH ,
the category I ↓ G/K has a final object given by (G/K[H], id). Therefore the
nerve of this category is contractible and so ∆EH → EH is left cofinal. Invoking
Lemma 7.3, we see that Hocolim∆EH IX → HocolimEH X is a weak equiva-
lence.

Since G/H is the initial object in EH , the map HocolimEH X → X(G/H) is
a homotopy equivalence. The composite maps

IX(G/H) = Hocolim∆EH IX → HocolimEH X → X(G/H)

fit together to give a natural transformation LI → Id which is a weak equivalence
at each object.
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The construction of the endofunctor Ψ has a similar flavor. Recall that ∆E
denotes the subcategory of maps e in ∆OG, and define ∆EG/K[H] to be the full
subcategory of ∆E consisting of objects G/B[H] with B > K. Define

ΨX(G/K[H]) = Hocolim∆EG/K[H] X

We make this a functor of ∆OG in the same way we did for L: Given a map
g : G/K1[H1] → G/K2[H2], we have a functor ∆EG/K2[H2] → ∆EG/K1[H1] that
takes the object G/B[H2] in ∆EG/K2[H2] to the object G/B[H1] ∈ ∆EG/K1[H1];
note that B > K1 because B > K2 > K1. Also, g induces a twisting natural
transformation via the action X(G/B[H2])

g→ X(G/B[H1]). The ∆OG structure
maps are induced by these as in observation 1. This makes Ψ into a functor from
∆OGU to itself.

The category ∆EG/K[H] has an initial object G/K[H]. For any G/B[H] in
∆EG/K[H], the initial map G/K[H] → G/B[H] induces a map X(G/B[H]) →
X(G/K[H]), and we obtain a map

ΨX(G/K[H]) = Hocolim∆EG/K[H] X → X(G/K[H])

that is a homotopy equivalence by Lemma 7.2. These maps assemble into the nat-
ural transformation ψ : Ψ → Id.

We define the natural transformation α as follows. For each G > K > H ,
consider the functor from ∆EG/K[H] to ∆EK that sends the object G/B[H] to
G/B[K]. Since H ⊆ K ⊆ B, we have a map e : G/B[K] → G/B[H] in ∆E (or
∆OG) that induces a map X(G/B[H]) → X(G/B[K]). By observation 1, this
induces a map

ΨX(G/K[H]) = Hocolim∆EG/K[H] X → Hocolim∆EK X = ILX(G/K[H]).

These maps assemble into the natural transformation α : Ψ → IL.
Finally, all that remains is to prove the following theorem.

Theorem 7.5. When X is in Im∆, Im∆
0 , or Im∆

p the natural transformation α is
a weak equivalence, rational equivalence, or p-adic equivalence respectively.

We begin with a few reductions. Recall that X in Im∆, Im∆
0 , or Im∆

p means
that each map X(G/K[H]) → X(G/K[K]) is a weak equivalence, rational
equivalence, or p-adic equivalence for all H ⊆ K respectively. It then follows
that ΨX(G/K[H]) → ΨX(G/K[K]) is also a weak equivalence, rational equiv-
alence, or p-adic equivalence since these are homotopy equivalent to X(G/K[H])
and X(G/K[K]). Thus, it is enough to show that the map

ΨX(G/K[K]) → ILX(G/K[K]) = LX(G/K)

is a weak equivalence, rational equivalence, or p-adic equivalence. Moreover, we
see from the argument above that the inclusion of X(G/K[K]) in ΨX(G/K[K])
at the zero simplicial level (as the value of X on the object G/K[K]) is a homotopy
equivalence. The map α carries this copy of X(G/K[K]) to a corresponding copy
in LX(G/K) at the zero simplicial level. The theorem now becomes an immediate
consequence of the following lemma.
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Lemma 7.6. Let X be in Im∆, Im∆
0 , or Im∆

p . The inclusion of X(G/K[K])
in LX(G/K) is a weak equivalence, rational equivalence, or p-adic equivalence
respectively.

Proof. We argue by induction. Let C be the set of finite collections C of closed
subgroups of G such that K ∈ C and K ⊆ J for each J ∈ C; partially order
C by inclusion. Note that the single element collection {K} is the smallest ele-
ment of C. For any collection C in C, let ∆EC be the full subcategory of ∆EK

with objects G/B[A] where both A and B are in C. Let ΛC = Hocolim∆EC X .
Observe that Λ is a functor on C, since C ⊂ D induces a map ΛC → ΛD. Then
LX(G/K) = ColimC Λ, and the maps in the colimit system are induced by maps
of simplicial spaces which are just inclusions of disjoint summands in each sim-
plicial degree. Therefore, if we can show that the inclusion X(G/K[K]) in each
ΛC is an equivalence, passing to the colimit system, we will have shown that the
inclusion in LX(G/K) is an equivalence.

We induct on the number of elements of C. If C has only one element, then
C = {K} and ΛC = X(G/K[K]). For the inductive step, let M be a maximal
subgroup in C, so that if K ⊆ M ⊆ N then M = N . Let CcM be the com-
plement of {M} in C. When C 0= {K}, we must have M 0= K, and we can
assume by induction that the inclusion of X(G/K[K]) in ΛCcM is an equivalence.
Let ∆E

C; ̂G/M [M ]
be the full subcategory of ∆EC consisting of all objects except

G/M [M ]. Let M be the full subcategory of ∆EC with objects G/M [A] such that
A ∈ C, and let M ̂G/M [M ]

be the full subcategory of M consisting of all objects
except G/M [M ]. Observe that the only objects of ∆EC which have a map to or
from G/M [M ] are in M, and so

Hocolim∆EC X = (Hocolim∆E
C; ̂G/M[M]

X) ∪
HocolimM ̂G/M[M]

X
(HocolimM X)

This is a pushout along a cofibration, and so we just need to show that the inclusion
of ΛCcM in Hocolim∆E

C; ̂G/M[M]
X and the inclusion of HocolimM ̂G/M[M]

X in
HocolimM X are equivalences.

To show the first, we show that the inclusion of ∆EC cM
in ∆E

C; ̂G/M [M ]
is left

cofinal and invoke Lemma 7.3. Let G/P [J ] ∈ ∆E
C; ̂G/M [M ]

, and consider the
category incl ↓ G/P [J ]. If P 0= M then G/P [J ] ∈ ∆EC cM

and (G/P [J ], id)
is a final object, so the nerve of this category is contractible. If P = M , then
J ⊆ M,J 0= M and (G/J [J ], G/J [J ] → G/M [J ]) is an initial object; again the
nerve of this category is contractible.

For the second inclusion, note that G/M [K] is the final object of M ̂G/M [M ]
.

Therefore the nerve of M ̂G/M [M ]
is contractible and the map

X(G/M [K]) → X(G/M [K])×NM ̂G/M [M ]

= HocolimM ̂G/M[M]
X(G/M [K])



24 Michael A. Mandell, Laura Scull

is a homotopy equivalence. Now X is in Im∆, and so all the maps in M ̂G/M [M ]

induce equivalences on X . Thus,

HocolimM ̂G/M[M]
X(G/M [K]) → HocolimM ̂G/M[M]

X

is the geometric realization of a simplicial (weak, rational, or p-adic) equivalence,
and hence an equivalence. The inclusion X(G/M [K]) in HocolimM ̂G/M[M]

X is
therefore an equivalence. On the other hand, M has an initial object G/M [M ],
so the inclusion of X(G/M [M ]) in HocolimM X is a homotopy equivalence.
Furthermore the composite map

X(G/M [K]) → X(G/M [M ]) → HocolimM X

is homotopic to the inclusion of X(G/M [K]) in HocolimM X . Thus, the inclu-
sion HocolimM ̂G/M[M]

X in HocolimM X is a weak, rational, or p-adic equiva-
lence as required.
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