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Abstract

We prove that the 2-category of action Lie groupoids localised in the
following three different ways yield equivalent bicategories: localising
at equivariant weak equivalences à la Pronk, localising using surjec-
tive submersive equivariant weak equivalences and anafunctors à la
Roberts, and localising at all weak equivalences. This generalises the
known result for representable orbifold groupoids. As an application, we
show that any weak equivalence between action Lie groupoids is isomor-
phic to the composition of two special equivariant weak equivalences,
again extending a result known for representable orbifold groupoids.
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1 Introduction

In many contexts, we consider the study of topological or Lie groupoids up to
Morita equivalence, an equivalence relation generated by a topologised version
of a categorical equivalence referred to as a weak equivalence. One standard
way of working with this equivalence relation is to follow the method of Pronk
and define a bicategory of fractions of Lie groupoids LieGpoid[W−1] in which
all of the Morita equivalences become invertible 1-cells (or arrows) [21]. In
this bicategory, a 1-cell G → H is defined by a span of functors G ← K → H
where the functor K → G is a weak equivalence, and a 2-cell is defined as
an equivalence class of diagrams with natural transformations. There is also
a “smaller” type of localisation using anafunctors à la Roberts [25, 27]. By
additionally requiring the elements of the class of weak equivalences under con-
sideration to be surjective submersive on objects, we obtain a bicategory with
similar 1-cells, but whose 2-cells are optimised representatives of the equiva-
lence classes defining the 2-cells in the more general bicategory of fractions.
Thus using anafunctors, a 2-cell is a natural transformation instead of a class
of 2-commutative diagrams. This allows for easier computations when working
with these action groupoids. Roberts proves that this bicategory is equivalent
to the bicategory of fractions obtained using the recipe of Pronk.

Understanding conditions under which a class of 1-cells of a general bicat-
egory admits a localisation is a current field of study; besides the references
above, see also [1, 24]. The localisation of topological groupoids is made explicit
in [6], where the authors discuss Lie groupoids but details are only provided
for the topological case. [30] provides a detailed development of localisation
for diffeological groupoids using Pronk’s and Roberts’ approaches, comparing
them as well as connecting them to the theory of bibundles in the diffeologi-
cal groupoid context established in [29], as well as to stacks over diffeological
spaces.

An extremely important class of groupoids comes from actions of groups
on nice spaces, such as Lie groups on smooth manifolds. When we have such
a groupoid, we have the possibility of defining traditional functorial equivari-
ant invariants, such as a fundamental group or cohomology theories. The issue
that arises then is of respecting Morita equivalence. We can use functorial-
ity to check that our chosen invariant is unchanged under equivariant weak
equivalences, but a priori there is no mechanism for checking more general
weak equivalences. Therefore, it becomes necessary to know whether Morita
equivalent action groupoids are also Morita equivalent via equivariant weak
equivalences.

Thus we consider the following question: if we consider the full sub-2-
category of action groupoids can we create a bicategory of fractions inverting
the equivariant weak equivalences? If so, is this equivalent to the full sub-
bicategory we get by inverting more general weak equivalences and then
restricting to action groupoids? If both questions have affirmative answers,
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then we attain the following possible template for transferring equivariant
techniques to groupoids: consider a groupoid that is Morita equivalent to an
action groupoid, the latter of which admits some equivariant invariant. If this
invariant respects Morita equivalences between action groupoids, meaning that
equviariant weak equivalences induce isomorphisms between the invariants,
then this equivariant invariant is well-defined.

This strategy has been successfully applied in special cases. One such case
is the study of orbifolds; originally defined by Satake [28] using charts, these
have more recently been described using certain topological and Lie groupoids
up to Morita equivalence. For representable orbifold groupoids, those Morita
equivalent to an action groupoid, Pronk and Scull define Bredon cohomology
in the case when coefficient systems satisfy a certain condition [22, Proposition
5.13]. Recent progress in the representability of orbifolds [20] suggests that this
is a mild condition on orbifolds in general.

In this paper, we consider more general Lie groupoids and show that in
many cases, we can restrict to the full sub-2-category of action groupoids and
equivariant functors and still capture the desired notion of Morita equivalence.
Instead of focusing on orbifolds, we allow our group actions to have any sub-
set of the following properties: free, locally free, transitive, effective, compact,
discrete, proper, and being Morita equivalent to a proper étale Lie groupoid.
(There is, of course, much redundancy when multiple properties are taken
together.) We show that for any selection of these properties, we can create a
bicategory of fractions which inverts equivariant weak equivalences, and that
this bicategory is equivalent to that in which general weak equivalences are
inverted, the full sub-bicategory whose objects are the action groupoids admit-
ting the chosen properties. This yields affirmative answers to the two questions
above for many special cases of action groupoid. Moreover, we show that we
can create this localisation using the method of Roberts, giving us a smaller
and more concrete category to work with. This is a first step towards general-
ising [22] to more general action groupoids, and defining Bredon cohomology
as a Morita invariant in a more general context.

As an additional step towards understanding when equivariant invariants
might be Morita equivalent, we also show that the decomposition of equivariant
weak equivalences used in [22, Proposition 3.5] also applies in our more general
setting of action groupoids satisfying the reader’s choice of properties. This
allows us to break down equivariant weak equivalences into two specific types:
projections and inclusions. This decomposition has already proved useful in
other contexts such as topological complexity [2] and should be similarly useful
for computing other equivariant invariants.

Throughout, we refer to [4, 13] for categorical definitions such as bicategory,
pseudofunctor, 2-category, and 2-commutative, and all of their constituent
parts. Also, modern terminology is introduced by the [19], and so we utilise
that here as well.
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The paper is structured as follows: In Section 2, we introduce our per-
spective on how to work with smooth maps inspired by diffeology; namely,
we use the so-called local curve lifting (LCL) condition to show that various
smooth maps are submersive or diffeomorphisms. Section 3 contains back-
ground information on Lie groupoids. In Section 4, we review the constructions
mentioned above for the two methods of localisation of LieGpoid at the class
of weak equivalences. Sections 5 and 6 contains our main results about action
groupoids, answering the two questions posed above. In particular, in Section 5,
we construct the localisation of action groupoids with the reader’s choice of
properties (see Proposition 44), and in Section 6 we show that this is equiva-
lent to the full sub-bicategory of such action groupoids (see Theorem 55). In
Section 7, as an application we show that equivariant weak equivalences can be
decomposed into an equivariant projection and an equivariant inclusion (see
Theorem 59), and thus by Proposition 44, any Morita equivalence between
action groupoids can be replaced with one in which the weak equivalences are
equivariant and decomposable.

Acknowledgements: We thank Dorette Pronk for pointing us to certain
references on bicategories and 2-categories.

2 Preliminaries: A Diffeological Perspective on
Smooth Maps

We begin by emphasising our perspective on differential geometry for this
paper, and illustrate the technique of proof for the differential geometric
aspects of the results. First, we clarify our setting: this paper is about Lie
groupoids, and involves smooth manifolds. That is:

Assumptions 1

• By “smooth” we mean C∞; that is, infinitely differentiable.
• By “manifold” we mean a smooth manifold without boundary.
• By “curve” we mean a smooth map p : I →M where M is a manifold and I

denotes an open interval I = (−ε, ε) for some ε > 0.
• Given the curve above, by “shrinking I” we mean taking some sufficiently

smaller ε′ ∈ (0, ε] and redefining I to be (−ε′, ε′).

Throughout this work, our perspective on diffeomorphisms and smooth
maps is inspired by looking at what happens to curves. We start with the
following.

Lemma 2. Let M and N be manifolds. A function f : M → N is a smooth
map if and only if for any curve p : I →M , the composite f ◦ p is a curve.



Springer Nature 2021 LATEX template

Bicategories of Action Groupoids 5

Proof This is an immediate consequence of Boman’s Lemma [5], which is the same
statement, but where M is a Euclidean space and N is R. □

We use this as inspiration for developing a condition that will allow us to
check that maps are submersions or diffeomorphisms by looking only at liftings
of curves, without having to explicitly deal with tangent bundles. This will be
used repeatedly throughout this paper. This may be considered the “diffeologi-
cal perspective” of smooth maps. Diffeological spaces generalise manifolds, and
their diffeological structure is defined by specifying which maps are considered
smooth. Smooth manifolds form a full subcategory of diffeological spaces, and
diffeological spaces are closed under subsets, quotients, and fibred products.
Although we do not explicitly work with diffeological spaces, we take advan-
tage of the nice properties of this larger category. For instance, a fibred product
of manifolds is itself a manifold; this can be established by constructing a
(diffeological) diffeomorphism from the fibred product to a manifold without
checking that the fibred product is a manifold a priori. (In classical differential
geometry, one would need to establish that both spaces are manifolds before
constructing a diffeomorphism between them.) More succinctly, the language
of diffeology allows one to separate the property of a space being smooth from
the property of a map being smooth. See [12] for more details on diffeological
spaces.

Definition 3 (LCL Condition) A function f : M → N satisfies the local curve
lifting (LCL) condition if for any curve p : I → N and x ∈ M satisfying f(x) =
p(0), after possibly shrinking I, there exists a (smooth) lift q : I →M of p (restricted
to the redefined I) through x with respect to f . Explicitly, q satisfies f ◦ q = p and
q(0) = x.

The LCL condition allows us to identify submersions and diffeomorphisms
as follows.

Lemma 4. Let M and N be manifolds.

1. A smooth surjection f : M → N is a surjective submersion if and only if it
satisfies the LCL condition.

2. A smooth map f : M → N is a diffeomorphism if and only if f is bijective
and satisfies the LCL condition.

Proof For Claim 1, suppose f is a surjective submersion. Fix a curve p : I → N
and let x ∈ M with f(x) = p(0). Since f is submersive, by the Rank Theorem [14,
Theorem 4.12], there exist open coordinate neighbourhoods U of x and V of p(0)
such that

1. U is identified with Rm = Rn × Rm−n, where m = dimM ;



Springer Nature 2021 LATEX template

6 Bicategories of Action Groupoids

2. x is identified with 0 ∈ Rm;
3. V is identified with Rn, where n = dimN ; and
4. f is identified with the projection Rm → Rn : (x1, . . . , xm) 7→ (x1, . . . , xn).

Shrink I so that p(I) ⊆ V . Define q : I → Rm by q(t) = (p(t), 0). Then q satisfies
f ◦ q = p and q(0) = x as required, and the LCL condition is satisfied.

Conversely, suppose that f satisfies the LCL condition and fix y ∈ N and v ∈
TyN . Let p : I → N be a curve such that p(0) = y and ṗ(0) = v. The LCL condition
ensures that after shrinking I, there is a curve q : I → M such that f ◦ q = p and
q(0) = x. Then f∗(q̇(0)) = ṗ(0) = v. It follows that f is a surjective submersion.

For Claim 2 suppose f is a diffeomorphism. Then it is injective, surjective, and
submersive, and the LCL condition follows from Claim 1.

Conversely, suppose f is bijective and satisfies the LCL condition. Then f is
also a surjective submersion by Claim 1, hence a bijective submersion and thus a
diffeomorphism. □

Note that in Claim 2 of Lemma 4, the LCL condition can be relaxed to
showing that any curve p : I → N lifts to a curve in M ; showing that it lifts to
a curve through a specified point is not necessary since injectivity will uniquely
determine which point it goes through.

In what follows, we will repeatedly make use of the LCL condition and
Lemma 4 in proving that various constructions are suitably smooth. We
will also make use of the following well-known fact about fibred products of
manifolds, which follows from the Transversality Theorem [14, Theorem 6.30].

Lemma 5. Let f : M → P and g : N → P be smooth maps between manifolds,
in which f is a surjective submersion. Then Mf×gN is a manifold and pr2 is
a surjective submersion.

3 The 2-Category of Lie Groupoids

In this section we discuss the 2-category of Lie groupoids and its properties,
with special attention to the notion of weak equivalence, which gives rise to
the ubiquitous notion of Morita equivalence.

Our basic context is groupoids. To set notation, we will assume that a
groupoid G consists of objects G0 and arrows G1, together with structure maps:

• source and target maps s, t : G1 → G0;
• a unit map u : G0 → G1;
• a multiplication map · : G1s×tG1 → G1; and
• an inverse map inv : G1 → G1 where we indicate the inverse inv(g) by g−1.
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3.1 The 2-Category of Lie Groupoids

Definition 6 (The 2-Category LieGpoid) The 2-category of Lie groupoids,
denoted LieGpoid, is defined by:

0. Objects: A Lie groupoid G is a groupoid in which both objects G0 and
arrows G1 are manifolds, and all structure maps are smooth, with the
source and target maps surjective submersions. We will assume that all Lie
groupoids have Hausdorff object and arrow spaces.

1. Arrows: A functor φ : G → H between two Lie groupoids is a functor
(φ0, φ1) in which φ0 : G0 → H0 and φ1 : G1 → H1 are smooth maps.

2. 2-cells: A natural transformation η : φ⇒ ψ between functors φ,ψ : G →
H is a natural transformation in which the defining map η : G0 → H1 is
smooth.

For the remainder of this section, we assume that all of our groupoids are
Lie groupoids and that all functors and natural transformations are smooth.

We now consider the notion of Morita equivalence on the 2-category
LieGpoid. The idea of Morita equivalence is ubiquitous throughout the study
of groupoids in areas such as orbifolds, actions of groupoids, and stacks. This
will be defined using the following.

Definition 7 (Weak Equivalence) A functor φ : G → H is a weak equivalence
(sometimes called an equivalence or an essential equivalence in the literature)
if it satisfies the following two conditions:

1. Smooth Essential Surjectivity: The induced map

ESφ : G0φ0
×tH1 → H0 : (x, h) 7→ s(h)

is a surjective submersion.
2. Smooth Fully Faithfulness: The induced map

FFφ : G1 → G20φ2
0
×(s,t)H1 : g 7→ (s(g), t(g), φ(g))

is a diffeomorphism.

We will denote a weak equivalence with the symbol ≃−→, and denote the class of all
weak equivalences in LieGpoid by W . We will also consistently use the notation
ESφ and FFφ for the essential surjectivity and fully faithful maps induced by a
functor φ as defined above.

Weak equivalences satisfy the so-called 3-for-2 property, as proved in [23].
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Lemma 8. Let φ : G → H and ψ : H → K be functors in LieGpoid. If any
two of φ, ψ, or ψ ◦ φ are weak equivalences, so is the third.

The following helps us identify weak equivalences in LieGpoid.

Lemma 9. Let φ : G → H be smoothly fully faithful and suppose φ0 is a
surjective submersion. Then φ is a weak equivalence.

Proof To check smooth essential surjectivity, we will check that ESφ satisfies the LCL
condition and apply Lemma 4. Since φ0 is surjective, for any y ∈ H0, there is some
x ∈ φ−10 (y), for which ESφ(x, uy) = y; thus ESφ is surjective. Fix a curve p : I → H0

defined by p(t) = yτ . Choose (x0, h0) ∈ G0φ×tH1 such that ESφ(x0, h0) = s(h0) =
y0. Since the source map ofH is a surjective submersion, it satisfies the LCL condition
and so after shrinking I, there is a lift hτ of yτ through h0 with s(hτ ) = yτ . Similarly,
since φ0 is a surjective submersion, after shrinking I, there is a lift xτ of t(hτ )
through x0 such that φ(xτ ) = t(hτ ). Then (xτ , hτ ) is a lift of yτ through (x0, h0),
and it follows that ESφ is a surjective submersion. □

A fully faithful functor has the following lifting property with respect to
natural transformations, the 2-cells of LieGpoid.

Lemma 10. A functor φ : G → H in LieGpoid is smoothly fully faithful if and
only if for any functors ψ,ψ′ : K → G and natural transformation η : φ ◦ ψ ⇒
φ ◦ ψ′, there exists a unique natural transformation η′ : ψ ⇒ ψ′ such that
η = φη′.

Proof Suppose φ is smoothly fully faithful. Fix functors ψ,ψ′ : K → G and nat-
ural transformation η : φ ◦ ψ ⇒ φ ◦ ψ′. Define η′ : K0 → G1 by η′(z) :=
FFφ−1(ψ(z), ψ′(z), η(z)); this is well-defined and smooth. The fact that φη′ = η fol-
lows from the construction, and uniqueness follows from smooth fully faithfulness of
φ.

Conversely, suppose for any functors ψ,ψ′ : K → G and natural transformation
η : φ ◦ ψ ⇒ φ ◦ ψ′, there exists a unique natural transformation η′ : ψ ⇒ ψ′ such
that η = φη′. Let g1, g2 ∈ G1 such that FFφ(g1) = FFφ(g2). Then s(g1) = s(g2),
t(g1) = t(g2), and φ(g1) = φ(g2). Let K be the trivial Lie groupoid of a point,
ψ : K → G be the functor sending the point to s(g1), ψ′ : K → G the functor sending
the point to t(g1), and η : φ ◦ ψ ⇒ φ ◦ ψ′ sending the point to the arrow φ(g1).
There is a unique η′ : ψ ⇒ ψ′ such that φη′ = η; that is, η′ = g1 = g2. Thus FFφ is
injective. Similarly, if (x1, x2, h) ∈ G20φ2×(s,t)H1, then setting ψ, ψ′, and η to send
the object of K to x1, x2, and h, resp., the unique η′ such that φη′ = η evaluated at
the object of K is sent by FFφ to (x1, x2, h). Thus FFφ is bijective.
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Now we show that FFφ satisfies the LCL condition. Fix a curve p =
(xτ , x

′
τ , hτ ) : I → G20φ2×(s,t)H1. Set K to be the trivial Lie groupoid of I, the func-

tors K → G defined by ψ0 = xτ , ψ′0 = x′τ , and η : φ ◦ ψ ⇒ φ ◦ ψ′ defined by the
natural transformation hτ . There is a unique η′ : ψ ⇒ ψ′ defined by gτ such that
φη′ = η, so φ(gτ ) = hτ . Thus FFφ(gτ ) = p, showing that gτ gives the required lift.
By Item 2 of Lemma 4, it follows that FFφ is a diffeomorphism, establishing smooth
fully faithfulness of φ. □

3.2 Pullbacks of Lie Groupoids

In this section we define the strict and weak pullbacks of Lie groupoids, and
consider conditions that ensure that these will again be Lie groupoids.

Definition 11 (Strict Pullback) Let φ : G → K and ψ : H → K be functors. The
strict pullback of φ and ψ is the groupoid Gφ×ψH, whose object and arrow spaces
are the corresponding fibred products of the object and arrow spaces of G and H,
resp. The structure maps are restrictions of those from the product Lie groupoid
G×H. The strict pullback comes equipped with two projection functors pr1 and pr2,
the restrictions of those from the product Lie groupoid.

The strict pullback may not be a Lie groupoid in general. The following
proposition provides a sufficient condition for when it is a Lie groupoid.

Proposition 12. Let φ : G → K and ψ : H → K be functors in which φ is
a surjective submersive weak equivalence. Then Gφ×ψH is a Lie groupoid and
pr2 is a surjective submersive weak equivalence.

Proof By Lemma 5, the object and arrow spaces of Gφ×ψH are manifolds. We
verify that the source map of the pullback groupoid is a surjective submersion
using the LCL condition. Fix a curve p = (xτ , yτ ) : I → G0φ0

×ψ0
H0 and let

(g0, h0) ∈ G1φ1
×ψ1
H1 such that s(g0, h0) = (x0, y0). After shrinking I, there is a

lift hτ : I → H1 of yτ through h0 such that s(hτ ) = yτ . Then t(ψ1(hτ )) defines
a curve I → K0, and since φ0 is a surjective submersion, after shrinking I again
there is a lift x′τ : I → G0 of this curve through t(g0) with φ(x′τ ) = t(ψ(hτ )). The
curve gτ := FFφ−1(xτ , x′τ , ψ1(hτ )) : I → G1 is a lift of xτ through g0 such that
s(gτ ) = xτ . Thus (gτ , hτ ) : I → G1φ1

×ψ1
H1 is well-defined, and is the desired lift of

(xτ , yτ ) through (g0, h0) such that s(gτ , hτ ) = (xτ , yτ ) verifying the LCL condition
for the source map of the pullback groupoid. By Item 1 of Lemma 4, the source map
is a surjective submersion, from which it follows that the target map is as well. Thus
Gφ×ψH is a Lie groupoid.

Next we show that pr2 is a surjective submersive weak equivalence. By Lemma 5,
the map (pr2)0 : (Gφ×ψH)0 → H0 is a surjective submersion. Since FFφ is a
diffeomorphism, it follows that FFpr2 is bijective. Let

p = ((xτ , yτ ), (x
′
τ , y
′
τ ), hτ ) : I → (Gφ×ψH)

2
0φ2

0
×(s,t)H1
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be a curve. Define the curve gτ := FFφ−1((xτ , x′τ ), ψ1(hτ )). Then (gτ , hτ ) defines
the desired lift of the curve p and FFpr2 satisfies the LCL condition. Hence FFpr2
is a surjective submersion. By Item 2 of Lemma 4, FFpr2 is a diffeomorphism. By
Lemma 9, pr2 is in sW. This proves the second statement. □

We also consider the weak pullback of groupoids.

Definition 13 (Weak Pullback) Let φ : G → K and ψ : H → K be functors in
LieGpoid. The weak pullback of φ and ψ is the groupoid Gφ

w

×ψH, whose object
space is

(Gφ
w

×ψH)0 :=

{
(x, k, y) ∈ G0 ×K1 ×H0 | φ(x)

k↷ ψ(y)

}
,

and arrow space is

(Gφ
w

×ψH)1 :=

{
(g, k, h) ∈ G1 ×K1 ×H1 | φ(s(g))

k↷ ψ(s(h))

}
.

The structure maps are as follows:

• the source map is given by (g, k, h) 7→ (s(g), k, s(h)),
• the target map is given by (g, k, h) 7→ (t(g), ψ(h)kφ(g)−1, t(h)),
• the unit map is given by (x, k, y) 7→ (ux, k, uy),
• the multiplication is given by (g1, h2k2g

−1
2 , h1)·(g2, k2, h2) = (g1g2, k2, h1h2),

• and the inverse of (g, k, h) is given by (g−1, hkg−1, h−1).

The weak pullback comes equipped with two projection functors pr1 and pr3 to
G and H, respectively, and the natural transformation PR2 : φ ◦ pr1 ⇒ ψ ◦ pr3.

In general, the weak pullback may not be a Lie groupoid. The following
proposition, which is [17, Proposition 5.12(iv)], gives a sufficient condition for
when it is a Lie groupoid.

Proposition 14. Let φ : G → K and ψ : H → K be functors in which φ is
a weak equivalence. Then Gφ

w

×ψH is a Lie groupoid and pr3 is a surjective
submersive weak equivalence.

3.3 Surjective Submersive Weak Equivalences

We will make use of the special properties of weak equivalences which are also
surjective submersions on objects. We start with the following standard result
on surjective submersions.

Lemma 15. Let f : X → Y and g : Y → Z be smooth maps between mani-
folds such that f and g ◦ f are surjective submersions. Then g is a surjective
submersion.



Springer Nature 2021 LATEX template

Bicategories of Action Groupoids 11

We now define an important type of weak equivalence.

Definition 16 (Surjective Submersive Weak Equivalence) We call a weak equiva-
lence between Lie groupoids that is a surjective submersion on objects surjective
submersive, and will often denote a surjective submersive weak equivalence using
an arrow

≃
−↠. We refer to the class of surjective submersive weak equivalences as sW.

The following lemma shows how surjective submersive weak equivalences
interact with natural transformations. This first property is called “co-fully
faithfulness” by Roberts [27, Definition 2.12] and Pronk-Scull [24, Definition
5.1].

Lemma 17. Let φ : G → H be in sW. Then for any functors ψ,ψ′ : H → K
and natural transformation η : ψ ◦ φ ⇒ ψ′ ◦ φ, there exists a unique natural
transformation η′ : ψ ⇒ ψ′ such that η = η′φ.

Proof Fix functors ψ,ψ′ : H → K and natural transformation η : ψ ◦ φ ⇒ ψ′ ◦ φ.
Define η′ : H0 → K1 by η′(y) := η(x), where x ∈ φ−10 (y). Since φ0 is surjective,
φ−10 (y) is non-empty. Suppose φ0(x1) = φ0(x2). Since φ is a weak equivalence,
there exists an arrow g = FFφ−1(x1, x2, uφ(x1)) from x1 to x2. Naturality gives the
following commutative diagram

ψ ◦ φ(x1)
ηx1 //

ψ◦φ(g)
��

ψ′ ◦ φ(x1)

ψ′◦φ(g)
��

ψ ◦ φ(x2) ηx2
// ψ′ ◦ φ(x2).

Since φ(g) = uφ(x1), we have ηx1 = ηx2 , and so η′ is well-defined. By construction
η = η′φ.

To show that η′ is smooth, fix a curve p = yτ : I → H0. After shrinking I, there
exists a curve xτ : I → G0 such that yτ = φ(xτ ), since φ is a surjective submersion.
Since η′(yτ ) = η(xτ ), we conclude that η′(yτ ) is a curve in K1. By Lemma 2, η′ is
smooth. The naturality of η′ follows from that of η. Finally, uniqueness follows from
the construction. □

The following identifies weak equivalences using a property called “locally
split” in [27, Definition 3.22].

Lemma 18. A functor φ : G → H is a weak equivalence if and only if it is
smoothly fully faithful and there exist a ψ : K → H in sW, a functor σ : K → G,
and a natural transformation η : φ ◦ σ ⇒ ψ.
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Proof Suppose φ is a weak equivalence. Choose K := Gφ
w

×idH
H and ψ = pr3, σ = pr1

and η = PR2. Then K is a Lie groupoid and ψ ∈ sW by Proposition 14.

Conversely, suppose φ is smoothly fully faithful, and there exist ψ : K → H in
sW, a functor σ : K → G, and a natural transformation η : φ ◦ σ ⇒ ψ. We will verify
that φ is a weak equivalence by checking the necessary conditions on the induced
maps ESφ.

Let y ∈ H0. Since ψ0 is surjective, there exists z ∈ K0 such that ψ(z) = y. Then
(σ(z), η(z)−1) ∈ G0φ×tH1 and ESφ(σ(z), η(z)−1) = y. Thus ESφ is surjective.

To show ESφ is a surjective submersion, fix a curve p = yτ : I → H0. Let
(x0, h0) ∈ G0φ×tH1 such that ESφ(x0, h0) = y0, so s(h0) = y0 and t(h) = x0.
Since ψ0 is a surjective submersion, after shrinking I, there is a curve zτ : I → K0

such that ψ(zτ ) = yτ . Since φ is smoothly fully faithful, FFφ is a diffeomorphism
and so we define g0 ∈ G1 by FFφ−1(σ(z0), x0, h0 · η(z0)). Since source maps of Lie
groupoids are surjective submersions, we can lift the curve σ(zτ ) after shrinking I to
get a curve gτ : I → G1 through g0 such that s(gτ ) = σ(zτ ). Then the desired lift of
the curve p through (x0, h0) is defined by (t(gτ ), φ(gτ ) ·η(zτ )−1). Thus ESφ satisfies
the LCL condition and is a surjective submersion, completing the verification that φ
is a weak equivalence. □

4 Localising Lie Groupoids at Weak
Equivalences

In this section we discuss how to construct from the 2-category LieGpoid a
localised bicategory which inverts weak equivalences. Localising at the class
W of weak equivalences gives us a formal mechanism for working with Morita
equivalence classes of groupoids. We will use a bicategory of fractions construc-
tion in which the objects are still the Lie groupoids of LieGpoid, but the 1-
and 2-cells are adjusted. In particular, the arrows of the bicategory of fractions
will be given by so-called “spans” of arrows of LieGpoid, with the result that
we will add inverse arrows for any weak equivalence, making all weak equiv-
alences into invertible 1-cells and hence making all Morita equivalences into
isomorphisms of the localised category.

In this section, we outline two constructions of this localisation: the first
is the bicategory of fractions defined by [21], and a second related but smaller
construction based on so-called anafunctors by [27]. Throughout this section,
we will assume that we work in LieGpoid, so all groupoids are Lie groupoids
and all functors and natural transformations are smooth.

4.1 The Localised Bicategory LieGpoid[W−1]

In this section we discuss the following result.
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Proposition 19. [21] There is a bicategory LieGpoid[W−1], the bicategory
of fractions of the 2-category LieGpoid localised at the class W , which sat-
isfies the universal property of a localisation: any functor from LieGpoid to
another bicategory which takes 1-cells in W to invertible 1-cells will factor
through this localised bicategory LieGpoid[W−1].

We begin by explaining the construction and properties of this bicategory,
and then give an outline of the proof of Proposition 19.

The objects of LieGpoid[W−1] are the same as the objects of LieGpoid,
and the arrows are defined by “spans” of arrows:

Definition 20 (Generalised Morphism of LieGpoid[W−1]) A generalised mor-
phism between Lie groupoids G and H is a Lie groupoid K and two functors
φ : K → G and ψ : K → H in which φ is a weak equivalence. Denote the generalised
morphism by G ≃←−

φ
K −→

ψ
H.

The identity generalised morphism of G in LieGpoid[W−1] is given by
G =←− G =−→ G.

A generalised morphism G ≃←− K → H can be thought of as replacing G
with a Lie groupoid K which is weakly equivalent to it, which admits the left
functor K → H. In this way, we consider weakly equivalent groupoids to be
interchangeable. We can make this more precise with the following.

Definition 21 (Morita Equivalence) We say that G and H are Morita equivalent
if there is a generalised morphism G ≃←−

φ
K ≃−→

ψ
H where both φ and ψ are weak

equivalences.

Weakly equivalent groupoids are always Morita equivalent, as we can create
a generalised morphism between them using an identity morphism as one leg.
It turns out that Morita equivalence is the equivalence relation generated by
the weak equivalences. A Morita equivalence G ≃←−

φ
K ≃−→

ψ
H will be invert-

ible in LieGpoid[W−1], with inverse defined by the generalised morphism
H ≃←−

ψ
K ≃−→

φ
G.

The composition of two generalised morphisms makes use of the weak
pullback of Definition 13.

Definition 22 (Composition of Generalised Morphisms in LieGpoid[W−1]) Let
G ≃←−

φ
K −→

ψ
H and H ≃←−

χ
L −→

ω
I be generalised morphisms. Define their
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composition to be the generalised morphism

G ≃←−
φ◦pr1

Kψ
w

×χL −→
ω◦pr3

I.

It follows from Proposition 14 and Lemma 8 that the composition of two
generalised morphisms is a generalised morphism.

Remark 23 The composition of generalised morphisms is an associative operation;
that is, the associator is trivial.

Our generalised morphisms allow us to treat Morita equivalent groupoids as
equivalent. Of course, there may be many different choices of groupoids weakly
equivalent to G, and we want to recognise when two choices of generalised
morphism carry the same geometric information. Thus we define the following
2-cells.

Definition 24 (2-Cell Between Generalised Morphisms in LieGpoid[W−1]) Given
two generalised morphisms G ≃←−

φ
K −→

ψ
H and G ≃←−

φ′
K′ −→

ψ′
H we define a 2-cell

from the first generalised morphism to the second as follows. Consider a generalised
morphism of the formK ≃←−

α
L ≃−→

α′
K′ in which both functors are weak equivalences,

along with two natural transformations η1 : φ ◦ α⇒ φ′ ◦ α′ and η2 : ψ ◦ α⇒ ψ′ ◦ α′
making the following diagram 2-commute:

K
φ

≃
vv

ψ

((G ⇓ η1 L

α ≃

OO

α′ ≃
��

⇓ η2 H

K′.
φ′

≃

hh

ψ′

66

(1)

We will often denote such a diagram (1) by the quadruple (α, α′, η1, η2). We define an
equivalence relation on these diagrams as follows: Suppose K ≃←−

β
M ≃−→

β′
K′ with

µ1 : φ ◦ β ⇒ φ′ ◦ β′ and µ2 : ψ ◦ β ⇒ ψ′ ◦ β′ make up another diagram (β, β′, µ1, µ2)
of the form (1). We will say that (α, α′, η1, η2) is equivalent to (β, β′, µ1, µ2) if
there exists yet another generalised morphism L ≃←−

γ
N ≃−→

γ′
M and natural

transformations ν1 : α ◦ γ ⇒ β ◦ γ′ and ν2 : α′ ◦ γ ⇒ β′ ◦ γ′ such that

(µ1γ
′) ◦ (φν1) = (φ′ν2) ◦ (η1γ) and (µ2γ

′) ◦ (ψν1) = (ψ′ν2) ◦ (η2γ). (2)

A 2-cell from G ≃←−
φ
K −→

ψ
H to G ≃←−

φ′
K′ −→

ψ′
H is an equivalence class of these

diagrams as in (1); for the above diagram we denote this [α, α′, η1, η2]. The identity
2-cell of a generalised morphism G ≃←− K → H is given by [idK, idK, IDφ, IDψ]
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(where ID represents the identity natural transformation) and represented by the
diagram

K
φ

≃
ww

ψ

''G ⟳ K ⟳ H

K.
φ

≃

gg

ψ

77

Further details on the unitor and composition of 2-cells in this category
are given in Appendix A. We will not need the details of these constructions
for most of our results, but they will be needed for a few results in Section 6.

Outline of Proof of Proposition 19 In order to form the bicategory of fractions of
LieGpoid with respect to the class of weak equivalences W , the class of weak equiv-
alences must satisfy conditions (BF1)-(BF5) of [21, Section 2.1]. The first is that
W includes all identity generalised morphisms, which is immediate. The second is
that W is closed under composition, which is implied by Lemma 8. The third is the
statement of Lemma 14. The fourth is that weak equivalences must satisfy a prop-
erty called “representably fully faithfulness” by Roberts [27, Definition 2.2], and this
is the content of Lemma 10. Finally, the fifth property is that if there is a natural
transformation between two functors in which if one is a weak equivalence, then they
both are; this is [17, Proposition 5.12(i)]. □

The bicategory LieGpoid[W−1] inverts all weak equivalences and satisfies
the universal property of a localization. On a practical level, this bicategory
can be hard to work with on the 2-cell level, since the 2-cells are defined as
equivalence classes of diagrams.

4.2 The Localised Bicategory AnaLieGpoid

We now describe an alternate localised bicategory AnaLieGpoid developed
in [25–27] which is “smaller” than LieGpoid[W−1] described in the previous
section. This has the following properties:

• the 1-cells are generalised morphisms whose left side is a surjective submer-
sive weak equivalence,

• the composition is created using a strict (not weak) pullback,
• the 2-cells are defined by natural transformations (not equivalence classes

of diagrams).

The fact that this smaller construction applies in the category of Lie
groupoids is well-known to experts but tracking down exact references has
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proved difficult. Therefore in this section, we will describe the construction
and give an outline of the proof of the following:

Proposition 25. There is a bicategory AnaLieGpoid, the anafunctor
bicategory of LieGpoid localised at sW.

The starting point to understanding the difference between
LieGpoid[W−1] and AnaLieGpoid is in looking at a subset of the weak
equivalences, the surjective submersive weak equivalences of Definition 16.
This is a sub-class sW of weak equivalences. A priori we will create a locali-
sation which inverts only this subclass sW. It will turn out that the resulting
localised bicategories are equivalent.

Thus we start creating AnaLieGpoid using objects of LieGpoid as
before, but look only at generalised morphisms which use a surjective sub-
mersive weak equivalence as their left leg. These are called anafunctors in
[27].

Definition 26 (Anafunctor) An anafunctor is a generalised morphism

G ≃←−
φ
K −→

ψ
H such that φ ∈ sW, so the map K

≃
−↠ G is a surjective sub-

mersive weak equivalence. The identity generalised morphism of Definition 20 is an
anafunctor, and so it defines the identity anafunctor of G.

The composition of anafunctors is defined using the strict pullback of
Definition 11:

Definition 27 (Composition of Anafunctors) Let G ≃←−
φ
K −→

ψ
H and

H ≃←−
χ
L −→

ω
I be anafunctors. Define their composition to be the anafunctor

G ≃←−
φ◦pr1

Kψ×χL −→ω◦pr3
I.

It follows from Proposition 12, Lemma 8, and the fact that the composition
of surjective submersions is again a surjective submersion that the composition
of two anafunctors is an anafunctor.

Remark 28 Similar to the case of generalised morphisms, composition of anafunctors
is an associative operation.

As in the case for generalised morphisms, we have a choice of replacement
for the left side G in an anafunctor G ≃←−

φ
K −→

ψ
H and must identify when
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two anafunctors are encoding the same geometry. Viewed as generalised mor-
phisms, there are multiple representatives of 2-cells between anafunctors. Here,
we choose a canonical representative of a 2-cell which will be defined by a
particular natural transformation. This representative natural transformation
will be the 2-cell in our new bicategory AnaLieGpoid. So when we define
our bicategory with anafunctors a 1-cells, our 2-cells will be actual natural
transformations rather than equivalence classes as in LieGpoid[W−1].

Definition 29 (2-cells in AnaLieGpoid) Given two anafunctors G ≃←−
φ
K −→

ψ
H

and G ≃←−
φ′
K′ −→

ψ′
H a 2-cell between them is a natural transformation η making

the following diagram 2-commute.

K
ψ

��
Kφ×φ′K′

pr1

≃

;; ;;

pr2

≃

## ##

η⇒ H

K′
ψ′

@@

The identity 2-cell of an anafunctor G ≃←− K → H is given by the natural
transformation

ιG←K→H : (Kφ×φK)0 → H1 : (y1, y2) 7→ ψ(FFφ−1((y1, y2), uφ(y1))).

Observe that these anafunctor 2-cells can be drawn in the diagram form
(1) of the 2-cells of LieGpoid[W−1] of Definition 24, by adding the left side of
the diagram with the trivial natural transformation. Thus we can think of an
anafunctor 2-cell as a canonical representative of our earlier 2-cells, in which
the left natural transformation is just the trivial one. In AnaLieGpoid, we
work with actual natural transformations as 2-cells, although the vertical and
horizontal compositions are not the usual composition of natural transforma-
tions. We again defer the precise definitions of vertical composition, horizontal
composition, and unitors to Appendix A, as the details are only used for the
results of Section 6.

Outline of Proof of Proposition 25 Roberts in [27] works in a general context to con-
struct a bicategory whose 1-cells are given by anafunctors, with their compositions
given by strict pullbacks. Applying this construction to our setting of Lie groupoids
requires sW to be a “bi-fully faithful singleton strict pretopology” on LieGpoid. This
translates into the following requirements for sW: All identity arrows must be con-
tained in sW; this is immediate. sW must be closed under strict pullback, proved in
Proposition 12. sW must be closed under composition, which follows from Lemma 8
and the fact that surjective submersions are closed under composition. Finally, ele-
ments of sW are required to be representably fully faithful and co-fully faithful, the
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content of Lemmas 10 and 17. See [27, Definitions 2.9, 2.12] for more details. Thus
by [27, Proposition 3.20] we have that AnaLieGpoid is a bicategory. □

4.3 Comparison of AnaLieGpoid and LieGpoid[W−1]

Both the constructions we have just outlined create localisations of LieGpoid
at W . Here we present the result that the two bicategories are equivalent, and
detail the key step in its proof.

To compare AnaLieGpoid to LieGpoid[W−1], we again apply a result
of Roberts; be warned that what is called a “weak equivalence” in his paper
[27] is defined there to be a functor that is sW-locally split and representably
fully faithful. However, by Lemmas 10 and 18, this is equivalent to smooth
essential surjectivity and smooth fully faithfulness, and so our notion of weak
equivalence coincides with his. Thus we have [27, Theorem 3.24]:

Proposition 30. The inclusion AnaLieGpoid → LieGpoid[W−1] is an
equivalence of bicategories, where this inclusion takes a 2-cell to its equivalence
class.

Proposition 30 implies that any generalised morphism G ≃←−
φ
K −→

ψ
H

admits a 2-cell from itself to an anafunctor, such as G ≃←−
pr1
GidG

w

×φK −→
ψ◦pr3

H,

where the weak equivalence is surjective submersive. It also implies that we
can replace the composition in LieGpoid[W−1], defined by the weak pullback,
by the composition of AnaLieGpoid using the strict pullback, and obtain a
2-cell between the two compositions. Below we construct the required 2-cell
between the two compositions explicitly, which we will need in Section 6.

Proposition 31. Let G ≃←−
φ
K −→

ψ
H and H ≃←−

χ
L −→

ω
I be gener-

alised morphisms where χ ∈ sW, so that the second generalised morphism is
also an anafunctor. Then the composition defined using the weak pullback in
LieGpoid[W−1] of Definition 22 is equivalent to the composition defined using
the strict pullback in AnaLieGpoid defined in Definition 27.
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Proof We need create a 2-cell between the two compositions. We define the 2-cell
using the following strictly commutative diagram:

Kψ
w

×χL
φ◦pr1

≃
ww

ω◦pr3

''G ⟳ Kψ×χL

inc ≃

OO

⟳ I

Kψ×χL.

φ◦pr1
≃

hh

ω◦pr2

66

Here, inc is the inclusion functor defined on objects by inc0 : (x, y) 7→ (x, uψ(x), y)
and on arrows by inc1 : (k, ℓ) 7→ (k, us◦ψ(k), ℓ). We check that inc is indeed a weak
equivalence. It is straightforward to check that FFinc is bijective. To show it is a
diffeomorphism, we will check the LCL condition: a curve

p : I → (Kψ×χL)
2
0inc2×(s,t)(Kψ

w

×χL)1
must have the form

p(t) = ((xτ , yτ ), (x
′
τ , y
′
τ ), (kτ , uxτ , ℓτ )

and so (kτ , ℓτ ) gives the desired lift, since p = FFinc(kτ , ℓτ ). By Item 2 of Lemma 4,
FFinc is a diffeomorphism.

Let (x, h, y) ∈ (Kψ
w

×χL)0. Since χ0 is surjective, there exists y′ ∈ L0 such
that χ(y′) = ψ(x). Define ℓ := FFχ−1(y, y′, h−1). Then ESinc((x, y

′), (ux, h, ℓ)) =
(x, h, y), and so ESinc is surjective.

To show that ESinc is a surjective submersion, we again use the LCL con-
dition: let p = (xτ , hτ , yτ ) : I → (Kψ

w

×χL)0 be a curve and suppose we have

a lift ((x′0, y
′
0), (k0, h0, ℓ0)) ∈ ((Kψ×χL)0)inc×t(Kψ

w

×χL)1. By definition, we must
have that t(k0) = x′0, t(ℓ0) = y′0, and χ(ℓ0)h0ψ(k0)

−1 = uχ(y′0). Since K is a
Lie groupoid, its source map is a surjective submersion and so after shrinking I,
there is a curve kτ : I → K1 through k0 with s(kτ ) = xτ ; denote the target of
this t(xτ ) = x′τ , and note that ψ(x′0) = t(ψ(k0)) = t(χ(ℓ0)h0) = tχ(ℓ0). Next,
since χ0 is a surjective submersion we can lift t(ψ(kτ )) = ψ(x′τ ) through t(ℓ0)
to get y′τ . Thus we have (yτ , y

′
τ , ψ(kτ )h

−1
τ ) ∈ L20χ2×(s,t)H1 and so we can define

ℓτ = FFχ−1(yτ , y′τ , ψ(kτ )h−1τ ). Then q = (x′τ , y
′
τ , (kτ , hτ , ℓτ )) is the desired lift of p

with ESinc(q) = p.

By Lemma 8, since φ is a weak equivalence, φ ◦ pr1 is a weak equivalence (in
both instances it appears in the diagram above) provided pr1 is. But by Proposi-
tion 14, pr1 : Kψ

w

×χL → K is a weak equivalence since χ is, and by Proposition 12
pr1 : Kψ×χL is a weak equivalence (in fact, it is in sW) since χ is in sW. Thus the dia-
gram above represents an equivalence between the two generalised morphisms. □
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5 Action Groupoids

Our main interest in this paper is in Lie groupoids which come from the action
of a Lie group on a manifold. For the rest of the paper, we will focus on these.
Consequently,

Assumptions 32

• All group actions will be assumed to be (smooth) Lie group actions of a Lie
group on a manifold.

We define action groupoids as follows.

Definition 33 (Action Groupoid) The action groupoid of a group action of a Lie
group G on a manifold X, denoted by G⋉X, is defined by the following data:

• the object space is X,
• the arrow space is G × X, where the pair (g, x) is the arrow x → gx (for

clarity, we sometimes denote this g · x),
• multiplication is given by (g1, g2x)(g2, x) = (g1g2, x),
• the unit at x is given by (e, x), where e is the identity of G, and
• the inverse of (g, x) is (g−1, gx).

We are interested in looking at action groupoids with various special prop-
erties which commonly come up in contexts such as the study of orbifolds,
symplectic geometry, and bundle theory. These are all standard conditions,
but we include definitions here for convenience. The first type of these gives
conditions on actions.

Definition 34 (Action Types) A group action of G on X is

1. free if all stabilisers are trivial,
2. locally free if there is a neighbourhood U of e in G such that the restriction

of the action to U is free,
3. transitive if for each pair x, y ∈ X there exists a g ∈ G such that gx = y,

and
4. effective if for each g ̸= e ∈ G there exists x ∈ X such that gx ̸= x.

We will apply these adjectives to both the action and the corresponding action
groupoid.
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The second type are topological conditions. We can require our Lie group
G to be compact or discrete, in which case we refer to the action (and action
groupoid) as being compact or discrete, resp. Or we can consider topological
conditions on the action map, as with:

Definition 35 (Proper Groupoid) A Lie groupoid G is proper if the map G1 →
G0 × G0 : g 7→ (s(g), t(g)) is a proper map. In particular, if G is an action groupoid,
then we say that the corresponding action is proper.

We can also require the source of a Lie groupoid to be a local diffeomor-
phism. For an action groupoid this implies the group is discrete, so this is not
useful for us. Instead, we consider action groupoids that are Morita equivalent
to such groupoids (see Definition 20 for a definition of Morita equivalent).

Definition 36 (Étale Groupoid) An étale groupoid is a Lie groupoid whose source
(and hence target) map is a local diffeomorphism.

Definition 37 (Orbifold Groupoid) An orbifold groupoid is a Lie groupoid that
is Morita equivalent to a proper étale groupoid.

Remark 38 There are subtle differences in how “orbifold groupoid” is defined in the
literature. Our definition above matches that of Pronk-Scull [22, Definition 2.7].
However, others refer to only proper étale groupoids as “orbifold groupoids”; see, for
instance, [3, 10]. Further, some authors restrict their attention to effective orbifolds
[17, 18]. It follows from the Slice Theorem and associated Tube Theorem [8, Theorems
2.3.3, 2.4.1] that a proper and locally free group action corresponds to an orbifold
groupoid as in Definition 37. Conversely, if an action groupoid is Morita equivalent
to a proper étale groupoid, then it is proper and locally free. This follows from the
fact that weak equivalences, and hence Morita equivalences, preserve stabilisers and
properness (see, for instance, [16, Subsection 2.7]).

Our goal is to localise a specified sub-2-category of Lie groupoids whose
objects are action groupoids that satisfy a desired set of properties P. Our
selection of properties comes from those defined above. Specifically, P is any
subset (possibly empty) of the following list of properties:

P ⊆

{
free, locally free, transitive, effective, compact, discrete,

proper, is an orbifold groupoid

}
. (3)

Remark 39 As mentioned earlier, there could be redundancy when one takes P to
include more than one property. For example, as per Remark 38, being an orbifold
groupoid is the same as locally free and proper in the case of action groupoids.
However, one will see that in our proofs below, one could replace “orbifold groupoid”
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with being Morita equivalent to any class of groupoids that one wishes; the same
argument goes through. Since this argument is different than those for proper, locally
free, etc., we wish to keep the redundancy.

Similar results already appear in the literature for a few specific sub-classes
of Lie groupoids. For instance, in [21], Pronk localises étale Lie groupoids
using the method we outlined in Subsection 4.1. In [25], Roberts localises Lie
groupoids, proper Lie groupoids, étale Lie groupoids, and étale proper Lie
groupoids using the method we outlined in Subsection 4.2, which is equivalent
to the method of Subsection 4.1 by Proposition 30.

We generalise these scattered results that appear in the literature below by
considering action groupoids satisfying the properties P. In fact, we go further.
We begin by considering action groupoids with so-called equivariant functors
between them, defined as follows.

Definition 40 (The 2-Category ActGpdP ) Let ActGpdP be the sub-2-category
of LieGpoid in which

• an object is an action Lie groupoid G = G⋉X coming from an action of a
Lie group G on a manifold X satisfying P,

• a 1-cell is an equivariant functor which is induced from an equivariant
map: so there exists a Lie group homomorphism φ̃ : G → H and a smooth
map φ0 : X → Y such that the functor φ : G ⋉ X → H ⋉ Y is defined on
arrows by

φ1(g, x) = (φ̃(g), φ0(x)) ,

for all (g, x) ∈ G×X,
• a 2-cell is a natural transformation.

LetWP be the class of equivariant weak equivalences and sWP the class of equivariant
surjective submersive weak equivalences.

We use the recipe of Roberts [27] to produce a localisation AnaLieGpoidP
of ActGpdP at WP , which has the equivariant anafunctors as 1-cells.
Using [27, Theorem 3.24], we will show that this bicategory is equivalent to
ActGpdP [W

−1
P ]. Finally, we show that both of these bicategories are equiv-

alent to LieGpoid[W−1]P , the full sub-bicategory of LieGpoid[W−1] whose
objects are action groupoids satisfying P.

We begin by constructing our localisation of ActGpdP at WP .

Definition 41 (P-anafunctor) A P-anafunctor is a generalised morphism

G⋉X
≃←−
φ

K ⋉ Y −→
ψ

H ⋉ Z
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in which all groupoids involved are action groupoids satisfying P, with ψ equivariant
and φ ∈ sWP .

We will compose P-anafunctors using the strict pullback. So we need to
verify that ActGpdP is also closed under strict pullbacks.

Lemma 42. Let G = G⋉X, H = H ⋉Y , and K = K ⋉Z, and let φ : G → K
and ψ : H → K be equivariant functors in ActGpdP (with their defining group
maps φ̃, ψ̃) such that φ ∈ sWP . Then the strict pullback groupoid Gφ×ψH is an
action groupoid of a (Gφ̃×ψ̃H)-action that satisfies properties P, and pr1 and
pr2 are equivariant with respect to the restricted projection homomorphisms
from Gφ̃×ψ̃H with pr2 ∈ sWP .

Proof By Proposition 12, Gφ×ψH is a Lie groupoid and pr2 ∈ sW. Since Gφ̃×ψ̃H is
a closed subgroup of the Lie group G×H, it is a Lie subgroup [8, Corollary 1.10.7].
It is straightforward to check that Gφ×ψH is isomorphic to (Gφ̃×ψ̃H)⋉ (Xφ0

×ψ0
Y ).

The restricted projection functors pr1 and pr2 from Gφ×ψH are equivariant with
respect to the restricted projection functors on Gφ̃×ψ̃H.

To check that the properties in P are preserved, first observe that if G and
H are compact/discrete, then so is Gφ̃×ψ̃H. An examination of the stabilisers
of the (Gφ̃×ψ̃H)-action on Xφ0

×ψ0
Y yields immediately that if the G- and H-

actions are effective/free/locally free, then so is the (Gφ̃×ψ̃H)-action. If G and H
are proper, then we check that the (Gφ̃×ψ̃H)-action is proper: if we have a sequence

((gi, hi), (xi, yi))i∈N such that the image under (s, t) converges to ((x, y), (x′, y′)),
then ((xi, yi), (gixi, hiyi)) → ((x, y), (x′, y′)), and so xi → x and yi → y. Then the
fact that G acts properly on X gives us an element g such that gi → g and gx = x′,
and similarly h ∈ H such that hi → h such that hiyi → y′. Thus the sequence must
converge to ((g, h), (x, y)).

Suppose H is transitive. Hence for fixed ((x1, y1), (x2, y2)) ∈ Xφ0
×ψ0

Y , there

exists h ∈ H so that hy1 = y2. Define (g, x1) := FFφ−1
(
x1, x2,

(
ψ̃(h), ψ(y1)

))
.

Then (g, h) ∈ Gφ̃×ψ̃H, and the action of Gφ̃×ψ̃H is transitive.

Suppose that H is an orbifold groupoid; that is, there is a proper étale groupoid
E , a groupoid L, and two weak equivalences β : L → H and β′ : L → E . Since
φ is a weak equivalence, so is pr2 : Gφ×ψH → H by Proposition 12. Thus, again
by Proposition 12, (Gφ×ψH)pr2×βL is a Lie groupoid, and we have the Morita
equivalence

Gφ×ψH
≃←−
pr1

(Gφ×ψH)pr2×βL
≃−→

β′◦pr2
E ,

where β′ ◦ pr2 is a weak equivalence by Lemma 8. Thus, the strict pullback Gφ×ψH
is an orbifold groupoid. □
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Remark 43 Throughout the proof of Lemma 42, we did not require K to satisfy P,
only that G and H do. Moreover, for transitive and orbifold groupoids, our proof
shows that we only needed to require H to be transitive/an orbifold groupoid, and
not G.

Thus we know that we can define the composition of P-anafunctors using
the strict pullback and get another P-anafunctor. We can now construct a
bicategory localising ActGpdP following the method of Subsection 4.2, pro-
vided sWP is a so-called “bi-fully faithful singleton strict pretopology”. We
have already verified that sWP satisfies the conditions this entails: All iden-
tity arrows are in sWP , which is immediate. sWP must be closed under strict
pullback, which is Lemma 42. sWP must be closed under composition, which
follows from Lemma 8 and the fact that surjective submersions and equiv-
ariant maps are closed under composition. Finally, elements of sWP must be
representably fully faithful, which is inherited from AnaLieGpoid. Thus, by
[27, Theorem 3.20] we have:

Proposition 44. There is a bicategory AnaActGpdP whose objects are
those of ActGpdP , arrows are P-anafunctors, and 2-cells are the natural
transformations of Definition 29.

To compare AnaActGpdP to ActGpdP [W
−1
P ], we again have to confirm

that “weak equivalences” as defined by Roberts are the same as ours here.
Representable fully faithfulness is the same as smooth fully faithfulness by
Lemma 10. We check the sWP -locally split condition using the following lemma
showing that ActGpdP admits weak pullbacks, from which the required sWP -
locally split condition follows.

Lemma 45. Let G = G ⋉ X and H = H ⋉ Y be objects in ActGpdP , and
let φ : G → K and ψ : H → K be functors with φ ∈W . Then the weak pullback
Gφ

w

×ψH is isomorphic to an action groupoid of a (G×H)-action on its object
space Z that satisfies properties P, and pr1 and pr3 are equivariant with respect
to the projection homomorphisms from G×H with pr3 ∈ sWP .

Proof By Proposition 14, Gφ
w

×ψH is a Lie groupoid and pr3 ∈ sW. Let Z be its
object space. It is straightforward to check that the group action of G×H on Z

((g, h), (x, k, y)) 7→ (gx, ψ(h, y)kφ(g, x)−1, hy)

yields an isomorphism from (G × H) ⋉ Z to Gφ
w

×ψH, and that pr1 and pr3 are
equivariant with respect to the projection homomorphisms G×H → G and G×H →
H respectively.
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Now we consider the selected subset of properties P. If G and H are compact
resp. discrete, then so is G ×H. An examination of the stabilisers of the (G ×H)-
action on Z immediately yields that if the G- andH- actions are effective/free/locally
free, then so is the (G×H)-action.

Suppose the actions of G and H are proper. To show that the (G×H)-action is
proper, consider the map (s, t) : (G×H)× Z → Z × Z defined by

((g, h), (x, k, y))→ ((x, k, y), (gx, ψ(k, y)kϕ(g, x)−1, hy)).

If we have a sequence ((gi, hi), (xi, ki, yi))i∈N such that the image converges to
((x, k, y), (x′, k′, y′)), we see that because the source map of the pair groupoid is
the first projection map, we have xi → x, ki → k, and yi → y. Moreover, because
the action of G on X is proper, there exists g such that gi → g and gx = x′.
Similarly there must exist h ∈ H so that we have hi → h. Lastly, if we define
k′′ = ψ(h, y)kφ(g, x)−1 we know that ψ(hi, yi)kiφ(gi, xi)−1 → k′′ and thus because
K1 is Hausdorff and limits in Hausdorff spaces are unique, k′′ = k′. Thus we have
shown that the limit of the sequence ((gi, hi), (xi, ki, yi)) is ((g, h), (x, k, y)).

Suppose that H is a transitive action groupoid. Fix ((x, k, y), (x′, k′, y′)) ∈ Z.
Then there exists h ∈ H with y′ = hy. Since φ is a weak equivalence, there exists
g ∈ G such that φ(g, x) = (k′)−1 · ψ(h, y) · k. Thus (g, h) · (x, k, y) = (x′, k′, y′). It
follows that (G×H)⋉ Z is a transitive action groupoid.

Lastly, if H is an orbifold groupoid, then a similar argument to that found in the
proof of Lemma 42 shows that Gφ

w

×ψH is an orbifold groupoid.

Thus any chosen properties P are preserved. □

Remark 46 In the proof of Lemma 45, we did not require both of the action groupoids
to be transitive (resp. orbifold groupoids); we only required the action groupoid for
the H-action to satisfy these, and φ to be a weak equivalence.

Corollary 47. A functor φ : G ⋉X → H ⋉ Y is in WP if and only if

(a) φ is equivariant and smoothly fully faithful,
(b) there exists a ψ : K ⋉ Z → H ⋉ Y in sWP ,
(c) there exists an equivariant functor σ : K ⋉ Z → G⋉X, and
(d) there exists a natural transformation η : φ ◦ σ ⇒ ψ.

Proof Suppose φ ∈ WP . Then by definition, φ is smoothly fully faithful. By
Lemma 18, there exist ψ : K → H⋉Y in sWP , a functor σ : K → G⋉X, and a natural
transformation η : φ ◦ σ ⇒ ψ. In fact, we can choose K = (G⋉X)φ

w

×idH⋉Y
(H ⋉ Y ),

ψ = pr3, and σ = pr1 where φ : G⋉X → H ⋉ Y is in WP . Thus Lemma 45 ensures
that K is an action groupoid K ⋉ Z, ψ ∈ sWP , and σ is equivariant. The converse
follows immediately from Lemma 18. □

It follows from Corollary 47 and [27, Theorem 3.24] that:
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Proposition 48. The inclusion AnaActGpdP → ActGpdP [W
−1
P ] is an

equivalence of bicategories, where this inclusion takes a 2-cell to its equivalence
class.

6 The Equivalence of AnaActGpdP and
LieGpoid[W−1]P

In the previous section, we constructed a bicategory AnaActGpdP out of
the equivariant action groupoids satisfying the chosen properties P, with 1-
cells given by P-anafunctors. In this section, we will show that this bicategory
AnaActGpdP is equivalent to the full sub-bicategory LieGpoid[W−1]P of
LieGpoid[W−1] whose objects are action groupoids of Lie group actions sat-
isfying P. Thus we can start in the localised category of Lie groupoids and
restrict to action groupoids with property P. Alternatively, we can use the
“smaller” bicategory AnaActGpdP constructed in the previous section, and
these two categories are equivalent. Moreover, we get that these bicategories
are equivalent to the category created by localising action groupoids with
property P at all P-weak equivalences using the original Pronk localisaton of
Section 4.1 for free. This is the content of Theorem 55.

The objects of AnaActGpdP and LieGpoid[W−1]P are the same,
and every 1-cell of AnaActGpdP is a particular kind of generalised mor-
phism, thus defining a 1-cell in LieGpoid[W−1]P . Similarly, every 2-cell of
AnaActGpdP also represents a 2-cell of LieGpoid[W−1]P . So we have an
inclusion:

Definition 49 (The Pseudofunctor IP ) Define IP : AnaActGpdP →
LieGpoid[W−1]P to be the assignment sending objects to themselves, sending
a P-anafunctor to itself as a generalised morphism, and sending a 2-cell between
P-anafunctors to its equivalence class as a 2-cell between generalised morphisms.

The goal of this section is to show that this inclusion is a pseudofunctor
which induces an equivalence of bicategories. Thus we have to check that the
inclusion IP respects the compositions and unitors detailed in Appendix A,
and that it is essentially surjective and fully faithful: any generalised morphism
between two objects of LieGpoid[W−1]P admits a 2-cell from itself to a P-
anafunctor, and that any 2-cell between P-anafunctors can be represented by
a unique 2-cell from AnaActGpdP .

We begin with the generalised morphisms. Our strategy will be to show that
any generalised morphism is equivalent to a P-anafunctor induced by a bibun-
dle. The theory of bibundles offers another method of localising LieGpoid
with a more geometric flavour; see [9, 11, 15] for details. We do not require
the full theory here, but simply borrow the necessary concepts.
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Proposition 50. Any generalised morphism

G = G⋉X
≃←−
φ
K −→

ψ
H ⋉ Z = H

between objects in ActGpdP admits a 2-cell from itself to a P-anafunctor
G ≃←−

χ
L −→

ω
H.

Proof To have a P-anafunctor G ≃←−
χ
L −→

ω
H requires that L be an action groupoid

of an action of G × H which satisfies our selected properties P. We will define our
action groupoid L as a quotient of a groupoid L̃ which we create out of compositions
in LieGpoid[W−1] and AnaLieGpoid; that is, weak and strict pullbacks.

By Proposition 14, GidG

w

×φK and Kψ
w

×idH
H are Lie groupoids and

pr1 : GidG

w

×φK → G, pr3 : GidG

w

×φK → K, and pr1 : Kψ
w

×idH
H → K are in sW. There-

fore we can define the composition of anafunctors L̃, that is, the strict pullback of
these weak pullbacks: L̃ := (GidG

w

×φK)pr3×pr1(Kψ
w

×idH
H). By Proposition 12 we

know that L̃ is a Lie groupoid and both of its projection functors are in sW. By
Proposition 31, G ≃←− L̃ → H admits a 2-cell from itself to the composition of
G ≃←− GidG

w

×φK → K and K ≃←− Kψ
w

×idH
H → H in LieGpoid[W−1], which in

turn admits a 2-cell from itself to G ≃←− K → H. Thus we have the following
2-commutative diagram.

L̃
pr1

≃||||

pr2

≃ ## ##
GidG

w

×φK
pr1

≃
}}}}

pr3

≃
!! !!

⟳ Kψ
w

×idH
H

pr1

≃
||||

pr3

""
G ⇒

PR2

K
φ

≃
||

ψ

##

⇒
PR2

H

G G H H

We define a left action of the Lie groupoid K on L̃0. Such an action requires an
anchor map, which we take here to be a = pr3 ◦ pr1 : L̃ → K0, and an action map
act : K1s×aL̃0 → L̃0 defined by

act(κ, ((x, (g, x), y), (y, (h, z), z))) := ((x, φ(κ) · (g, x), t(κ)), (t(κ), (h, z) · ψ(κ)−1, z)).

The required identity and associativity properties are easily verified here; see [11, 15]
for more details on Lie groupoid actions.

We will define the object space of the desired action groupoid L by L0 := K⧹
L̃0.

To verify that this is a manifold, it suffices to show that the action of K on L0 is
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free and proper by [7, Proposition 3.6.2], the general groupoid action version of the
standard group action result.

The action is free since φ is smoothly fully faithful. We claim that the map
(pr2, act) : (K ⋉ L̃0)1 → L̃20 is proper. To show this, fix a sequence ((κi, ℓi))i∈N in
(K⋉ L̃0)1 such that ((s, t)(κi, ℓi)) = ((ℓi, κi · ℓi)) converges in L̃20 to (ℓ, ℓ′), where for
each i

ℓi = ((xi, (gi, xi), yi), (yi, (hi, zi), zi)),

ℓ = ((x, (g, x), y), (y, (h, z), z)), and

ℓ′ = ((x′, (g′, x′), y′), (y′, (h′, z′), z′)).

Since the source map of L̃20 is the first projection map, we immediately have that (ℓi)
converges to ℓ, and so in particular x = x′, gi → g, and yi → y. We need to obtain
a limit for κi: we know from the coordinates of the target map that φ(κi)(gi, xi)→
(g′, x′), and that t(κi) → y′. Then the arrow (g′g−1, φ(y)) has target φ(y′), and
since φ is smoothly fully faithful we can define κ = FFφ−1(y, y′, (g′g−1, φ(y))) to
obtain a limit for κi. Thus the action of K on L̃0 is free and proper, and so its orbit

space L0 := K⧹
L̃0 is a manifold and the quotient map π0 : L̃0 → L0 a surjective

submersion.

There is also a left action of G×H on L̃0 given by
((g̃, h̃), ((x, (g, x), y), (y, (h, ψ(y)), z))) 7→ ((g̃x, (gg̃−1, g̃x), y), (y, (h̃h, ψ(y)), h̃z)).

This action commutes with the action of K, and so descends to a well-defined action
of G×H on L0. Thus we have the action groupoid L = (G×H)⋉ L0.

The map π1 : L̃1 → L1 defined by sending
(((g̃, x), (g, x), k), (k, (h, ψ(s(k))), (h̃, z)))

to
((g̃, h̃), [(x, (g, x), s(k)), (s(k), (h, ψ(s(k))), z)])

is well-defined and smooth. We can show that π := (π0, π1) : L̃ → L is a
smoothly fully faithful functor using the LCL property: if we consider FFπ : L̃1 →
L̃20π2×(s,t)L1 and let p : I → L̃20π2×(s,t)L1 be a curve, it will have the form

p(t) = (vτ , wτ , ((gτ , hτ ), [vτ ])) where vτ and wτ are curves in L̃0 and (gτ , hτ ) is a
curve in G×H. We know that [vτ ] and [wτ ] are the source and target of the arrow
((gτ , hτ ), [vτ ]), and so [wτ ] = (gτ , hτ )[vτ ]; the smooth fully faithfulness of φ allows
us to smoothly choose κτ such that wτ = (gτ , hτ )κτvτ . Then the curve to the arrow
space defined by (gτ , hτ )κτ produces the desired lift. It is a weak equivalence by
Lemma 9.

Since the individual G- and H-actions on L̃ commute with the K-action, the
composition pr1 ◦pr1 : L̃ → G descends to a well-defined equivariant functor χ : L →
G; similarly, pr3 ◦ pr2 : L̃ → H descends to a equivariant functor ω : L → H. By
Lemma 8, χ is a weak equivalence, and by Lemma 15, χ0 is a surjective submersion
since π0 and (pr1 ◦ pr1)0 : L̃0 → G0 are. It follows from the definitions that χ and ω
are equivariant with respect to the projections G×H → G and G×H → H, resp.

The functors L ≃←−
π
L̃ ≃−→

pr3◦pr1
K with the natural transformations (PR2)pr1 : χ◦

π ⇒ φ ◦ (pr3 ◦ pr1) and (PR2)pr2 : ψ ◦ (pr3 ◦ pr1) ⇒ ω ◦ π provide 2-cells between
the generalised morphisms G ≃←− K −→

ψ
H and G ≃←− L−→H.
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Thus all that remains is to verify that L inherits the properties in P.

If G and H are compact/discrete, then so is G×H. If the actions of G and H on
X and Y , resp., are effective/free/locally free, then so is the action of G×H on L.

Suppose that the G- and H-actions are proper. Let (ℓi)i∈N be a sequence in L1
where for each i,

ℓi := ((g̃i, h̃i), [(xi, (gi, xi), yi), (yi, (hi, ψ(yi))i), zi)]),

and such that ((s, t)(ℓi)) converges in L20 to (ℓ, ℓ′) where

ℓ = [(x, (g, x), y), (y, (h, ψ(y)), z)] and ℓ′ = [(x′, (g′, x′), y′), (y′, (h′, ψ(y′)), z′)].

Since π0 is a surjective submersion, it admits local sections. Thus without loss of
generality, we may assume that

((xi, (gi, xi), yi), (yi, (hi, ψ(yi)), zi))→ ((x, (g, x), y), (y, (h, ψ(y)), z))

in L̃0, and so there is a sequence (κi) in K1 such that

κi(g̃i, h̃i)((xi, (gi, xi), yi), (yi, (hi, ψ(yi)), zi))

= (g̃ixi, φ(κi)(gig̃
−1
i , g̃ixi), t(κi)), (t(κi), (h̃ihi, ψ(yi))ψ(κi)

−1, h̃izi)

→ ((x′, (g′, x′), y′), (y′, (h′, ψ(y′)), z′))

in L̃0.

Since the G- and H- actions are proper, (g̃i) and (h̃i) converge to g̃ and h̃, resp.,
and so we conclude that φ(κi) converges to (g′′, gg̃−1x′) for some g′′ ∈ G. Now we
use the smooth fully faithfulness of φ to define κ := FFφ−1(y, y′, g′′). Since

((g̃i, h̃i), (xi, (gi, xi), yi), (yi, (hi, φ(yi)), zi))→ κ((g̃, h̃), (x, (g, x), y), (y, (h, ψ(y)), z))

we know that in the quotient L0 we have

((g̃i, h̃i), [(xi, (gi, xi), yi), (yi, (hi, ψ(y)), zi)])→ ((g̃, h̃), [(x, (g, x), y), (y, (h, ψ(y)), z)]).

This shows that L is a proper Lie groupoid.

Finally, if G is an orbifold groupoid, then there is a Lie groupoid A, a proper
étale Lie groupoid E , and weak equivalences α : A → G and α′ : A → E . Since φ
is a weak equivalence, pr1 : GidG

w

×φK → G is a weak equivalence by Proposition 14.

Thus M := Aα
w

×pr1(GidG

w

×φK) is a Lie groupoid, and both projection maps from
M are surjective submersive weak equivalences, again by Proposition 14. Finally, by
Proposition 12, we have the generalised morphism L ≃←− Mpr3×χL −→

α′◦pr1◦pr1
E ,

where α′◦pr1◦pr1 is a weak equivalence by Lemma 8. Thus, L is an orbifold groupoid.
□

We now want to prove a result similar to Proposition 50 for 2-cells. Recall
that the 2-cells in ActGpdP are defined by equivalence classes of diagrams
connecting generalised morphisms, whereas in AnaActGpdP the 2-cells are
given by actual natural transformations, not equivalence classes. Therefore
to show that the two localisations yield equivalent localised bicategories, we
need to show that there is a unique way of representing any 2-cell between
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two equivariant anafunctors in LieGpoid[W−1] as a natural transformation,
yielding a 2-cell of the bicategory AnaActGpdP .

The proof of this will require several lemmas, following the outline of the
proof of a similar result of Pronk-Scull (see [24, Section 5]), but with some
necessary modifications: equivariant surjective submersive weak equivalences
are not preserved under natural transformations, so we cannot follow Pronk-
Scull verbatim. The first lemma below is a modified version of [24, Lemma
5.2], and proves that any 2-cell between P-anafunctors is equivalent to a 2-cell
from AnaActGpdP .

Lemma 51. Let G = G⋉X and H = H⋉Y be objects of ActGpdP . Suppose
we have two P-anafunctors, the top and bottom of the diagram below, with
a 2-cell connecting them in LieGpoid[W−1]P represented by the following
diagram:

K
φ

≃
vvvv

ψ

(( ((G ⇓ η1 L

≃α

OO

≃α′

��

⇓ η2 H

K′.
φ′

≃

hhhh

ψ′

66 66

(4)

Then this 2-cell is represented by the following 2-cell from AnaActGpdP :

K
φ

≃
vvvv

ψ

))G ⟳ Kφ×φ′K′
≃pr1

OOOO

≃pr2
����

⇓ ν H

K′.
φ′

≃

hhhh

ψ′

55

(5)

Proof By Lemma 42, Kφ×φ′K′ is an action groupoid of a Lie group action of K :=
(G×H)φ̃×ψ̃(G×H).
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Define L̃ := (Kφ×φ′K′)pr1
w

×αL, and consider the following diagram, in which
Proposition 14 justifies the decorations on the arrows:

K

φ

≃

����

ψ

��

PR2⇒

G Kφ×φ′K′

≃
pr1

>> >>

≃
pr2

"" ""

L̃≃
pr1
oooo ≃

pr3
// // L

≃
α

\\

≃
α′

��

H

K′.

φ′

≃

\\\\

ψ′

GG

By Lemma 10, the natural transformation
(η1pr3) ◦ (φPR2) ◦ (IDφ′◦pr2pr1) : φ

′ ◦ pr2 ◦ pr1 ⇒ φ′ ◦ α′ ◦ pr3
factors as φ′µ for a unique natural transformation µ : pr2 ◦ pr1 ⇒ α′ ◦ pr3, making
the lower triangle in the above diagram 2-commute. It follows from the definition of
µ that

(η1pr3) ◦ (φPR2) = (φ′µ) ◦ (IDφ◦pr1pr1).
By Lemma 17, the natural transformation

(ψ′µ−1) ◦ (η2pr3) ◦ (ψPR2) : ψ ◦ pr1 ◦ pr1 ⇒ ψ′ ◦ pr2 ◦ pr1
factors as νpr1 for a unique natural transformation ν : ψ ◦ pr1 ⇒ ψ′ ◦ pr2. It follows
from the definition of ν that

(η2pr3) ◦ (ψPR2) = (ψ′µ) ◦ (νpr1).
This shows that the diagram (5) is indeed an equivalence, and in the same equivalence
class as the 2-cell (4). □

Thus we have shown that any 2-cell between P-anafunctors is represented
by a 2-cell from AnaActGpdP . We now need to prove the uniqueness of such a
representative. We begin with a technical lemma showing that any equivalence
can be represented using surjective submersions.

Lemma 52. Given two representatives of a 2-cell which both come from
AnaActGpdP and have the form

K
φ

≃
vvvv

ψ

**G ⟳ Kφ×φ′K′
≃pr1

OOOO

≃pr2
����

⇓ η, ⇓ µ H

K′,
φ′

≃

hhhh

ψ′

44
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the generalised morphism

Kφ×φ′K′ ≃←−
β
M ≃−→ Kφ×φ′K′

inducing the equivalence between the two representatives (see Definition 24)
can be chosen so that β0 is a surjective submersion.

Proof Since the two equivalences are in the same equivalence class, there exists a
generalised morphism

Kφ×φ′K′ ≃←−
α
L ≃−→

α′
Kφ×φ′K′

and natural transformations

ν : pr1 ◦ α⇒ pr1 ◦ α
′ and ν′ : pr2 ◦ α⇒ pr2 ◦ α

′

such that

(IDφ◦pr1α
′) ◦ (φν) = (φ′ν′) ◦ (IDφ◦pr1α) and (µα′) ◦ (ψν) = (ψ′ν′) ◦ (ηα). (6)

Define M := (Kφ×φ′K′)φ◦pr1×φ◦pr1◦αL. By Lemma 8 and the fact that sur-
jective submersions are closed under composition, since pr1 and φ are surjective
submersive weak equivalences, so is φ ◦ pr1; thus by Proposition 12 M is a Lie
groupoid.

By Lemma 10 the following natural transformation between functors fromM→
G,

(φ ◦ pr1) ◦ pr1 = φ ◦ (pr1 ◦ α) ◦ pr2 =⇒
φνpr2

φ ◦ (pr1 ◦ α
′) ◦ pr2,

factors as φω for ω : pr1 ◦ pr1 ⇒ pr1 ◦ (α′ ◦ pr2). And since φ ◦ pr1 = φ′ ◦ pr2, the
natural transformation between functors M→ G,
(φ′◦pr2)◦pr1 = (φ◦pr1)◦pr1 = (φ◦pr1◦α)◦pr2 = φ′◦(pr2◦α)◦pr2 =⇒

φ′ν′pr2
φ′◦(pr2◦α

′)◦pr2,

which again factors by the same lemma to give ω′ : pr2 ◦pr1 ⇒ pr2 ◦ (α′ ◦pr2). Thus
we have the following 2-commutative diagram:

K

ω⇒

Kφ×φ′K′

≃
pr1

>> >>

≃
pr2

�� ��

M≃
pr1
oooo ≃

α′◦pr2
// Kφ×φ′K′

≃
pr1

````

≃
pr2

����

ω′
⇒

K′.
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We will show thatM together with the the 2-cells ω and ω′ are also an equivalence
between the original 2-cells. This requires that Equations (2) hold. The first equation
is straightforward from the definitions of ω and ω′ and the first equation of (6):(

IDφ◦pr1(α
′ ◦ pr2)

)
◦ (φω) =

(
IDφ◦pr1(α

′ ◦ pr2)
)
◦ (φνpr2)

=
(
(IDφ◦pr1α

′) ◦ (φν)
)
pr2

=
(
(φ′ν′) ◦ (IDφ◦pr1α)

)
pr2

= (φ′ν′pr2) ◦
(
IDφ◦pr1(α ◦ pr2)

)
= (φ′ω′) ◦

(
IDφ◦pr1(pr1)

)
,

where the last line follows from the definition of M.

To show that the second equation of (2) holds, we will make use of the fact that
φ, φ′, pr1 ◦ α, and pr2 ◦ α are smoothly fully faithful, and that ν and ν′ are natural
transformations. If m ∈ M0, then it is of the form m = ((y, y′), z) for y ∈ K0,
y′ ∈ K′0, and z ∈ L0. So we have arrows k := FFφ−1((y,pr1 ◦α(z)), uφ(y)) in K1 and
k′ := FFφ′

−1((y′,pr2 ◦ α(z)), uφ′(y′)) in K′1. We claim that in fact ω((y, y′), z) =

ν(z)k and ω′((y, y′), z) = ν′(z)k′: Lemma 10 says that the lift ω obtained above is
unique, and we can check that ω̂ : m = ((y, y′), z) 7→ ν(z)k represents another natural
transformation pr1 ◦ pr1 ⇒ pr1 ◦ (α′ ◦ pr2) which satisfies φω̂ = φνpr2, and hence
ω(m) = ω̂(m) = ν(z)k. Similarly, ω′((y, y′), z) = ν′(z)k′.

Therefore, the second equation of (6), the naturality of η, and the fact that (k, k′)
is an arrow from (y, y′) to α(z) in Kφ×φ′K′ gives us that(

µ(α′ ◦ pr2)
)
◦ (ψω)(m) = µ(α′(z)) · ψ(ν(z)) · ψ(k)

= ψ′(ν′(z)) · η(α(z)) · ψ(k)

= ψ′(ν′(z)) · ψ′(k′) · η(y, y′)

= (ψ′ω′) ◦ (ηpr1)(m).

It follows that
(
µ(α′ ◦ pr2)

)
◦ (ψω) = (ψ′ω′) ◦ (ηpr1).

Since φ ◦ pr1 and its composition with α are weak equivalences, so are pr1, α
′ ◦

pr2 : M → Kφ×φ′K′, with (pr1)0 a surjective submersion. Thus the generalised
morphism that we require is

Kφ×φ′K′ ≃←−
pr1

M ≃−→
α′◦pr3

Kφ×φ′K′

where β = pr1. □

We now prove uniqueness of the 2-cell.
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Lemma 53. If the two diagrams below are in the same equivalence class,

K
φ

≃
vvvv

ψ

**G ⟳ Kφ×φ′K′
≃pr1

OOOO

≃pr2
����

⇓ η, ⇓ η′ H

K′,
φ′

≃

hhhh

ψ′

44

then η = η′.

Proof It suffices to prove that there exists a γ ∈ sW such that ηγ = η′γ, since
then Lemma 17 will imply that η = η′, and thus that the two 2-cells are equal in
AnaActGpd.

Since the two equivalences are in the same equivalence class, by Lemma 52, there
exists a generalised morphism

Kφ×φ′K′ ≃←−
γ
L ≃−→

γ′
Kφ×φ′K′

and natural transformations

µ : pr1 ◦ γ ⇒ pr1 ◦ γ
′ and µ′ : pr2 ◦ γ ⇒ pr2 ◦ γ

′

inducing the equivalence relation between them, in which γ is a surjective submersive
weak equivalence. By Lemma 17, we can factor and obtain there exist ν, ν′ : γ ⇒ γ′

such that
µ = pr1ν and µ′ = pr2ν

′.

But by the first equation of (2)

(IDφ◦pr1γ
′) ◦ (φµ) = (φ′µ′) ◦ (IDφ◦pr1γ),

the fact that φ ◦ pr1 = φ′ ◦ pr2 is a surjective submersive weak equivalence, and
Lemma 17 applied to (φ ◦ pr1)ν = (φ′ ◦ pr2)ν′, we have by uniqueness that ν = ν′.
Since the second equation of (2) is

(η′γ′) ◦
(
(ψ ◦ pr1)ν

)
=

(
(ψ′ ◦ pr2)ν

)
◦ (ηγ)

and by a standard coherence relation of a bicategory called the “middle four exchange”
(see [13, (2.1.9)]), we have

(η′γ′) ◦
(
(ψ ◦ pr1)ν

)
=

(
(ψ′ ◦ pr2)ν

)
◦ (η′γ);

we combine these equalities yielding(
(ψ′ ◦ pr2)ν

)
◦ (η′γ) =

(
(ψ′ ◦ pr2)ν

)
◦ (ηγ).

Since natural transformations are invertible in our setting, we conclude that there
is a γ ∈ sW such that ηγ = η′γ as required. □
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Lastly, we will verify that the inclusion IP is a pseudofunctor and respects
the operations in the localised bicategories. To prove this, we need to consider
vertical compositions, horizontal compositions, and unitors in our bicategories;
details and notation can be found in Appendix A.

Proposition 54. The assignment IP : AnaActGpdP → LieGpoid[W−1]P
is a pseudofunctor.

Proof To begin, we must show that for each pair of action groupoids G :=
G ⋉ X and H := H ⋉ Y , IP induces a functor AnaLieGpoidP (G,H) →
LieGpoid[W−1]P (G,H) between the categories of 1-cells between G and H, with
2-cells between those. In particular, IP must respect vertical composition and unit
2-cells.

Suppose the first two diagrams in Definition 62 are in fact in AnaLieGpoidP ,
and so φ, φ′, and φ′′ are surjective submersive, L1 = Kφ×φ′K′, L2 = K′φ′×φ′′K′′,
the vertical maps from Li are projection maps, and µ1 and µ2 are trivial. We need
to show that the following two diagrams are in the same equivalence class:

K
φ

≃
ssss

ψ

++G ⇓ φ′pr2 (Kφ×φ′K′)pr2
w

×pr1(K
′
φ′×φ′′K′′)

pr3◦pr2 ≃
����

pr1◦pr1 ≃

OOOO

⇓ κ H

K′′
φ′′

≃

kkkk

ψ′′

44

K
φ

≃
ssss

ψ

++G ⟳ Kφ×φ′′K′′

pr2 ≃
����

pr1 ≃

OOOO

⇓ λ H

K′′,
φ′′

≃

kkkk

ψ′′

44

where κ is the natural transformation ν of Definition 62 and where λ is the nat-
ural transformation described in Definition 65. To accomplish this, we will apply
Lemma 51 to the first diagram above, and show that the resulting natural trans-
formation on the right (the ν of the lemma) is equal to λ. By definition, λ is
the unique natural transformation such that λpr13 = (η2pr23) ∗ (η1pr12) where
prij = (pri, prj) is the projection of Kφ×φ′K′φ′×φ′′K′′ and ∗ denotes horizon-
tal composition of natural transformations. Thus it suffices to show for a fixed
(y, y′, y′′) ∈ Kφ×φ′K′φ′×φ′′K′′ that λpr13(y, y

′, y′′) = νpr13(y, y
′, y′′), where again ν

is the ν of Lemma 51. Unravelling Definition 62 and the definition of ν in Lemma 51,
we obtain

ν(y, y′′) = ψ′′(µ−1((ỹ′′, y′′), k, z))η2(ỹ
′
2, ỹ
′′)ψ′(k̃′)η1(ỹ, ỹ

′)ψ(k)
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where µ is as defined in the proof of Lemma 51, ((y, y′′), k, z) ∈
(Kφ×φ′′K′′)pr1

w

×pr1◦pr1L, and

z := ((ỹ, ỹ′1), k̃
′, (ỹ′2, ỹ

′′)) ∈ L := (Kφ×φ′K′)pr2
w

×pr1(K
′
φ′×φ′′K′′).

The result is independent of choice of (admissible) k and z, and so we choose z =
((y, y′), uy′ , (y

′, y′′)) and k = uy, after which we obtain

ν(y, y′′) = η2(y
′, y′′)η1(y, y

′) = λ(y, y′′).

Thus IP preserves vertical composition.

Fix a P-anafunctor G ≃←−
φ
K −→

ψ
H, and let ∆: K → Kφ×φK be the diagonal

map. Then pr1◦∆ = pr2◦∆, and ιG←K→H∆ is trivial. Via Kφ×φK
≃←−
∆
K =−→ K it

follows that the identity 2-cell of G ≃←−
φ
K −→

ψ
H in AnaLieGpoidP is equivalent

to the identity 2-cell in LieGpoid[W−1]P , and we conclude that IP induces a functor
AnaLieGpoidP (G,H)→ LieGpoid[W−1]P (G,H).

Since the identity generalised morphism of a Lie groupoid G is the same as the
identity anafunctor, IP trivially preserves identity 1-cells.

By Proposition 31 for each pair of P-anafunctors G ≃←−
φ
K −→

ψ
H and

H ≃←−
χ
L −→

ω
I there is a 2-cell in LieGpoid[W−1]P from the composi-

tion as generalised morphisms to the composition as anafunctors, represented
by (inc, idKψ×χL, IDφ◦pr1◦inc, IDpr3◦ω◦inc). We now check the first of three coher-
ence conditions (namely, [13, (4.1.3)] or (M.1) of [4, page 30]), which indicates
that the various compositions of P-anafunctors yields equivalent results. Fix three
P-anafunctors

M
φ

≃~~~~

ψ

  

N
χ

≃~~~~

ω

  

P
ξ

≃����

ζ

��
G H K L

Then the first coherence condition reduces to showing that the vertical composi-
tion of the 2-cells induced by the inclusions Mψ×χNω×ξP → Mψ×χNω

w

×ξP and

Mψ×χNω
w

×ξP → Mψ

w

×χNω
w

×ξP is equal to the vertical composition of the 2-cells

induced by the inclusions Mψ×χNω×ξP → Mψ

w

×χNω×ξP and Mψ

w

×χNω×ξP →
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Mψ

w

×χNω
w

×ξP. These two 2-cells are represented by the diagrams, resp.,

Mψ

w

×χNω
w

×ξP
φ◦pr1
≃

uuuu

ζ◦pr5

))G ⟳ Q1

≃
OOOO

≃
����

⟳ L

Mψ×χNω×ξP

φ◦pr1
≃

iiii

ζ◦pr4

55

Mψ

w

×χNω
w

×ξP
φ◦pr1
≃

uuuu

ζ◦pr5

))G ⟳ Q2

≃
OOOO

≃
����

⟳ L

Mψ×χNω×ξP

φ◦pr1
≃

iiii

ζ◦pr3

55

where
Q1 := (Mψ×χNω

w

×ξP)id
M
ψ
×χNω

w
×
ξ
P

w

×
idM

w
×inc

(Mψ×χNω×ξP)

and
Q2 := (Mψ

w

×χNω×ξP)id
M
ψ

w
×χNω×ξP

w

×
inc

w
×idP

(Mψ×χNω×ξP),

(note that we have suppressed some of the notation). The equivalence is established
by the quadruple (j1, j2, ν1, ν2) with ν1 and ν2 trivial and where the generalised
morphism

Q1
≃←−
j1
Mψ×χNω×ξP

≃−→
j2
Q2

is defined by

j1(m,n, p) = ((m,n, uω(s(n)), p), u
idM

w
×inc(s(m,n,p))

, (m,n, p)) and

j2(m,n, p) = ((m,uχ(s(n)), n, p), u
inc

w
×idP(s(m,n,p))

, (m,n, p)).

Indeed, the natural transformations of Equations 2 all reduce to trivial ones.

Finally, we check that IP respects the unitors from each bicategory. For right
unitors, the relevant coherence condition (see [13, (4.1.4)] or (M.2) of [4, page 30])
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reduces to checking that the following two diagrams represent the same 2-cell.

Kψ
w

×idH
H

φ◦pr1
≃

wwww

pr3

))G ⟳ Kψ
w

×idH
H

pr1 ≃
����

⇑ PR2 H

K

φ

≃

hhhh

ψ

55

Kψ
w

×idH
H

φ◦pr1
≃

ssss

pr3

((G ⇓ (φ ◦ pr1)PR2 L

inc◦pr1 ≃
OOOO

pr2◦pr3 ≃
����

⇓ ρ H

K
φ

≃

kkkk

ψ

55

where
L := (Kψ×idHH)idK×H

w

×pr1((Kψ×idHH)φ◦pr1×φK)
and

ρ = (ρanaG,H(G ← K → H)pr3) ◦ (pr3PR2).

The equivalence is given by the quadruple (j1, j2, ν1, ν2) where j1 : K →
Kψ

w

×idH
H sends k ∈ K1 to (k, us(ψ(k)), ψ(k)) and j2 : K → L k to

((k, ψ(k)), us(k,uψ(s(k)),ψ(k)), ((k, ψ(k)), k)), and both ν1 and ν2 are trivial. Again,
the natural transformations of Equations 2 are all trivial. The computation for left
unitors using the corresponding coherence condition (M.2) on page 30 of [4] is simi-
lar. □

Combining the results above yields the desired equivalence of bicategories.

Theorem 55. The pseudofunctor IP : AnaActGpdP → LieGpoid[W−1]P
is an equivalence of bicategories. Consequently, AnaActGpdP ,
ActGpdP [W

−1
P ] and LieGpoid[W−1]P are all equivalent bicategories.

Proof By Proposition 54, IP is a pseudofunctor. Since IP is surjective on objects, it
suffices to show that for two action groupoids G = G⋉X and H = H ⋉ Y satisfying
P, the restriction of IP to the category of P-anafunctors from G to H, which maps
into the category of all generalised morphisms between them, is an equivalence of
categories. Essential surjectivity follows from Proposition 50, and fully faithfulness
follows from Lemmas 51 and 53. □

Remark 56 One of the properties considered in P was being an orbifold groupoid, i.e.
being Morita equivalent to a proper étale groupoid. In fact, the proofs for this prop-
erty equally apply to groupoids which are Morita equivalent to any chosen class of
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groupoids: the only thing we used was the Morita equivalence, not properness or étale
property. Thus one could replace our definition of orbifold groupoid with groupoids
Morita equivalent to proper effective étale groupoids, as defined by Moerdijk-Mrčun
in [17, page 136], or indeed groupoids Morita equivalent to those with any desired
properties and the results from this section would still apply.

7 Application: Decomposition of Equivariant
Weak Equivalences

In this section, we continue to use any collection of properties P chosen from
those in (3), excluding effectiveness. We prove that any equivariant weak equiv-
alence in WP decomposes into two fundamental forms of equivariant weak
equivalences: a projection and an inclusion. This decomposition was originally
observed in [22] in the proper étale case, and subsequently applied in a differ-
ent context in [2]. Here we show that this decomposition is compatible with
any of our properties in P.

Our goal for this section is to show that any equivariant weak equivalence
in WP can be written as the composition of maps of the following form:

• a projection G ⋉X → K⧹
G ⋉K⧹

X where K is a closed normal subgroup
of G which acts freely on X,

• an inclusion K ⋉X → [G⋉ (G×K X)] where K is a closed subgroup of G.

Moreover, the projection and inclusion maps are equivariant weak equiv-
alences, and satisfy our chosen properties P if the original weak equivalence
did.

We will first consider each type of map separately, beginning with the
projection. For this result, we must exclude effective from our possible
properties.

Lemma 57. Given an action groupoid G ⋉X satisfying any subset of prop-
erties of P excluding “effective”, and a closed normal subgroup K ⊴ G for
which the restricted K-action on X is free and proper, the quotient map
π : G ⋉ X → K⧹

G ⋉ K⧹
X is an equivariant surjective submersive weak

equivalence, and K⧹
G⋉K⧹

X satisfies P.

Proof By [8, Corollary 1.10.7], K is a Lie subgroup of G . Since the action of K on
X is free and proper, by [8, Theorem 1.11.4, Corollary 1.11.5], K⧹

X is a manifold
and the action of the Lie group K⧹

G on K⧹
X is well-defined and smooth. Define

π0 : X → K⧹
X to be the (surjective submersive) quotient map by the K-action, and

π1 : (G ⋉X)1 →
(
K⧹
G⋉K⧹

X
)
1

to send (g, x) to (Kg, π0(x)). Then π := (π0, π1)
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is an equivariant functor with respect to the homomorphism π̃ : G → K⧹
G. Denote

by [x]K the image π0(x) for any x ∈ X.

To show that π is a weak equivalence, we consider the map FFπ and show that
it is injective. Suppose that FFπ(g, x) = FFπ(g′, x′), so x = x′ and g = kg for some
k ∈ K. But since gx = g′x′ = g′x = kgx and the action of K is free, we know that
k = e and so g = g′. Thus FFπ is injective. Surjectivity is immediate and thus FFπ
bijective.

Now we verify that FFπ is a diffeomorphism. Suppose that p =
(xτ , x

′
τ , (Kgτ , [xτ ]K)) : I → X2

π2
0
×(s,t)(K⧹

G×K⧹
X) is a curve. Since G→ K⧹

G is
a principal K-bundle, after shrinking I, there is a lift g̃τ of Kgτ to G; this satisfies
π0(x

′
τ ) = π0 (g̃τxτ ). Since X → K⧹

X is a principal K-bundle, there is a curve kτ in
K such that kτ g̃τxτ = x′τ . Then FFπ(kτ g̃τ , xτ ) = p. By Item 2 of Lemma 4, FFπ
is a diffeomorphism. Since π0 is a surjective submersion, by Lemma 9, we conclude
that π is an equivariant surjective submersive weak equivalence.

It is immediate that if G is discrete, compact, or the G-action is transitive, then so
is the K⧹

G-action. Since for any x ∈ X, the stabiliser Stab
K⧹G

([x]K) = π̃(StabG(x)),

it is immediate that if the G-action is free/locally free, so is the K⧹
G-action.

Suppose the G-action is proper. Fix a sequence (Kgi, [xi]K) ∈ K⧹
G × K⧹

X so

that ([xi]K , [gixi]K) converges to ([x]K , [x
′]K) in

(
K⧹
X
)2

. Since X → K⧹
X is a

principal K-bundle, there exist sequences (ki) and (k′i) in K such that kixi → x and
k′igixi → x′. Since the G-action is proper and the sequence (kixi, k

′
igixi) → (x, x′)

in X2, the sequence (k′igik
−1
i , kixi)→ (g, x) in G×X for some g ∈ G. By continuity,

(Kgi, [xi]K)→ (Kg, [x]K) in K⧹
G×K⧹

X. Thus the K⧹
G-action is proper.

Finally, if G⋉X is an orbifold groupoid, then there is a proper étale Lie groupoid
E , and a Morita equivalence G ⋉ X

≃←−
φ
K ≃−→

ψ
E . Composing φ with π yields a

Morita equivalence between K⧹
G ⋉K⧹

X and E , and so K⧹
G ⋉K⧹

X is an orbifold
groupoid. □

Next we consider our second type of equivariant equivalence, the inclu-
sion X → G ×K X. We use the standard notation G ×K X for the G-space

K⧹
(G×X), where K acts on G×X anti-diagonally: k · (g, x) := (gk−1, kx).

Lemma 58. Given a closed subgroup K ≤ G and an action groupoid K ⋉X,
the inclusions iK : K → G and iX : X → G ×K X : x 7→ [1G, x] induce an
equivariant weak equivalence i : K ⋉X → G⋉ (G×K X). Moreover, if K ⋉X
is free, locally free, effective, proper, or is an orbifold groupoid; then so is
G ⋉ (G ×K X). In the other direction, if G ⋉ (G ×K X) is free, locally free,
transitive, proper, an orbifold groupoid, or G is compact or discrete; then K⋉X
has the same property.
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Proof Since the anti-diagonal action of K on G ×X is free and proper, G ×K X is
a manifold. It comes equipped with a G-action g · [g′, x] := [gg′, x]. Define i0 = iX
and i1 = (iK , iX). Then i : K ⋉X → G ⋉ (G×K X) is an equivariant functor with
respect to the homomorphism iK .

Fix a point [g, x] ∈ G ×K X. Then ESi(x, (g−1, [g, x])) = [g, x], from which it
follows that ESi is surjective.

Fix a curve p = [gτ , xτ ] : I → G ×K X and (x′, (g′, [g, x])) ∈
XiX×t (G× (G×K X)) such that [g, x] = [g0, x0] = p(0). Then [g′g, x] = [1, x′]

and so there exists k ∈ K such that (g′gk−1, kx) = (1, x′). So g′g = k ∈ K
and [(g′)−1, x′] = (g′)−1[1, x′] = (g′)−1[g′g, x] = [g, x]. Since G × X → G ×K X
is a principal K-bundle, after shrinking I, there is a lift (g̃τ , x̃τ ) of p through
((g′)−1, x′) ∈ G×X. Then

(
x̃τ ,

(
g̃−1τ , [g̃τ , x̃τ ]

))
is a lift of p through (x′, (g′, [g, x])).

Thus ESi is a surjective submersion.

Fix (x, x′, (g′, [g, x′′])) ∈ G× (G×K X). There exists a unique k ∈ K such that
(1G, x) = (gk−1, kx′′); that is, g = k and x′′ = k−1x. Similarly, there exists a unique
k′ ∈ K such that (1G, x

′) = (g′g(k′)−1, k′x′′); that is, g′ = k′k−1 and x′ = k′k−1x.
Hence (x, x′, (g′, [g, x′′])) = FFi(k′k−1, x), so FFi is surjective; and the uniqueness
of the choices show that FFi is injective, and hence bijective.

Let p = (xτ , x
′
τ , (g

′
τ , [gτ , xτ ])) : I → G × (G ×K X) be a curve. Then the fact

that G×X → G×K X is a principal K-bundle allows us to lift to [gτ , xτ ] to a path
(gτ , xτ ) ∈ G × X, and we see that g′τ is a curve in K and FFi(g′τ , xτ ) is a lift of
p to K ×X. Thus FFi is a surjective submersion, and hence a diffeomorphism. We
conclude that i is an equivariant weak equivalence.

It is straightforward to verify that StabG([g, x]) = gStabK(x)g−1. Thus the K-
action on X is free (resp. locally free) if and only if the G-action on G×K X is free
(resp. locally free), and the G-action is effective if the K-action is. If G is compact
or discrete, then so is K, then the corresponding action on G×K X is as well.

Now suppose the K-action is proper. Let (gi, [g′i, xi]) be a sequence in G×(G×K
X) such that ([g′i, xi], [gig

′
i, xi]) converges to ([g′, x], [g′′, x′]) in (G ×K X)2. Since

G × X → G ×K X is a principal K-bundle, there exist sequences (ki) and (k′i) in
K such that (g′ik

−1
i , kixi) → (g′, x) and (gig

′
i(k
′
i)
−1, k′ixi) → (g′′, x′). In particular,

(kixi, k
′
ik
−1
i kixi) → (x, x′) in X2. Since the K-action is proper, there exists k̂ ∈ K

such that (k′ik
−1
i , kixi)→ (k̂, x). But then g′ik

−1
i ki(k

′
i)
−1 → g′k̂−1, and consequently

gi → g′′k̂(g′)−1, in G. Thus (gi, [g
′
i, xi]) → (g′′k̂(g′)−1, [g′, x]) in G × (G ×K X).

Thus the G-action on G×K X is proper.

Suppose the G-action on G ×K X is transitive. Fix x, x′ ∈ X. There exists
g ∈ G such that g · [1G, x] = [1G, x

′]. In particular, there is a k ∈ K so that
(gk−1, kx) = (1G, x

′); that is, x′ = kx. Thus the K-action on X is transitive.

Finally, since i is a weak equivalence between K ⋉X and G⋉ (G×K X), if one
is an orbifold groupoid, so is the other. □

We now combine the two previous lemmas into the following decomposition
theorem.
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Theorem 59 (Decomposition of Equivariant Weak Equivalences).
Let G ⋉ X and H ⋉ Y satisfy properties P (except for “effective”), and let
φ : G ⋉ X → H ⋉ Y be an equivariant weak equivalence induced by a proper
homomorphism φ̃ : G → H. Then φ factors as i ◦ π where π and i are equiv-
ariant weak equivalences in ActGpdP of the forms as in Lemmas 57 and 58,
resp.

Proof Claim 1: ker(φ̃)⧹
G is a Lie group isomorphic to ⇒ (φ̃).

Proof of Claim 1: ker(φ̃)⧹
G is a Lie group [8, Corollary 1.11.5 and Proposition 1.11.8],

and φ̃ descends to a smooth bijective homomorphism φ̂ : ker(φ̃)⧹
G→⇒ (φ̃). Since φ̃

is proper, it is closed, and so ⇒ (φ̃) is a closed subgroup of H, and hence a Lie sub-
group [8, Corollary 1.10.7]. Since φ̃ is proper, so is φ̂, and so it is a homeomorphism;
i.e. its inverse is a continuous homomorphism. By [8, Corollary 1.10.9], continuous
homomorphisms are smooth, and so φ̂ is an isomorphism of Lie groups; Claim 1 is
proved.

Claim 2: φ0(X) and ker(φ̃)⧹
X are diffeomorphic manifolds.

Proof of Claim 2: It follows from the equivariance of φ and the injectivity of FFφ
that ker(φ̃) acts freely on X. Since φ̃ is proper, ker(φ̃) is a compact submanifold of
G. Thus ker(φ̃)⧹

X is a manifold [8, Theorem 1.11.4]. Since φ0 is ker(φ̃)-invariant, it

descends to a smooth surjection ψ : ker(φ̃)⧹
X → φ0(X). Now suppose x, x′ ∈ X such

that ψ([x]) = ψ([x′]). Then φ0(x) = φ0(x
′), and since FFφ is a diffeomorphism,

there exists a (unique) k ∈ ker(φ̃) such that x = k · x′. It follows that ψ is a smooth
bijection.

Fix a curve p = yτ : I → φ0(X). Shrinking I, since ESφ is surjective submersive,
there is a lift q = (xτ , (hτ , yτ )) : I → Xφ0

×t(H × Y ) of p. By the smooth fully
faithfulness of φ, the curve hτ is contained in ⇒ (φ̃). By Claim 1, we identify ⇒ (φ̃)

with kerφ⧹
G, and since G→ ker(φ)⧹

G is a principal (ker(φ))-bundle, after shrinking

I again, there is a lift gt of ht to G. But then yt = ψ
(
[s(gt)]ker(φ)

)
, which proves

that ψ is a diffeomorphism. This proves Claim 2.

By Claim 2 and Lemma 57, π := (φ̃, φ0) : G ⋉ X → ker(φ)⧹
G ⋉ φ0(X) is an

equivariant weak equivalence. It is straightforward to check that (φ̂, ψ) is an isomor-
phism of Lie groupoids between K⧹

G⋉K⧹
X and ⇒ (φ̃)⋉φ0(X); we identify these.

Let i = (i⇒(φ̃), i⇒(φ0)), where the two components are inclusions of the images into
H and Y , resp. By Claim 1, we have the following factorisation

G⋉X
π−→⇒ (φ̃)⋉ φ0(X)

i−→ H ⋉ Y.

To obtain the desired decomposition, by Lemma 58, it suffices to show that Y is
H-equivariantly diffeomorphic to H ×⇒(φ̃) φ0(X).

Define χ : H ×⇒(φ̃) φ0(X)→ Y to be the smooth map given by χ([h, φ0(x)]) :=

h · φ0(x). Suppose χ([h, φ0(x)]) = χ([h′, φ0(x
′)]). Since FFφ is a diffeomorphism,

there exists a unique g ∈ G such that FFφ(g, x) = (x, x′, ((h′)−1h, φ0(x))), and so
x′ = g · x and φ̃(g) = (h′)−1h. Thus [h, φ0(x)] = [h′, φ0(x

′)], from which it follows
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that χ is injective. For a fixed y ∈ Y , since ESφ is surjective, there exists (x, (h, y)) ∈
Xφ×t(H × Y ) with (h, y) : y → φ(x) and thus y = h−1φ(x) = χ(h−1, φ(x)). Thus χ
is bijective.

Let p = yτ : I → Y be a curve. Since ESφ is a surjective submersion, shrinking
I, there is a lift q = (xτ , (hτ , yτ )) of p to Xφ0

×t(H×Y ). The curve [h−1τ , φ(xτ )] has
image p via χ, and thus χ is a diffeomorphism. This shows that φ decomposes into
i ◦ π as desired.

It remains to show that the domain of i is an action groupoid satisfying P (except
for “effective”). But this follows from the preservation of these properties as stated
in Lemmas 57 and 58. □

We now have the following immediate corollary of Proposition 50 and
Theorem 59.

Corollary 60. For any subset of properties of P which does not include
“effective”, given a generalised morphism G ≃←−

φ
K −→

ψ
H between objects

G := G⋉X and H := H ⋉ Y of ActGpdP , there is a 2-cell from the gener-
alised morphism to a P-anafunctor G ≃←−

χ
L −→

ω
H in which χ decomposes

into functors π and i as described in Lemmas 57 and 58.

Note that if the generalised morphism in the corollary is a Morita equiva-
lence, then ω also will decompose. We exclude effective actions from this result
because they are not preserved under equivariant weak equivalences, as the
following example shows.

Example 61 Let G be the four-element dihedral group, with elements
(e, e), (e, τ), (τ, e) and (τ, τ). This acts on the set X consisting of four points laid
out in the cardinal directions, N,S,E,W : (τ, e) reflects so that N and S switch and
E,W are fixed, and (e, τ) reflects so that E and W switch and N,S are fixed, and
(τ, τ) rotates by half a turn and has no fixed points. This is an effective action.

The subgroup K = ⟨(τ, τ)⟩ acts freely, so we can take the quotient by K. Then

K⧹
X consists of two points [N ] = [S] and [E] = [W ]. Both the projected points have

isotropy Z/2 = K⧹
G, and this action is not effective.

Declarations
• Funding: Carla Farsi was partially supported by the Simons Foundation

Collaboration Grant #523991.
• Conflict of interest/Competing interests: the authors have no competing

interests as defined by Springer, or other interests that might be perceived
to influence the results and/or discussion reported in this paper.

• Ethics approval: not applicable



Springer Nature 2021 LATEX template

44 Bicategories of Action Groupoids

• Consent to participate: not applicable
• Consent for publication: all authors approve this version and consent.
• Availability of data and materials: contact Laua Scull,
scull_l@fortlewis.edu

• Code availability: not applicable
• Authors’ contributions: all authors contributed equally to the research and

preparation of this manuscipt.

Appendix A Bicategorical Details

Here we include the details of unitors and horizontal and vertical composition
of 2-cells in the bicategories LieGpoid[W−1] and AnaLieGpoid.

A.1 Details of the construction of LieGpoid[W−1]

We start by giving an explicit description of 2-cell compositions in
LieGpoid[W−1].

Definition 62 (Vertical Composition in LieGpoid[W−1]) Given representatives of
2-cells as in the following diagrams

K
φ

≃
vv

ψ

((G ⇓ µ1 L1

α′ ≃
��

α ≃

OO

⇓ η1 H K′

φ′

≃
vv

ψ′

((K′
φ′

≃

hh

ψ′

66

G ⇓ µ2 L2

β′ ≃
��

β ≃

OO

⇓ η2 H

K′′,
φ′′

≃

hh

ψ′′

66

define their vertical composition to be the equivalence class of the diagram

K
φ

≃
vv

ψ

))G ⇓ λ L1α′
w

×βL2

β′◦pr3 ≃
��

α◦pr1 ≃

OO

⇓ ν H

K′′
φ′′

≃

hh

ψ′′

66

where λ = (µ2pr3) ◦ (φ′PR2) ◦ (µ1pr1), and ν = (η2pr3) ◦ (ψ′PR2) ◦ (η1pr1). See [21,
Subsection 2.3] or [24, Section 3] for details.
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We define horizontal composition using left and right whiskering, and
vertical composition.

Definition 63 (Whiskering & Horizontal Composition in LieGpoid[W−1]) The
left whiskering of a generalised morphism G ≃←−

φ
L −→

ψ
H with a 2-cell [α, α′, µ, η]

represented by the diagram
M

χ

≃
vv

ω

((H ⇓ µ N

≃ α

OO

≃ α′

��

⇓ η K

M′
χ′

≃

hh

ω′

66

is the 2-cell [β, β′, IDφ◦pr1 , ηpr3] represented by the diagram

Lψ
w

×χM
φ◦pr1

≃

ww

ω◦pr3

))G ⟳ Lψ
w

×χ◦αN

β

OO

β′

��

⇓ ηpr3 K

Lψ
w

×χ′M′,

φ◦pr1
≃

gg

ω′◦pr3

55

where β(ℓ, h, n) = (ℓ, h, α(n)) and β′(ℓ, h, n) = (ℓ, µ(s(n))h, α′(n)). That β and β′ are
weak equivalences follows from the fact that α and α′ are. Symmetrically, the right
whiskering of a generalised morphism H ≃←−

χ
M −→

ω
K with a 2-cell [α, α′, µ, η]

represented by the diagram
L

φ

≃
vv

ψ

((G ⇓ µ N

≃ α

OO

≃ α′

��

⇓ η H

L′
φ′

≃

hh

ψ′

66

is the 2-cell [β, β′, µpr1, IDω◦pr3 ] represented by the diagram

Lψ
w

×χM
φ◦pr1
≃

uu

ω◦pr3

((G ⇓ µpr1 Nψ◦α
w

×χM

β

OO

β′

��

⟳ K

L′ψ′
w

×χM,

φ′◦pr1

≃

ii

ω◦pr3

66
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where β(ℓ, h, n) = (α(n), h,m) and β′(α′(n), hη(s(n))−1,m).

Finally, the horizontal composition of two 2-cells represented by the diagrams
below

K
φ

≃
vv

ψ

((

L
χ

≃
vv

ω

((G ⇓ η1 M

α≃

OO

α′≃
��

⇓ η2 H ⇓ µ1 N

β≃

OO

β′≃
��

⇓ µ2 I

K′
φ′

≃

hh

ψ′

66

L′
χ′

≃

hh

ω′

66

is given by the left whiskering of the right 2-cell with the generalised morphism
G ≃←−

φ
K −→

ψ
H, vertically composed with the right whiskering of the left 2-cell

with the generalised morphism H ≃←−
χ′
L′ −→

ω′
I. Alternatively, one could switch the

order of the 2-cells in the vertical composition, using appropriate whiskerings. The
end result is independent of the order; see [21, Subsection 2.3] or [24, Section 3] for
details.

Finally, we define the unitors for this bicategory.

Definition 64 (Unitors in LieGpoid[W−1]) For a pair of Lie groupoids (G,H), the
left unitor λG,H is a natural transformation assigning to each generalised morphism
G ≃←−

φ
K −→

ψ
H the 2-cell represented by the diagram

GidG

w

×φK
pr1

≃

uu

ψ◦pr3

''G ⇓ PR2 GidG

w

×φK

pr3 ≃
����

⟳ H

K.

φ

≃

ii

ψ

66

The right unitor of (G,H) ρG,H is a natural transformation assigning to each
generalised morphism G ≃←−

φ
K −→

ψ
H the 2-cell represented by the diagram

Kψ
w

×idH
H

φ◦pr1
≃

ww

pr3

))G ⟳ Kψ
w

×idH
H

pr1 ≃
����

⇑ PR2 H

K.

φ

≃

hh

ψ

55
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A.2 Details of the construction of AnaLieGpoid

We now describe the compositions of 2-cells for the category AnaLieGpoid,
starting with vertical composition.

Definition 65 (Vertical Composition in AnaLieGpoid) Let G ≃←−
φi
Ki −→

ψi
H

be anafunctors (i = 1, 2, 3), and let η be a transformation between the first and
second, and µ a transformation between the second and third. Define the vertical
composition µ◦η to be unique natural transformation ν so that (µpr23)◦(ηpr12) =
νpr13, where pr12, pr23, and pr13 are the projections as indicated in the diagram
below:

K1φ1
×φ3
K3

���� �� ��

⟳ K1φ1
×φ2
K2φ2

×φ3
K3

pr13≃
OOOO

pr12

≃uuuu

pr23

≃ )) ))

⟳

K1

ψ1

//

K1φ1
×φ2
K2

oooo

)) ))

⟳ K2φ2
×φ3
K3

uuuu

// // K3

ψ3

oo

η ⇒ K2

ψ2

��

µ⇒

H.
Such a ν exists by Lemma 17 since pr13 ∈ sW.

We can now verify that the identity 2-cell of an anafunctor G ≃←− K → H
is given by the natural transformation

ιG←K→H : (Kφ×φK)0 → H1 : (y1, y2) 7→ ψ(FFφ−1((y1, y2), uφ(y1))).

as claimed. Consider another anafunctor G ≃←−
φ′
K′ −→

ψ′
H and 2-cell η from

the first to the second, (η ◦ ιG←K→H)(y, y′) = η(y0, y
′) · ιG←K→H(y, y0) for

any y0 such that (y, y0) ∈ Kφ×φK and (y0, y
′) ∈ Kφ×φ′K′. We wish to

show (η ◦ ιG←K→H)(y, y′) = η(y, y′). If k := FFφ−1((y, y0), uφ(y)), then
ιG←K→H(y, y0) = ψ(k) by definition. But (k, uy′) is an arrow in Kφ×φ′K′ from
(y, y′) to (y0, y

′). By naturality of η, we get the desired equality. A similar
argument shows that (ιG←K→H ◦ µ)(y′′, y) = µ(y′′, y) for any 2-cell µ from an
anafunctor G ≃←−

φ′′
K′′ −→

ψ′′
H to G ≃←−

φ
K −→

ψ
H.



Springer Nature 2021 LATEX template

48 Bicategories of Action Groupoids

We again define horizontal composition as the vertical composition of
left and right whiskering, defined below. However, we decompose this fur-
ther by defining left whiskering as the vertical composition of two simpler left
whiskerings.

Definition 66 (Whiskering & Horizontal Composition in AnaLieGpoid) Suppose
we have a general 2-cell of the form

L
χ

≃
vvvv

ω

((H ⟳ Lχ×χ′L′

≃

OOOO

≃
����

⇓ η I

L′.
χ′

≃

hhhh

ω′

66

(A1)

The left whiskering of this 2-cell with an anafunctor of the form K =←− K −→
ψ
H

is the natural transformation ηPR2 in the following diagram:

Kψ×χL
pr1

≃
uuuu

ω◦pr2

**K ⟳ Kψ×χ◦pr1(Lχ×χ′L′)

≃
OOOO

≃
����

⇓ ηPR2 I

Kψ×χ′L′.

pr1

≃

iiii

ω′◦pr2

44

The left whiskering of the 2-cell (A1) with an anafunctor of the form G ≃←−
φ
K =−→

K is the unique natural transformation η′ for which η′(pr2 ◦ (idL×L′ , ι)) = η; here,
pr2 ∈ sW is the second projection functor on

M := (Lχ×χ′L′)φ◦χ◦pr1×φ◦χ′◦pr1(Lφ◦χ×φ◦χ′L′)

and ι : Lχ×χ′L′ → Lφ◦χ×φ◦χ′L′ is the canonical inclusion.
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L

ω

$$

⟳

Lχ×χ′L′
(idL×L′ ,ι)

//M

pr1◦pr1
≃

// //

pr2◦pr1
≃

.. ..

pr2

≃
// // Lφ◦χ×φ◦χ′L′

≃

OOOO

≃

����

⇓ η′ I

⟳

L′

ω′

::

Then if we have a general anafunctor G ≃←− K → H, we note that it is the compo-
sition of G ≃←− K =−→ K and K =←− K → H, and so we define the left whiskering
with the 2-cell (A1) by the vertical composition of the two left whiskerings above.

Finally, the right whiskering of an anafunctor I ≃←−
ξ
M−→

ζ
J with the 2-cell

(A1) is the natural transformation

µ : (Lω×ξM)0χ◦pr1×χ′◦pr1(L
′
ω′×ξM)0 → J1 : ((w, v1), (w′, v2)) 7→ FFξ

−1(v1, v2, η(w,w
′))

in the diagram

Lω×ξM
χ◦pr1
≃

tttt

ζ◦pr2

++H ⟳ (Lω×ξM)χ◦pr1×χ′◦pr1(L
′
ω′×ξM)

≃
OOOO

≃
����

⇓ µ J

L′ω′×ξM.

χ′◦pr1

≃

jjjj

ζ◦pr2

44

The horizontal composition of the two 2-cells

K
φ

≃
vvvv

ψ

))

L
χ

≃
vvvv

ω

((G ⟳ Kφ×φ′K′

≃

OOOO

≃
����

⇓ η H ⟳ Lχ×χ′L′

≃

OOOO

≃
����

⇓ µ J

K′
φ′

≃

hhhh

ψ′

66

L′
χ′

≃

hhhh

ω′

66

is given by the left whiskering of the right 2-cell with the anafunctor G ≃←−
φ
K −→

ψ
H,

vertically composed with the right whiskering of the left 2-cell with the anafunctor
H ≃←−

χ′
L′ −→

ω′
J . Alternatively, one could switch the order of the 2-cells in the
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vertical composition, using appropriate whiskerings. In fact, that the decomposition
of a horizontal composition into the various vertical compositions of the various
whiskerings above always yields the same result is proved in [27, Lemmas 3.14, 3.15].

We end this appendix with the unitors for AnaLieGpoid.

Definition 67 (Unitors in AnaLieGpoid) For a pair of Lie groupoids (G,H),
the left unitor λanaG,H is the natural transformation assigning to each anafunctor

G ≃←−
φ
K −→

ψ
H the natural transformation(

(GidG×φK)pr1×φK
)
0
→ H1 : ((x, y1), y2) 7→ FFφ−1(y1, y2, ux).

The right unitor of (G,H), denoted ρanaG,H, is the natural transformation assigning

to each anafunctor G ≃←−
φ
K −→

ψ
H the natural transformation(

(Kψ×idHH)φ◦pr1×φK
)
0
→ H1 : ((y1, z), y2) 7→ FFφ−1(y1, y2, uφ(y1)).
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