BICATEGORIES OF FRACTIONS REVISITED: TOWARDS
SMALL HOMS AND CANONICAL 2-CELLS

DORETTE PRONK, LAURA SCULL

ABSTRACT. This paper introduces a set of conditions on a class of arrows in a
bicategory which is weaker than the one given in [4] but still allows a bicalculus
of fractions. These conditions allow us to invert a smaller collection of arrows
so that in some cases we may obtain a bicategory of fractions with small hom-
categories. We adapt the construction of the bicategory of fractions to work
with the weaker conditions. We further discuss conditions under which there
are canonical representatives for 2-cells, and how pasting of 2-cells can be
simplified in the presence of certain pseudo pullbacks and introduce how this
can be applied to orbifolds.

1. INTRODUCTION

This paper introduces a set of conditions on a class of arrows in a bicategory
which is weaker than the one given in [4] but still allows us to form the localiza-
tion as a bicalculus of fractions. One potential issue with localizations which are
constructed as categories, or bicategories, of fractions is that the hom-sets, or hom-
categories, may not be small, as there is no guarantee in general that the fractions
with a given domain and codomain form a set. To ensure that we do get a set, we
need the class of arrows 2 to be inverted be locally small, i.e., for any given object
C there is only a set of arrows in 20 with codomain C'.

We may try to find a locally small subclass of the arrows to be inverted which
generates the larger class in the sense that it induces an equivalent category (or
bicategory) of fractions. This subclass may not satisfy all of the conditions for
forming a (bi)category of fractions, so we consider whether any of the conditions
can be weakened. When an arrow can be factored as a composite of arrows that
are to be inverted, this arrow will receive an inverse in any localization that adds
inverses for the arrows in the factorization. This observation leads us to consider
the second condition of [4], the requirement that the class of arrows to be inverted
is closed under composition, as an axiom that could potentially be weakened. We
cannot completely omit it: some version of this axiom is needed to be able to define
horizontal composition in the bicategory of fractions. However, we can replace it
by the following condition:
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[WB2] For each pair of composable arrows B——=C—=D in 20, there is an

arrow A—2>B such that A—"%D is in 2.

When a class of arrows satisfies this condition together with the other conditions
for a bicalculus of fractions given in [4], it generates (through composition) a larger
class of arrows that satisfies all the bicalculus of fractions conditions. In this paper
we will carefully consider all the conditions for the bicalculus of fractions and give
more optimal versions of these conditions, and then provide an adjusted construc-
tion of the bicategory of fractions. This construction is still given with arrows that
are single spans rather than zig-zags. This also provides us with a slightly weaker
set of conditions for the classical construction of the category of fractions as given
by Gabriel and Zisman in [2], spelled out in Corollary 4.10.

Our motivating example for this is the bicategory of orbispaces, given as the
bicategory of fractions of proper étale groupoids of suitable topological spaces with
respect to the class of essential equivalences as in described in [3, 1]. A priori, the
hom categories in this category are not small unless one requires all spaces to be
second countable topological manifolds. We can work with a larger class of spaces
when using the following observation. The class of essential equivalences has a
subclass of essential covering maps that is locally small.

Another issue when working with a (bi)category of fractions is that one always
works with equivalence classes in the homs. For categories, arrows are given by
equivalence classes; for bicategories the same is true for 2-cells. This makes the
hom-categories in the bicategory of fractions a priori very large and somewhat
mysterious and hard to work with. Horizontal composition of 2-cells for instance
is rather cumbersome to describe and calculate. Our second goal in this paper
is to address this issue by providing conditions under which there are canonical
representatives for 2-cells and under which the horizontal composition operation is
significantly simplified. In our motivating example of orbispaces, essential equiva-
lences have several nice cancellation properties that allow for a simplification of the
2-cell structure and allow us to use canonical representatives for 2-cells when this
is convenient,.

We prove two types of results about the 2-cell structure: about the choice of
representatives for 2-cells, and about conditions that allow us to simplify the pasting
of 2-cells. Each representative diagram for a 2-cell in the bicategory of fractions,
as in diagram (1) in Section 3 is given by two 2-cells in the original bicategory.
The ‘left-hand’ 2-cell « is invertible, and we think of this as the cell that allows
the ‘right-hand’ 2-cell 8 to be defined. We focus on the role of the left-hand 2-cell.
Tommasini indirectly addresses the question of when a 2-cell can be represented
by a diagram with a given left-hand 2-cell in [9]. In general this is not always
possible, and moreover, two diagrams with the same left-hand 2-cell but different
right-hand 2-cells may still represent the same 2-cell in the bicategory of fractions,
so the universal homomorphism mapping a bicategory to its bicategory of fractions
is in general neither 2-faithful nor 2-full. However, under conditions we develop,
the situation simplifies and for each pair of spans we may choose any left-hand
2-cell and show that each 2-cell in the bicategory of fractions can then be uniquely
represented by a diagram involving the given left-hand 2-cell.

Additionally, for the case when the bicategory has certain pseudo pullbacks, we
develop results to simplify the horizontal composition of 2-cells in the bicategory
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of fractions. Overall, our goal is to make the role of 2-cells in the bicategory of
fractions more transparent. In our motivating example of orbifolds these conditions
are satisfied; this will be explored further in [6].

This paper is structured as follows. In Section 2, we introduce the new, weak-
ened, conditions on a class 20 to give rise to a bicalculus of fractions, and develop
some theory on liftings of 2-cells related to the fourth condition on 2, and on
relating squares required by the third contition. In Section 3 we give the new
bicategory of fractions construction B(20~!), a generalization of the one given in
[4], with horizontal composition of arrows and 2-cells adjusted to account for the
weaker assumption. In Section 4 we investigate the connection between our new
construction and the original construction of [4], and show that if 20 satisfies the
weaker conditions of Section 2, then the class of arrows obtained by taking the
closure of 2 under composition satisfies the original conditions from [4] and gives
a bi-equivalent bicategory of fractions. Additionally, we introduce the notion of
covering subclasses of arrows, designed to allow us to pass to an even smaller sub-
class of arrows to obtain a locally small subclass of a given class of arrows. In
Section 5 we introduce conditions that allow us to simplify the form of the 2-cells
in the bicategory of fractions and obtain canonical representatives for the equiva-
lence classes, and in Section 6 we investigate the case when the original bicategory
has certain pseudo pullbacks and show how this can be used to simplify horizontal
composition of 2-cells in the bicategory of fractions. In Section 7 we indicate how
this work applies to orbispaces, to be further explored in [6]. The last section is an
appendix giving associativity of 2-cells and proving associativity coherence.

The authors would like to thank Michael Johnson for his helpful conversations
and suggestions related to this work.

2. WEAKER CONDITIONS FOR A BICALCULUS OF FRACTIONS

In the first part of this section we introduce the new conditions on a class of
arrows in a bicategory that will give rise to a bicalculus of fractions. These are
a weakening of the conditions BF1-BF5 given in [4]. In the second part of this
section we develop general results about the structure of the 2-cells in a bicategory
with a class of arrows satisfying our new conditions.

2.1. The New Conditions. We list our new conditions on a class of arrows. In

Section 3 we will show that these are sufficient for the existence of the bicategory of

fractions, although the specific construction of this bicategory needs to be changed.

[WB1] All identities are in 20.

[WB2] For each pair of composable arrows B——>C—"=D in 2, there is an
arrow A—“>B such that A—""%D is in 20.

[WB3] For every pair w: A — B, f: C — B with w € 20, there exist maps h, v,
where v € 20, and an invertible 2-cell « as in the following diagram.

DA

o o

C——8B
f
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[WB4] For any 2-cell
a:wo f=wog
with w € 20, there exists u € 20 and a 2-cell
B:fou=gou

such that & o u = w o §. Furthermore, the collection of such pairs (u, )
has the following property: when (u1,51) and (ug, 82) are two such pairs,
there exist arrows s,t, such that u; o s and us ot are in 20, and there is
an invertible 2-cell €: u; o s = wus o t such that the following diagram
commutes:

Bios
foujos———=goujos

fogi igoe

fougot——>gowugot.

Baot
[WB5] When w € 20 and there is an invertible 2-cell a: v = w, then v € 20.

Remarks 2.1. (1) The original condition BF1 stated that all equivalences
were in the class 2J. It is well-known that it is sufficient to replace this
with the given [WB1]; see for instance, [9].

(2) Condition [WB2] is a significantly weaker version of the original condition
BF2, which required that 20 be closed under composition.

(3) Conditions [WB3] and [WB5] are the same as the old conditions BF3
and BF5 respectively.

(4) When a and g are 2-cells as in condition [WB4], we will refer to 5 as a
lifting of « with respect to w. In [4], condition BF4 additionally required
that if « is invertible, it has a lifting g that is invertible. We will show
in Proposition 2.3 that this assumption is not needed, as it can be derived
from the other assumptions.

2.2. Properties of Liftings of 2-Cells. In this section we prove that our condi-
tion [WB4], together with the conditions [WB1]-[WB3] and [WB5], imply the
original condition BF4. To do this, we develop some properties of the 2-cell liftings
that [WB4] requires, and show that they can be chosen to respect composition.

We assume throughout this section that 20 is a class of arrows satisfying condi-
tions [WB1]-[WB5]. We begin by showing that for fixed w € 20, the collection of
the liftings of cells given by [WB4] inherits the vertical composition structure in
the sense that the vertical composition of two liftings gives a lifting for the vertical
composition of the original cells.

Lemma 2.2. Let 20 satisfy [WB1]-[WBS5]. Suppose that we have arrows

f
B—¢=C 4w> D
h
with w € W, and let aq: wf = wg and as: wg = wh be 2-cells. Then there exists
an arrow u: A — B in Q0 with 2-cells B1: fu = gu and P2: gu = hu such that
w1 = aru and why = asu. It follows that w(Ps - f1) = (a2 - aq)u.
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Proof. We begin by choosing two arbitrary arrows and cells as in condition [WB4]:
let u1: Ay — B and ug: As — B be two arrows in 20 with 2-cells vy : fu; = guy
and 79 : gug = hug such that wy; = ayu; and wys = asus.

Since w1 and ug are in 2, condition [WB3] gives us a square

with s € 20. By Condition [WB2], there is an arrow v: X — A such that the
composition ujsv is in 7.

We claim that the following arrow and 2-cells satisfy the conditions of this lemma:
u=wuy5v, B1 = y15v and By = ((¢™1) - (y2t) - (g€)) o v, as in the diagram,

:

A

= Ay

\C v
N

\/ﬁ;
L

To prove this claim, first note that since v; was chosen to satisfy [WB4], wf; =
wy1sv = apu1sv = aju. Now using the fact that o was also chosen so that
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w2 = aoug, we calculate wfs in the following diagrams:

X
A

J

('S A <A2 ¢

Ay C = = Ay
\ / \ / us
w1
= B
C = C
lw x /
D D
and this is clearly equal to asu;sv = agu, as required. (I

We now use this lemma to prove that whenever the 2-cell a: wf = wg is in-
vertible, there is at least one choice of a pair (u,8) for [WB4] such that § is also
invertible.

Proposition 2.3. Let 20 satisfy the conditions [WB1]-[WB5]. If w € 2 and
a: wf = wg is an invertible 2-cell, then there is an arrow u € W with an invertible
2-cell B: fu = gu such that wB = au.

Proof. We begin by applying Lemma 2.2 to the case where h = f, a1 = « and
ay = o~ !, This gives us an arrow v € 20 and 2-cells v: fv = gv and 7': gv = fv
such that wy = av and wy = a'v. So w(y'-7v) = (™! - @)v = idysv. This does
not guarantee that v and «/ are inverses, but we will show that there is a further
lifting v’ such that vv’ € 20 and v and v’ are inverses.

We create v’ in two stages. First we will find uq such that (v'u1)(yu1) = idpu,,
and then find w; such that (yuiwi)(Ywiwi) = idfy,w,. To find u;y, we observe
that both w(vy'y) = idy v and woidy, = idyv. Thus, (v,v"-v) and (v,idy,) are
both pairs of liftings of id, s with respect to w as in [WB4]. The second half of
[WB4] gives a relationship between any two such pairs, so applying that here gives
two maps, u; and ug, and an invertible 2-cell,
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with vu; € 9J and such that

A
LOSE - A=)

id .,

VRN,

The left-hand side of this equation is equal to the identity 2-cell, id sy, , so Y'us -
yur = id oy, -

Now we create w; via the same argument applied to the 2-cells yu; - ¥'u; and
idgyy, . We know that w(yuq -v'u1) = (a- a Hou; = idygvur = idwgou, = widgyu, -
So both (vui, yuy -y'u1) and (vu,idgy., ) are liftings of id,,, with respect to w, and
applying the second half of [WB4] as above gives us wy, we and an invertible 2-cell
e such that vuw,; € W and yuw -y urwr = idgyu,w, - We conclude that v'uqwy =
(yuiwy) ™. Therefore setting v' = ujwy, u = vv’ = vuyw; and B = yuw; satisfies
the requirements of the proposition. O

Remark 2.4. Combining the proofs for Proposition 2.3 and Lemma 2.2 shows that
if a in Proposition 2.3 is invertible, for any arrow uw € 2J with 2-cell 8: fu = gu
such that wf = au, there is an arrow s such that 5 o s is invertible.

2.3. Squares as in Condition [WB3]. In this section we address a question
related to condition [WB3]: if there are two squares as in [WB3] for the same
cospan, how are these squares related to each other? This question was answered in
the proof of Lemma A.1.1 in [4] for cospans where both arrows are in 20. Here, we
prove a more general result, for cospans with just one arrow in 20 and assuming only
the weaker condition [WB2]. This result will play a crucial role in the constructions
of whiskering of 2-cells with arrows in the bicategory of fractions. It will also be
used in the study of the equivalence relation on the 2-cells diagrams.

Proposition 2.5. Forw: A — B in 20 and f: C — B any arrow in B, and any
two squares,

91

D1 —A D24>A
UI\L Ot]& iw ’UQ\L 042<N= \Lw
C——8B C——8B

A

X X
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where u,uvy and uve are all in A, then there are arrows s; and sy and invertible
2-cells B and v as in
D,

D,
such that uvis; € W, and the composites (agsz) - (fB) and (wy) - (a1s1) are equal.
Proof. Since wv; is in 20, condition [WB3] gives us a square
F—2>D,
Il
D, s X

with v; € 20. Applying Proposition 2.3 to the 2:cell B’ uva1 = uv1Us, we get an
arrow @: F' — F in U and an invertible 2-cell 8’ : voU1 U = v1021.
Then we have the following invertible 2-cell from wg, U2t to wgsv1 .

D1 —A
V2 _ w
/ V1 ! IN
F o c-1sB

By applying Proposition 2.3 with respect to w, there is an arrow w: F” — F’ in
20 with an invertible 2-cell v': g1020w = goU1@w such that wy’ is equal to the
pasting of this last diagram composed with w. Finally, by repeatedly applying
condition [WB2] to the string of composible 20 arrows wwve, o1, @, W, there is an
arrow ¢: E — F" such that uvathawt € 2. By condition [WB5] it follows that
uv1vouwt € W as well. The reader may verify that s; = vouwt, so = vuWt,
B = Bt and = ~'t satisfy the conditions of this proposition. |

Remark 2.6. An extension of the result of Proposition 2.5 can be found in Ap-
pendix A, Proposition A.1.

3. THE NEw BICATEGORY OF FRACTIONS CONSTRUCTION

We will now show that conditions introduced in Section 2.1 are sufficient to
construct a bicategory of fractions B(20~!). Given a bicategory B and a class
of arrows 20 which satisfies the conditions [WB1]-[WB5], we first describe the
new bicategory B(20~ 1), and then show that it has the universal property of the
bicategory of fractions. The objects, arrows and 2-cells of B(20~!) are defined just
as in [4], but we will need to adjust the definition of composition and pasting. We
begin by reminding the reader of the definition as given in [4].
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e QObjects are the objects of B.
e Arrows are spans of the form v T with w € 20 and f an arbitrary

arrow in B.
e 2-cells are equivalence classes of diagrams of the form

(1) C

C/
where wu and w'v’ are in 2. Such a diagram (1) is equivalent to another

such diagram

!
o
=
<
Sy

If

h
=
Q
!
T
I1l
b
oy
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Remark 3.1. In the description above, we consistently only require half of our
arrow compositions to be in 2. For example, we require only that wv € 20, and
not the corresponding w'v’; similarly we only require wus € 2. However, since the
2-cells are invertible and 20 satisfies [WBS5], the other half follows automatically.

The original condition BF2 was used in [4] in the construction of composition
of arrows and horizontal and vertical composition of 2-cells in the bicategory of
fractions. In constructing these compositions under our weaker conditions, we need
to adjust for the fact that 20 is no longer closed under composition. Instead,
we have the condition [WB2] that allows us to pre-compose with an additional
arrow to get a composition in 20. The description of the compositions in [4] relies
heavily on the choices of squares as in condition [WB3] and liftings as in condition
[WB4] (although, in fact, the construction only depends on the choices of the
squares when they are used to compose the spans, as Tommasini [9] has shown that
different choices made in the composition of 2-cells give equivalent representatives).
In describing the compositions in the new bicategory of fractions, we use a collection
of choices for arrows for composites as in [WB2] to augment the choices of squares
and liftings to make sure that the necessary arrows are in 2J. We list and label
these choices here before beginning the constructions so we can refer back to them.

Notation 3.2. The following choices of arrows and 2-cells will be used in the
construction of the bicategory of fractions B(20~1). The first three choices really
determine the construction. The last four are just short-cuts for frequently used
combinations of the first three.

[C1] For each pair of composable arrows ——= —“= in 2 use [WB2] to
choose an arrow w,,,,, such that wvw, ., € 20.

[C2] For every pair v With we 2T use [WB3] to choose a square

f/
—

R
S

—_—
f

UUT’%

When we want to stress the dependence of a on f and u, we denote this
cell by of .

[C3] Given a: w o f = w o g, a 2-cell with w € 2, choose a 1-cell W € 20
and a 2-cell

a:fou=gou

such that &« o w = w o &. Using Proposition 2.3, we choose & to be

invertible whenever « is.
f v

[C4] For each zig-zag, with v and w in 25, [C2] determines
a square and invertible 2-cell ay,. Compose this with _the choice Wy
from [C1] to get wyyv'w € W. Defining © = wyyv', f = wyy f and
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w

of,, = Wy oy, gives the chosen diagram

SN
Qlf’,v
N
with wv € 20. Note that v is not guaranteed to be in 7.

[C5] For each cospan ——=<—— with both arrows w,v € 20, apply [C2] to
obtain a square with an invertible 2-cell oy, . Then compose with wy,
from [C1] to get Wy v € W. Define § = Wy v, 0 = Wy w” and Guy . =
Wy’ Qi t0 Obtain the chosen square

where wo € 20.

[C6] For each invertible 2-cell a: w o 51 = w o 85 with w, wsy, wsy € W, apply
[C3] to obtain w € 2 and & : $1W = s2w. Then ws; and @ are in 2, so
apply [C1] to obtain an arrow u such that wsywu € 20. Since & in [C3] is
invertible, we conclude that wsstwu is also in 2J. Setting w = wu, we get
the chosen lifting

Q: S1W = SaW

such that ws, @ € 20.
[CT7] For each configuration,

I

[e3%

oy

with uv and w in 20, [C2] determines wy, with uvw,, € Qp Pre—corraposing
with @ = wy, determined by [C1] gives the chosen 2-cell &,, with uvw € 20.

With these choices determined, we will now define the bicategory of fractions.

Composition of 1-Cells We define the composition of spans A&SLB

and B<=-T 2.0 i B(20~1) using the chosen square in [C4] of Notation
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3.2,

so that uytis € Q0. Then the composition of spans is given by
A U1 U2 fafa C

Remarks 3.3. (1) Proposition 2.5 implies that any other choice of a square
to define the composition would result in an isomorphic arrow in B(23~1).
Proposition A.1 below further shows that the isomorphism is unique when
certain properties with respect to the defining squares are required.

(2) Horizontal composition of 1-cells is clearly not associative in general. In
Appendix A, Proposition A.3 we introduce the family of associativity 2-
cells and in Appendix B, Proposition B.4, we show that this family satisfies
the associativity coherence conditions. The definition of the associativity
cells is a direct generalization of the ones given in [4], but the proof of
coherence is a bit more involved. The appendices highlight the technical
results that lead to coherence in separate propositions.

Vertical Composition of 2-Cells We define the vertical compositon of 2-cell

diagrams,
N L N
vl v3
Yo 181 and Jas 182
N w4
w2 f2 us3 f3

First, since usvz and usvy are both in 27, let

’
V3
_

v5 l 5 iuﬂa
—

U2v3

be the chosen square in [C5] of Notation 3.2: § = Quyusuzw, and ugvsvh € 0.
Since § is invertible, ugvovh € 20 also.

Next, apply [C6] to § : ugvavy = ugvzvh and obtain an arrow 4y € 20 and an
invertible 2-cell & : vovhily = vsvhila. Note that upvavhiis € 2, as indicated in
[C6].
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This gives us the following representative for the vertical composition,

(2)
uq T 1 f1

V2 ﬁ, V2

Q1 v3u2 B1

us

Observe that uovavitia € 20 by construction, and wjviviie and uzvsvhis are in
7 since they are isomorphic to usv9v519. So this diagram represents a 2-cell from
3

uy f1 to us3 f3

Lemma 3.4. Vertical composition of 2-cells is strictly associative.

Proof. Consider three vertically composable 2-cell diagrams,

SN AN AN
N AN ) 4

The two possible vertical compositions correspond to choices of squares d; and ¢;
with ¢ = 1,2 as in

/Y\\ ///\

VDN NN

with ugsat153 € 20 and uQ52§351 € 20. The construction of the associativity 2-cell
diagrams in Appendix A can be applied to these two spans. Let the resulting 2-cell

diagram be
8152353 tsta
1
uy
-~ ¥

P

ro
$182 tataty

Then the reader may verify that the cells ¢ and 1 satisfy the equations to show
that the two vertical compositions of the 2-cell diagrams are equivalent. (Use the



14 DORETTE PRONK, LAURA SCULL

properties of the cells used to construct the associativity 2-cells as described in the
appendix.) O

Horizontal Composition of 2-Cells The construction for horizontal composition
in [4] is given in terms of whiskering on the left and the right. We will address the
two cases in the following two subsections.

3.1. Left Whiskering. Suppose we have

VT fl
s1

v g
a gy < s

\\L S2
Uz f2

with u;s; € Q0 and « invertible, so that the left side represents a 2-cell. We begin
by constructing the composites of the arrows involved. This gives us the following

diagram,
U1
S1 71
o 3 v g9
l/’w/
f2 f2
?

N

where y1 = a}' , and 72 = a2 are the chosen squares of [C4] of Notation 3.2.

The next step is to construct squares that complete the cospans S and

2. " Neither s; nor ¥; (where ¢ = 1,2) are necessarily in 20, but the u;s;
are by assumption, and the u;7; are by [C4]. Now take the squares chosen in [C5]

fori=1,2,
v,’l Cuysyugv; \Luivi

_—
Ui Sq

where the composites u;s;v} are in 20 and the 2-cells &y, s, u,5, are invertible. Now
we have & : u;s;v] = u;0;s; where u; € 20, and hence [C6] determines arrows 4;
and 2-cells §; : s;vit; = U;s,u;. If we write vii; = 0; then we have u;s;0; € 20 for
i=1,2.

Finally, we want to construct a square to complete the cospan L
Neither of the 9; is necessarily in 20, but the u;s;0; are. Also, since a: u181 = U8
is invertible, it follows that uys102 € 0. Using a sequence of chosen squares and
lifts as above, we construct a square

with 3 invertible and uqs101¢1 € 20.
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To find the right-hand 2-cell in the diagram representing the left whiskering, we
want to apply a choice of lifting as in condition [WB4] to the following diagram,

and lift with respect to v. However, we need to do this in such a way that we obtain
a valid 2-cell diagram. So we will take the lifting of [C7] for the diagram

u101

This gives us an arrow v € 20 and a 2-cell B: f1s’1111t1f) = fgSg&thﬁ such that UB is
equal to the pasting of the previous diagram composed with @, and w9, 8j01t,0 €
20.

The resulting representative for the horizontal composition can be described by
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with v1s; and vyss in 20, and « invertible, so the right side represents a 2-cell.
Again, we begin by constructing the horizontal compositions of the arrows involved
using the squares of [C2] in Notation 3.2 to obtain the following diagram,

fi
B —
/71 vl/T S1 &
u ! .
\’Yz\vz
Vo \

where v; = a?’vi and uv; € W for i =1, 2.
Since v;s; € 2 for i = 1,2, we have chosen squares from [C2] giving

(4) —

f@ sif/
R —_—
'l_)Qi Yi i’vi and s’ \L &5 \L’U‘L
E— E—

T T i
_— _— >
tll € is; and tii Pi lsz
R — B —

Vi fi

such that uv;t; € 20 for ¢ = 1,2 and the composites of the following two pasting
diagrams are equal:

T fz/ T4 fz/
_— _—
i& til . l
t; €4 st 5, = _—
fi
Vi V2 Yi Vi
_— _—
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Now apply Proposition 2.5 to the following two squares, where vy 51, s}, u, us}, usy €

20
fi f2
_— _—
| 7|
S1 S1
st 61 and sh 02 a
va
_ _
f f
u u
This gives us arrows and invertible 2-cells
p P
—_— —_—
q J/ & J(Sll and ql 4 J{f{
—_— —_—
Sa f3

p 1 p

- o
q sh 51 V181 = q T fi
|- .

o}

Thus far we have constructed the following part of the left-hand cell of the whiskered
2-cell diagram,

We fill in the gap in the middle by chosen liftings of chosen squares according to
conditions [WB3] and [WBA4]. First note that the uv;t; are in 27 for ¢ = 1,2, and
hence since ¢; is invertible, usjr; € 20. So we have squares from [C2],

p q
—_— _—
’ ’ ’ ’ ’ ’
Tll P1 i“slrl and T2l P2 i“szm
_— > _— >
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and we lift with respect to us] and us}, respectively (as in [C3]) and add additional
arrows wp and wy to obtain arrows p = p'ijwy, 71 = riaiw; € W and § = ¢'ao,
Tog = rhlswe € W with invertible 2-cells

D q
E—— —_—
rll/ pP1 lh and rzl p2 irz
R — E—
p q

and let x be a chosen arrow such that uvitiprox € 0. Then the result of the
whiskering becomes:

(5)

Remarks 3.5. (1) When the class 20 of arrows to be inverted satisfies the

traditional BF1-BF5 conditions from [4], this construction reduces to the
construction given in that paper when one takes the identity arrow when-
ever a choice of an arrow based on condition [WB2] is needed. The defini-
tion of horizontal whiskering here is not exactly the same as the one given
in [4], but the 2-cell diagrams obtained are equivalent. This is shown in
[9], where it is proved that various choices to fill the 2-cell diagrams for
whiskering all result in equivalent 2-cell diagrams.

The fact that the vertical composition and the horizontal whiskering oper-
ations described here are well-defined on equivalence classes of 2-cell dia-
grams can be checked by a long and rather tedious calculation applying the
same type of operations on the arrows and cells that witness the equivalence
relation.

With these definitions, we get the following:
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Theorem 3.6. For any bicategory B with a class DI of arrows that satisfies condi-
tions [WB1]-[WBS], there is a bicategory of fractions B(Q~1) with a homomor-
phism

Jyw: B— B
which sends arrows in W to internal equivalences. Moreover, this bicategory sat-
isfies the following universal property: for any bicategory D, composition with Jayy
induces an equivalence of categories

Hom(B(20 1), D) ~ Homyy (B, D),

where Hom(B(QW~1), D) denotes the category of homomorphisms and pseudo, resp.
lax, resp. oplaz, transformations and Homey (B, D) denotes the category of homo-
morphisms and pseudo, resp. lax, resp. oplax transformations that send arrows in
2 to internal equivalences.

Remark 3.7. For further details on what it means for a transformation to send
arrows to internal equivalences, see [4].

Proof. We have given definitions for all of the compositions. There are no coherence
requirements on the choices of squares or liftings, so this gives a valid construction
of a bicategory with all necessary properties. The resulting bicategory also has the
same universal properties as the original bicategory of fractions, since the proof of
[4, Theorem 21] does not depend on any specific properties of the choices made.
O

A different way to derive this result will be given in Theorem 4.8.

4. EQUIVALENCES OF BICATEGORIES OF FRACTIONS

The first goal of this paper was to provide conditions under which we can take
smaller classes of arrows to invert, while still obtaining an equivalent bicategory of
fractions. In this section we develop a condition to allow us to restrict to a smaller
subclass of arrows, namely when a subclass ‘covers’ the original class of arrows.

We show that if we start with a class of arrows satisfying [WB1]-[WB5], and
we have a covering subclass which satisfies [WB1] and [WBS5], then in fact the
subclass will satisfy all the conditions[WB1]-[WBS5] and the bicategory of frac-
tions for the subclass is equivalent to the one for the original class of arrows. We
will then apply this result to a class 20 of arrows satisfying [WB1]-[WBS5], and
Egnsider its closure under composition and invertible 2-cells, @A We show that
20 satisfies the conditions BF1-BF5 of [4], and that 20 covers 20. This gives an
equivalence of bicategories

B ~BW),
showing that the newly constructed bicategories of fractions of Section 3 are indeed
equivalent to the ones introduced in [4].

4.1. Coverings of Arrows. The following is our main condition on a subclass of
a class of arrows.

Definition 4.1. Let 20 C U be two classes of arrows in a bicategory B. Then 20
covers U if for each arrow v € ¥, there is an arrow u such that vu € 20.

We begin by verifying that some of the new bicategories of fractions conditions
will descend from a class to a covering subclass.
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Proposition 4.2. Let B be a bicategory with a class of arrows U satisfying all the
conditions [WB1]-[WBS5], and a subclass 2 C B which covers U and satisfies
conditions [WB1] and [WBS5]. Then 20 also satisfies conditions [WB2]-[WB4].

Proof. [WB2] Let A—">B and B—2>C be a pair of composable arrows in
20. Since 20 C ¥ and U satisfies condition [WB2], there is an arrow u; such that
wowquy € Y. Since 2 covers Y, there is an arrow wuo such that wewquius € 20.
So 2 satisfies condition [WB2].

[WB3] Consider a cospan of arrows AT C<® B with w € W. Since T
satisfies [WB3], there is a square with an invertible 2-cell «,

9.

D
A

*>fC

with v € . Since 20 covers U, there is an arrow (E*U>D) such that vu € 2.
Then the square

qu

F——B
A——C
f

shows that 20 satisfies condition [WB3].

[WB4] Let a: wf = wg be a 2-cell with w € 20. Since w € U and U satisfies
[WB4], there is an arrow v € ¥ with a 2-cell 8: fv = gv such that av = wf. And
since 20 covers U, there is an arrow u such that vu € 0. Now take w’ = vu € 20
and 3’ = Bu. Then wf’' = aw’.

To check that 20 also satisfies the second part of [WB4], let (w}, 81) and (wh, B2)
be pairs such that w,ws € 20, and By: wif = wig, f2: whf = whg such that
aw] = wfh and awhy = wPs. Since w,w},wh € U and we assume that U satisfies
[WB4], there are arrows s, ¢t such that w)s, wht € U, and invertible 2-cell € : w}s =
wht such that

;. Ps /
fwis —— gwis

fwht e gwht

commutes. Since wis € U, there is an arrow w such that wisu € 20. Then
whtu € W as well, since eu : wisu = whtu is an invertible 2-cell and 2 is closed
under invertible 2-cells by condition [WBS5]. So define s’ = su, ¢ = tu, and
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g = eu: wis’ = wht' to obtain a commutative diagram

;o Bs ’ ot
fwis’ —— gwis

fwgt’ ——> gust’
Bat
as required. O

Theorem 4.3. Let B be a bicategory with a class of arrows U satisfying the con-
ditions [WB1]-[WB5] and a class 20 C U which covers 20 and satisfies [WB1]
and [WBS5]. Then the induced bicategories of fractions are bi-equivalent:

BOU1) ~ B(U™).

Proof. By the universal property of B(0~!) there is a canonical pseudofunctor
J: B~') — B(W~1), which is the identity on objects and sends the span (w, f)
in B(AW~!) to the span (w, f) in B(Y~!). By making the appropriate choices of
representatives, we may also assume that J maps the 2-cell represented by the

diagram
7T f1
w1

a B
\J/ u
w2 f2

in B(2~1) to the 2-cell represented by this same diagram in B(U~1!).
It is obvious that J is an isomorphism on objects. To show that it is essentially
surjective on arrows, let

A<U—C—f>B

be an arrow in B(U~!). Since 2 covers Y, there is an arrow (D*U>C) such
that vu € 9. So the span

A<t p Tr
is in the image of J. Furthermore, there is an invertible 2-cell
D
y 1&
D B
f

/|
N

showing that J is essentially surjective on arrows.

A

IR
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It remains to show that J is fully faithful on 2-cells. To show that it is full on
2-cells, consider the 2-cell represented by the diagram,

(6)

(03

v2
. J«%

with wy, ws € W and wyvy, weve € V. Since W covers Y, there is an arrow u such
that wivu € Q. Since au: wiviu = wevsu is invertible, it follows that woveu €
as well. Hence, the 2-cell represented by

is in the image of J. This diagram represents the same 2-cell as (6), since the
following gives an equivalence between them:

ViU ~ V1
1 u
k\—/

To verify that J is faithful on 2-cells, consider two 2-cells between the same spans

of arrows
/ TX s TX
v1 vy

(7)
a B and B

e
\ l/ N l/
w2 f2 w2 f2

and suppose that these diagrams represent the same 2-cell in B(0~!). This means
that there is an equivalence given by arrows s and ¢ with 2-cells y; and ~» as in
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such that the appropriate diagrams of 2-cells commute and wivis € 0. Since
covers U, there is an arrow u such that wyvisu € 2QJ. So the diagram

AN
N

represents an equivalence of the diagrams in (7) in B(Q20~!). We conclude that J
is fully faithful on 2-cells, and hence is a biequivalence of bicategories. O

Remark 4.4. This theorem implies that the choices made in constructing the
bicategory of fractions in Section 3 do not matter, since 2 is a cover of itself, and
Theorem 4.3 provides an equivalence of bicategories created with different choices.

Remark 4.5. Our notion of a covering of a class of arrows is a dual notion to that
of the right saturation of a class of arrows defined in [10]. The right saturation
enlarges the class of arrows to be inverted, rather than restricting to a smaller
subclass.

The right saturation of a class W of arrows consists of those arrows f: C' — D
for which there exist arrows g: B — C and h: A — B such that gh and fg are both
in W. If W satisfies the conditions BF1-BF5, then so does its saturation, and the
saturation gives rise to an equivalent bicategory of fractions. It is not difficult to
use [WB3] to show that if W C V covers V, then V is a subset of the saturation of
W. This does not immediately imply the equivalence of the induced bicategories of
fraction, because W may not satisfy BF2. However, Theorem 4.3 implies that the
equivalences of bicategories of fractions in [10] apply when we replace BF2 with
[WB2].

Remark 4.6. In the case where one is only interested is obtaining a smaller version
of B(W~1)(X,Y) for certain objects X in the bicategory B, there is a local version
of Theorem 4.3. Given an object X in B and a class of arrows ¥ in B, we say that a
subclass 20 C U covers U at X when the class 20/ X of arrows in 20 with codomain
X covers the class U/ X of arrows in U with codomain X. We write Boy(X,Y) for
the category for spans from X to Y with reverse arrows in 20 and 2-cells as defined
in bicategory of fractions for 20. Now, if U satisfies conditions [WB1]-[WB5] and
200 C U satisfy condition [WB5], there is an equivalence of categories

BQB(Xa Y) :> B(SB_1>(Xa Y)7
for any object Y in B.

4.2. Closure Under Composition. Given a class of arrows 20 in a bicategory B,
let 207 denote the class obtained from 20 by closure under composition and invertible
2-cells. So 20 is the smallest class of arrows in B such that

e Y C @

o If fl,fg € QU and fg o fy is defined, then fs o f; € QH

o If fe 2 and a: f = g is an invertible 2-cell in B, then g € 2.

Then each arrow w € 20 will have an invertible 2-cell a : w = Wy, © - -+ 0wy with
codomain a finite composite of arrows wi, ..., w, € 2.



24 DORETTE PRONK, LAURA SCULL

Lemma 4.7. If 90 satisfies the conditions [WB1]-[WBS5], then W defines a wide
subcategory which satisfies the conditions from [4] for constructing a bicategory of
fractions.

Proof. Since 20 contains all identities, so does @, so 2 satisfies condition BF1
from [4]. And 2 has been created to be closed under composition, verifying BF2.
Conditions BF3-BF5 are equivalent to conditions [WB3]-[WB5] (and BF3 and
BF5 are identical to their weaker versions); see Remark 2.1. So it suffices to check
conditions [WB3]-[WB5].

Since every arrow in W is isomorphic to a composition of finitely many arrows
in 20, repeated application of [WB3] for 27 gives us [WB3] for 2.

To verify condition [WB4], suppose that a: wf = wg and v: w, - w; = w
with wy,...,w, € 20. Repeatedly applying [WB4] for 20 gives us arrows wi,_g

and 2-cells By_p: Wyp—p—1 - wi fw), - W, = Wyp_p_1 - wrgw), ---wl,_, for k =

0,...,n—1such that wy—g - Wp—1Wp Bk = (Y1) - (f))wplwl,_q - wl, 4.
So 81 with w!,w],_; ---w)} is the required lifting.

To check the compatibility condition in [WBA4], consider a: wf = wg with
liftings o: fw' = gw’ and o": fw” = gw”. Since w',w" € @, there are ar-
rows wh,...,wy,wy,...,wy in W with invertible 2-cells, 6: wj, ---w} = w' and
v:wy ---w! = w”. By repeatedly applying condition [WB2] for 20 there are
arrows u',u” such that w'v’ € 20 and w”u” € 20. Hence we can apply [WB4]
for 20 to the liftings o’v’: fw'v’ = gw'v’ and o”u”: fw”uv” = gw”u” and obtain
arrows s,t and a 2-cell e: w'u’s = w”’u”"t showing compatibility of these liftings.
This then gives us also the required arrows u’'s and u”¢ with the cell € to establish
compatibiliﬁ}\l for the original liftings.

Finally, 20 satisfies condition BF5 by construction. (Il

Theorem 4.8. If 2 satisfies the conditions [WB1]-[WB5], then B0~ 1) ~
B(U~1), where B(W~1) is the bicategory of fractions from [4] and B(QW~1) is the
bicategory of fractions defined in Section 3.

Proof. We have shown that whenever a class of arrows 2 satisfies the stronger
conditions BF1-BF5, the resulting bicategory of fractions is equivalent to the tra-
ditional one from [4]; see Remarks 3.5(1) and 4.4. So B(@‘l) may be taken to be
the classical bicategory of fractions and Theorem 4.3 now gives us the equivalence

of the resulting bicategories of fractions. O

Corollary 4.9. When 20 satisfies the conditions [WB1]-[WBS5], the inclusion
pseudo functor Jyg: B — B(Q~1) satisfies the universal property for the bicategory
of fractions.

Proof. A pseudo functor B — C sends the arrows in 2J to equivalences if and only
if it sends the arrows in 2 to equivalences. O

This result also applies to results for categories of fractions in the 1-category
case given in [2].
Corollary 4.10. A class of arrows W in a category C allows for the construction
of a category of right fractions C[W 1] if it satisfies the following conditions:

(1) W contains all identities;
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(2) For any pair of composable arrows B———=C—"=D in W there is an

arrow A—=—=B such that A—""-D is in W;

(3) For any arrow w € W and any arrow | which shares its codomain with w,
there is an arrow w' € W and an arrow f' such that the following square
is defined and commutes:

(4) Given w € W and parallel arrows f1, fa such that wf; = wfa, then there is
an arrow w' € W such that fiw' = fouw',

’ fl
w w
_
_— _—

b
Examples 4.11. (1) When one wants to add the inverse for an arrow w in a
monoid, the class W in the traditional Gabriel-Zisman construction of [2]
would be required to contain all powers of w. In our case W only needs to
contain a cofinal set of powers of w.

(2) Consider the category of atlases and atlas maps for manifolds. In order
to obtain the category containing all smooth maps between manifolds us-
ing the original conditions, one needs takes the category of fractions with
respect to the atlas refinements. With the new theory we may restrict our-
selves to refinements in which no charts are repeated, or any other family
of refinements that satisfies condition [WB2].

5. SIMPLIFYING 2-CELL REPRESENTATIVES

The universal homomorphism Joy: B — B(20~!) is defined by the identity on

objects, and takes an arrow f: A — B to the generalized arrow A 24y AN B

and a 2-cell a: f = g to a 2-cell diagram of the form below.

As Tommasini observed in Remark 3.5 of [9], this universal homomorphism is nei-
ther 2-full nor 2-faithful in general. The map Jyy fails to be 2-full because not every
2-cell between Joy(f) and Joy(g) needs to have a representative of this particular
form. The map Jyy fails to be 2-faithful because two 2-cell diagrams of this form,
say with distinct right cells 8 and -y, could represent the same 2-cell in the bicate-
gory of fractions when there is an arrow ¢t € 20 such that 5t = t. This leads us to
consider the more general issue of the equivalence relation on the 2-cell diagrams.

In this section we discuss some variations of [WB4] and consider when a 2-cell
in the bicategory of fractions can be represented by a 2-cell diagram with a given



26 DORETTE PRONK, LAURA SCULL

left-hand side. In the following section, we will look at choosing these left-hand
sides to have nice additional properties that will simplify some of the composition
constructions. In some cases representatives with a given left-hand side will even
be unique. We will prove in [6] that some of these properties hold for the case of
essential equivalences between orbifold étale groupoids. In fact they apply more
generally to any fully faithful maps between étale topological groupoids.

The following properties will be required in various parts of this section.

Definition 5.1. A class 20 of arrows in a bicategory B satisfies the condition

[UWBA4]: (unitary [WB4]) if for any 2-cell a: wf = wg with w € 20 there
is a 2-cell @: f = g such that wa = a.

[UUWB4Y]: if for any 2-cell a: wf = wg with w € 20 there is a unique 2-cell
a: f = g such that wa = a.

[co-UWBM4]: if for any 2-cell a: fw = gw with w € 20 there is a 2-cell
o': f = g such that o’w = «.

[co-UUWBY4]: if for any 2-cell a: fw = gw with w € 20 there is a unique
2-cell o’: f = g such that o'w = «.

Lemma 5.2. Let 20 be a class of arrows in B satisfying the conditions [WB1]-
[WBS5] and [co-UWBA4]. Given any 2-cell diagram

(3)
VN

[

\J/ V2
u2 f2

in B(W~1) and any square

in B with u;t; € W fori=1,2, there is a 2-cell § such that the diagram

9) )
I
N

represents the same 2-cell in B(A~1) as (8).
Proof. By [WB3] there is a square

31
_—
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with 91 € 20 and 0 invertible. By [WB4] there is an arrow @; € 2 and an
invertible 2-cell 8: (v1t1)t1 = (£101)%;. Now consider the pasting of the diagram

vy
—_—
t_l 711 1 U
V2 @
7 s
ty
N v
ViUl uz
—_—
ta

By [WB4] there is an arrow @iy € 20 with an invertible 2-cell ¢: (ve(t1@1))t2 =
(t2(v111))Us. Finally, we need to ensure that certain compositions of arrows are in
0. First consider the composition of arrows v1t1ts. Each of the three arrows in
this composition is in 20, so by [WB2] there is an arrow s such that o1u, 25 € 20.
Furthermore, uste € 20 as well, so there is an arrow r such that (usts)(01U1G28)r €
0. Then we have the following equality of pastings of 2-cells:

flulﬁgsr {17111228T U1
VU1 U2 ST OtigsT v1 V111U ST ¢sr v a uy
t1
—_— =
ta u2
t2l 2 \Lul
—
u2

We want to construct a cell § such that 5 and ¢ fit into a similar equality of 2-cell
pastings. So consider the following pasting diagram,

t1

Uitntes L f1

(Ouzs) "
f1ﬁ1ﬁ23
= B

v2

. ¢s

D1U1T2s P
ta

By condition [co-UWBA4] there is a 2-cell §: fit; = fato such that §01G;ass is
equal to the pasting of this diagram. Then we get that

tity g sr tiaytgsr v1
17117«11”&28Tl Otigsr l”l 1711211128Tl (sr \LUQ B lfl
. —
t2 f2
tgl 5 lfl
_ >
fa
and hence we conclude that with § thus defined, (9) is equivalent to (8). O

One might hope that adding condition [co-UUWB4] to the conditions of Lemma
5.2 would imply uniqueness of the 2-cell 4, or in general, that the [WB1]-[WB5]
conditions together with [co-UUWBA4] imply that a given 2-cell has at most one
diagram with a given left hand side. Unfortunately, this is not the case, because we
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do not require that the arrows s and ¢ are in 2J in the definition of the equivalence
relation on 2-cell diagrams, and so [co-UUWBA4] does not apply where we need it.
However, they will be in 27 if the left hand arrows in the spans are identity arrows.
Hence, we obtain the uniqueness result for cells between Joy(f) and Joyg(g). So we
have the following result.

Proposition 5.3. Suppose that 20 be a class of arrows in a bicategory B satisfying
conditions [WB1]-[WBS5] and [co-UUWBA4|. Then the universal homomorphism
Usy: B — B0~ 1) is 2-full and 2-faithful.

Proof. To show that the homomorphism is 2-full, consider an arbitrary 2-cell be-
tween Joy(f) and Jap(g). This will have a representative of the form

Note that there is a square

A A
1A\L LA illA
AT:A

and Lemma 5.2 says that we can represent the 2-cell between Joy(f) and Joy(g)
using this square on the left side. Thus, the 2-cell is the image of a 2-cell in B.

To show that the map Jyy is 2-faithful, suppose that we have two 2-cells Joy(a)
and Jay(8), represented by

S -
N N

which represent the same 2-cell in B(20~1). Then there must be maps r1,70: E = A
with 2-cells €1, €5 as in

1a 1a
€1

A< E-2.4

oA

satisfying the equations to make the two diagrams in (10) equivalent. Since the
left hand squares are just identities, this implies that €1 = €2: r; = ro. The other
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equation then implies that coe; = 8 oeq. Since g7 is invertible, this implies that
ary = Bry.

Now note that 147 € 20, so r; € 20. Hence, [co-UUWB4] implies that there
is a unique v: f = g such that yr; = ar;. Hence, a = . O

We also have the following uniqueness result.

Theorem 5.4. Let 2T be a class of arrows in a bicategory B satisfying conditions
[WB1]-[WB5] and [co-UUWBA4]| and the 3-for-2 property. Then each 2-cell in
B(Q0~1Y) has a unique representative with a given left-hand 2-cell.

Proof. In the proof of Proposition 5.3, uniqueness followed because r; € 20 allowed
us to apply the [co-UUWBA4] condition. In this case, the 2-for-3 condition says
that if u; and uyr; are both in 2, then r; is also in 20. So the same argument
applies.

O

6. BICATEGORIES WITH PSEUDO PULLBACKS

We now apply the ideas of Section 5 to representing generalized 2-cells using
pseudo-pullbacks. If a bicategory has all pseudo pullbacks of the form

P w

f'iplf

-
w

where w € 20, and the class 2 is stable under these pseudo pullbacks in the sense
that w € 20 implies that w € 2, it is possible to use the pseudo pullbacks as chosen
squares as in [C2] of Notation 3.2 in the construction of B(20~1). This makes the
construction of this bicategory more canonical; see [10] for instance.

We are interested in a different use of the pseudo pullbacks: as the left-hand
sides of the generalized 2-cell diagrams. This will allow us to simplify the horizontal
composition operations. It will require some additional assumptions on B, so we
will develop conditions under which each 2-cell has a representative diagram where
a is a pseudo pullback. The first condition is the following.

Definition 6.1. We say that 20 is pullback closed if for any pseudo pullback
P—">B
vi P lv
A——=C
with arrows u,v € 9, the composite uv is again in 20.
Since p is invertible, [WB5] will imply that v € 20 as well.

Proposition 6.2. If B has all pullbacks for cospans with at least one leg in 20, and
0 satisfies conditions [WB1]-[WBS5] together with [co-UWBA4] and is pullback
closed, then each 2-cell in B(2~1) has a representative with the left hand 2-cell a
pseudo pullback.
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Proof. For any 2-cell diagram,

we have an induced universal arrow

AI

7B

A » P<Y2L (C

RN

A//

such that pw = «a. Since 20 is pullback closed, vv and 9'v’ are in 20, and so Lemma

5.2 shows that we can represent the 2-cell using the pseudo pullback.
|

Moreover, the argument from Thereom 5.4 gives the following.

Proposition 6.3. If 20 satisfies conditions [WB1]-[WB5] and [co-UUWB4],
and is pullback closed and satisfies the 3-for-2 condition, the representation of a
2-cell is unique.

Vertical composition of 2-cells is not simplified by taking representatives with
pseudo pullbacks. In fact it is slightly complicated, since we need to calculate the
vertical composition of the 2-cell diagrams and then construct an equivalent 2-cell
diagram that has the pseudo pullback on the left-hand side, using the lifting as
in the proof of Lemma 5.2. However, the horizontal whiskering operations can be
significantly simplified by using pseudo pullbacks, as we show in the following two
subsections.

6.1. Left Whiskering With Pullbacks. Throughout this subsection, we will as-
sume that 20 satisfies all conditions of Proposition 6.2: conditions [WB1]-[WBS5],
pullback closed, and [co-UWBA4]. We consider whiskering of the form

(11) Al

A Puruy Py, B B Y B’ g
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We construct the composition of the 1-cells using chosen squares 71 and 2 as in
Section 3.1,

D f1 B’ D" g B’
vll Y1 iv and vgi Y2 \LU
A'——B A" ——~B

1 2

such that wy := w177 and wy := us?v9 are in 2. Let

™ ,
Rul,wz >D

w;l Pwq,woy lwl_ulvl

D//

W2 =U2V2

be the pseudo pullback. Then there is a unique arrow h: Py, w, — Py, 4, such
that mh = vy, meh = Uomh and py, ush = Puw,,w,- Finally, let 8 be the lifting of
the diagram,

with respect to v. Then the result of whiskering as in (11) is given by

(12) A<D i
w1 f1
/ T
A Pwy,wy P’wl,wg B B’ i> C

|
v fo

A// D//
V2
Lemma 6.4. Diagram (12) is equivalent to the diagram (3) obtained for this type
of whiskering in Section 3.1.

Proof. Tt was shown in [9] that any choice of the squares and liftings in the com-
position construction of Section 3.1 give equivalent 2-cell diagrams as long as we
use the composition squares from [C2] of Notation 3.2 for the composition of the
1-cells and the squares have the right properties. The only place where the chosen
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squares are essential is in the composition of the 1-cells, so with the exception of
the cells 71 and 5 we can replace all cells used in the whiskering algorithm from
Section 3.1 with cells and squares we have just constructed above. So we will redo
the construction from Section 3.1 and use the universal properties of the pseudo
pullbacks to adjust the squares to obtain a 2-cell diagram that is clearly equivalent
to (12).

Recall that in Section 3.1 we used chosen squares 01, d2 and d3 to obtain diagrams

(13)

u1 U1
™1

Puy,ug Pul.ug 03

T
xi Ba
02

By the universal property of the pseudo pullback there is an arrow ¢: T — Py,
such that the following diagram pastes to the same 2-cell as the first diagram in
(13),

Uy
T ty1

Puy,ug Pul,uz ~— T

\lr@ to
U2
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We now replace the chosen squares 1, do by the new commuting squares in this
diagram and let 3 = id;. We obtain the following diagram,

This is almost a 2-cell diagram: we just need to take a lifting B’ of the right-hand
side with respect to v as in [co-UWB4].
To show that the resulting 2-cell,

-
(14) U f1
Tﬂ'l Tﬂ'ltl
purns Py <———T  § 9
T2 Tota
“ f2
-

is equivalent to (12), note that there is a unique arrow ¢': T — Py, w, such that
Puws sl = Pus upt- Now Bt' is another lifting of the right-hand side in (11), so the
diagrams with 5" and 8¢’ on the left-hand side are equivalent. Hence, (12) and (14)
are equivalent. O

6.2. Right Whiskering With Pullbacks. Throughout this section, we will as-
sume all conditions of Proposition 6.2: conditions [WB1]-[WBS5], pullback closed,
and [co-UWBA4]. We additionally assume that 20 satisfies the dual [UWB4] con-
dition. We now consider the composition

(15) B
V1 Tﬂ_l g1
A< a T BT P,

ST
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where P,, ., is the pseudo pullback of v; and v». First we construct the composition
of the 1-cells using chosen squares [C2]

D’ f1 B D" f2 B
Ull 71 im and vzi 2 lvz
A——B A——B

such that w1 := w07 and ug := uvs are in 2U as in Section 3.2. Let

T /
Pu11u2 D

Wzl Puy,ug l“l

DII?A

be the pseudo pullback of u; and us. Note that py, .,: ut1T1 = uvam2. By
[UWB¢4], there is a lifting py, u,: 9171 = U2T2. This cell can be pasted with v,
and 79 to form

(16) p—1
T l \
U1 71
Puvay v A - B
T2 2
D" B
f2

By the universal property of the pseudo pullback P,, ,,, there is a unique arrow
(17) h: Py wy = Poy o, such that mh = fim] and moh = forrh

and furthermore, p,, »,h is equal to the pasting of (16). We claim that the following
2-cell diagram represents the result of whiskering (15):

f1

(18) D B
u1 T _ T g1
T = ™1
A Puy,ug Pu17u2 — Pvl,vz B

D// B//

P

Lemma 6.5. Diagram (18) is equivalent to the diagram (5) obtained for this type
of whiskering in Section 3.2.

Proof. Again, we use the results from [9] [Section 4] that the equivalence classes of
the resulting 2-cell diagrams in the whiskering constructions and vertical composi-
tion construction do not depend on the choice of the squares and liftings used as
long as we use the chosen composition of 1-cells and the appropriate arrows are in
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25. We will now go through the algorithm of Section 3.2 and substitute the cells
above. We will show that the result is precisely (18).
In (4), we take for §; and Jy respectively,

This allows us to take r; and 79 to be identity arrows and ¢; = 7; for i = 1,2.
Furthermore, ¢; is given by

h h
—_—

7 J/ l ) /l
T = ™1 = 1
_— and > T Puyvy

f1 f2
U1 Y1 v1 _ Y2 v1
Vo v2
_— —_
f f

h h

LN
T2 _ T2 T2

T = ™1 = T
Z 1
Puy,ug _— = ———> " Puy,vp

2

_ U1 M1 v1 _ Y2 v1
Vo Vo v2

_— _—

by (16) and (17).
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Omitting the identity coherence cells, the resulting 2-cell diagram is
(19)

where all unlabeled arrows are identity arrows. Composing the cells in both the
left-hand side and the right-hand side of this diagram gives us the 2-cell diagram
in (18) as required. O

7. FUTURE DIRECTIONS: AN APPLICATION TO ORBIFOLDS

In this section, we briefly sketch how the results in this paper apply to the
bicategory of orbigroupoids. Details will be given in [6]; here we only give an
overview.

One way to define orbifolds is by using the 2-category of orbigroupoids: étale
groupoids internal to a category of suitable topological spaces, such as topological
manifolds or some more general category of spaces. Then we consider the class
of essential equivalences, maps that are categorical equivalences internal to the
topological category chosen: they satisfy a suitably topologized version of being
essentially surjective and fully faithful. For more details, see [1, 3]. We define
orbifolds as the bicategory of fractions of orbigroupoids with respect to the class
of essential equivalences. The class of essential equivalences satisfies the 3-for-2
condition [5], are pullback closed as in Definition 6.1, and satisfy the BF conditions
from [4] and the new conditions [UUWB4| and [Co-UUWB4]|. Thus, we can
apply the results of this paper to get the following:

Theorem 7.1. (1) The universal map from the 2-category of orbigroupoids to
its bicategory of fractions with respect to the class 20 of essential equiva-
lences,

Jay : OrbiGroupoids — OrbiGroupoids(20~!)

s 2-fully faithful.
(2) Each 2-cell in OrbiGroupoids(0~1) has a unique representation by a
2-cell diagram with any given left hand side.
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(3) The 2-cells in OrbiGroupoids(20~1) can be uniquely represented by dia-
grams with pseudo pullbacks as left hand 2-cells and horizontal composition
can be calculated as in Section 6.

Furthermore, there is a subclass € C 27 of essential covering maps, defined by,

Definition 7.2. Let G be an étale groupoid. An essential covering map ¢ : G*(U) —
G is determined by a (non-repeating) collection of open subsets U C P(Gp) which
meets every orbit of G (although it may not cover Gg). Then G*(U) is the groupoid
defined by G* (U)o = [ e, U with ff : G(U)o — Go defined by the inclusion maps.
Furthermore, G(U); and the remaining maps are determined by the pullback dia-
gram

U, —>— g

()| e
GU)o x GU)o ————Go % Go
Po X¥o
The class € of essential covering maps is locally small and satisfies conditions
[WB1]-[WB5], and [UUWB4] and [Co-UUWBA4]. So we get a bicategory
OrbiGroupoids(€~!) with small hom-categories, where Jg : OrbiGroupoids —
OrbiGroupoids(€1) is 2-fully faithful. Furthermore, the essential covering maps
cover the essential equivalences in the sense described in Definition 4.1. Hence, there
is an equivalence of bicategories, OrbiGroupoids(¢~!) ~ OrbiGroupoids(20~1).
Now € is not pullback-closed. However, because of this equivalence of bicate-
gories we can use the 2-cell diagrams from OrbiGroupoids(20~1) as 2-cells be-
tween arrows in OrbiGroupoids(€~!), and hence represent these by 2-cell dia-
grams involving pseudo pullbacks; these are not necessarily in the shape required
of 2-cell diagrams in OrbiGroupoids(¢~1!) because certain composites will not
be in €, but they can be used as an alternate way to represent the 2-cells in this
bicategory. This allows us to use the simplified composition described in Section 6.
So we conclude:

Theorem 7.3. (1) The bicategory of fractions of orbigroupoids with respect to

essential covering maps, OrbiGroupoids(€~1!) has small hom-categories.

(2) The universal mapping, Jay: OrbiGroupoids — OrbiGroupoids(¢1)
is 2-fully faithful.

(3) Each 2-cell in OrbiGroupoids(€~1) has a unique representation by a 2-
cell diagram with any given left hand side.

(4) The 2-cells in OrbiGroupoids(¢€~1) can be uniquely represented by dia-
grams with pseudo pullbacks as left hand 2-cells, and horizontal composition
can be calculated as in Section 6.

For further details, proofs, and applications, see [6].
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APPENDIX APPENDIX A ASSOCIATIVITY PART I: ASSOCIATIVITY 2-CELLS

The goal of these appendices is to describe the associativity 2-cells and show that
they satisfy the coherence pentagon condition. In Appendix A we will construct
the associativity 2-cells, based on an extension of Proposition 2.5. In Appendix B
we will sketch the coherence conditions.

Consider the 2-cells $ and v in Proposition 2.5. They give rise to a generalized
2-cell in B(QW~1),

Dy

HU/T 91
S1

X w F ¥ A

S2
uv2 92

D,

We show that this is the unique cell with this property: if 8’ and 4 also satisfy
the conditions of Proposition 2.5, then the 2-cell diagram defined by 5’ and v/ is
equivalent to this one.

Proposition A.1. For v,w: A — B in 20 and f: C — B any arrow in B, and
any two squares,

DlHA DQHA
wll Oé1<~= w w2l Oé2<~= w
C—>B C——B

X X
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with vwy, vwe € W, there is a unique 2-cell

(20) D,

Dy
in B(Q0~1) such that the composites (azsa) - (fB3) and (wy) - (a1s1) are equal.
Proof. Let
(21) D,

be another 2-cell diagram with the property that the composites (asts) - (f5’) and
(wy') - (ayty) are equal. Let

vwity
be a square as in condition [WB3] and let ¢ with

10

be a lifting as in [WBA4] for ¢ with respect to vw;. We use this cell in the following
pasting,

19

Use condition [WB4] to obtain an arrow 7 and a cell

1100
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which form a lifting for this pasting with respect to vws. We would like to use the
diagram

S1
6T
Zl 0
—

t1
5100
-

N

to show that the two 2-cell diagrams are equivalent. We will see that we still need
to make a couple of small adjustments.
We have already that the following pastings are equal:

To obtain the corresponding result with +,~’ instead of 3, 3, we need to compose
with the arrow w in order to apply our hypothesis. We will also compose the pasting
diagram we are interested in with the cells 5’ and as. This leads to the following
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calculation,

»
vy
)
=
»
—
h
=

|

&\
&

(o)
\
Q\
%
R
[~

<

—_— > [e3} = E—— atty
S10V to , wa 510V
t1 f t
e
w1

NEPAY
VAVEVEV

oy

%11’}5
@181

1 ANE:
ANRVAFA:

E—
t1 w1
f1
_—
s1
— v
t10v S2 fa
= —_ a
- w2
N} B
5100 1
_—

E

2

/N A

™
o+
N

/N
A
EVAVZ

N

A

S

Since 8’ and «o are invertible 2-cells, we conclude that

El U
—_—
5100 5T s1
1100 S1
? = —_— —>
1
to 'y/ fl S 'l?’l}l 3 S2 7Y l fl
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By condition [WB4] there is an arrow w € 20 such that

w 1100

t% —
1
tzl 'y/ lfl Sl’ﬁvl 5 lSQ Y lfl
—_— _—— >
f2 t2 f2

Finally, let 7 be an arrow such that the composition vwys1t,0vwr € 20. Then the

cells

Svwr

51 00Wr T 0vwr

oA

satisfy the equations to establish the fact that (20) and (21) are equivalent 2-cell
O

diagrams, as claimed.

Notation A.2. We will say that the 2-cell

Dy

above connects the squares a1 and .

Proposition A.3. For any path of composable spans:

T NN\

there is an associativity 2-cell
V(ws, fa), (w2, fo) (w1, f1) - (W3, f3) © (w2, f2 0 (w1, f1)) = (w3, f3) o (w2, f2)) o (w1, f1)
between the composites as constructed in Section 3.

Proof. If we first compose the left hand pair and use the choices as described in
the construction of B(QJ~1), we obtain (w3, f3) o (w2, f20 (w1, f1)) as the following



BICATEGORIES OF FRACTIONS REVISITED 43
span,
(23)
f2

4
\Bl
/ﬁﬁk/\

Note that wiwaws € 2. If we first compose the right hand pair we get ((ws, f3) o
(wa, f2)) o (w1, f1) as the span,

P2
VN
NN N

where wiwse € 20 and wows € 2. The associativity 2-cell will be a vertical com-
posite of two 2-cells going through the intermediate:

(24)

(25)

.
o NG \
NN AN

where w;ww3 € W and wows € W. We construct the associativity 2-cell as a
vertical composition of two 2-cells: (23) = (25) and (25) = (24).

(23) = (25): the diagrams in (23) and (25) only differ in the following chosen
squares:

W3 l B1 lws and w3 l az w3 l Qs lﬂm

l fa f2 l 7 f2
w1 Wsa w1 Wsa

to

VY/
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By Proposition A.1 there is a unique 2-cell in B(20~1) connecting these two squares.
Let

(w1w2) Wy fe
S1

(wiwz)er

be a representing diagram for this 2-cell. Composing it with f3 gives,

(26) _
(wlﬁz)sl f351
>~ tlJ/ —
(w1 )73 7T,

(25) = (24): the diagrams in (25) and (24) only differ by the following two
squares:

fi f1
_— —_—
ws| @3 |ws W3
f1
— and Wy | B
Wo [e3] iﬂ& lwz
— —_—
f1 f1
w1 w1

By Proposition A.1 there is a unique 2-cell in B(20~1) connecting these two squares.

Let
S2
_ 5

W1 W2€E2

> t2 Z
w1 wsa fl

be a representing diagram for this 2-cell. Composing with fsf, gives,

W1W2E2 f3fa02
w1w2 fafaf1

The associativity 2-cell for the composable path given in (22) is the vertical
composition of (26) and (27). To calculate this composition, we use a choices as in

(27)
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[C5] and [C6] of Notation 3.2 to obtain a square

with wWawssat: € W. Then the associativity 2-cell a(wy, f,),(ws, f2), (w1, f1) 15 T€Pre-
sented by

t1
52 f301

f372?1
%]
%fz 92

fsfahi

APPENDIX APPENDIX B  ASSOCIATIVITY PART II: COHERENCE

To prove the required coherence result, we will view the diagram (25) as a kind of
common subdivision of (23) and (24), and break up the coherence into transitions
given by Proposition A.1, and transitions with two layers of cells. There are two
versions of this two layer case. They seem dual to each other, but their proofs are
not, as the arrows in 20 play very different roles. The two cases are covered in
Propositions B.1 and B.2 below.

Proposition B.1. Suppose we have two diagrams in B,

fa f2

(28) — and k.
ws ag w3 w3 B2 w3
F1 f
—_— —_—
f2 f2
Wa [e31 J{wz Wa B1 lwz
—_— —_—
f1 f1
w1 w1

with two 2-cell diagrams

w1W2 f1
W1E; d; fOT’ = 1, 2,

w1 Wz fi
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both connecting a1 and 1. Suppose that there are 2-cells o;, 7; and 0; fori=1,2
as in

w3
-~
Wo T T fz
Si g; Si
v3,i
[=r3 - 0;
B ts Ti Z,L -
w2 f2
-~
w3
such that wiwowss; € 2 and
Si ?2 Si i ?2
w3
0; _ g a2
V3. w3 = V3,4 w3
Si
Ti B2 0;

fori=1,2. Then the 2-cell diagrams,

(29)
w3 w3
- -
w1 W2 _ f2 w1 W2 _ f2
£ o1 S1 2 g2 S2
3,1 V3,2
wi€1 -~ 01 and wi€2 -~ 02
R t1 T1 1 o to T2 1o ~
w1 Fa w12 Jo
- -
77)3 IES

are equivalent.

Proof. By Proposition A.1 we know that

V T f1 17 T I
51 s2
wiEey 81 and wien 5o

w1 Wz f w1 W2 f

are equivalent 2-cell diagrams as they both connect the same pair of squares. So

there are 2-cells
S1 S2
(7]
T1 T2
-
t1 to
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such that
T T s1 r1 T s1
—_— _— — —_— _— >
rzi ® lﬁ = Tzl Pty wiel \Lwlw’.’ and T2i ¥ isl = TZ\L P ltl g1 lfl
_— _— _— —_—
52 ta w1 W 52 to }'1
tzl w12 lwﬂvz t2i 2 lfl
—_— —_—
wiwz f1

. U3,i T . — — .
Now consider the cospan ——=<——_ Since both w1Was;v3,; and wiWas;r; are in

20 we can use conditions [WB3], [WB4] and [WB2] to obtain a square with an
invertible 2-cell,

with wiwWys;7;03,; € W. We apply the same conditions then to wlﬁgslrlvgl and
w1 W8TV 5 to Obtain a square with an invertible 2-cell,

such that wiwWas171v3 ju1 € W. Now write py := pjuy, T1 = rjur, U3 1= vy U1, p2
for the pasting of

vz,ll P1 Usl P2 ivs,z

T1 T2
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Now consider the following two pasting diagrams,

U)IUJQ\L wl'le

Use condition [WBA4] to lift the first pasting with respect to wiWaws to obtain
¢’ §1T1u = SaTou; similarly, apply condition [WB4] to the pasting of the second
diagram composed with u and lift with respect to w;wsw3 to obtain 1Z Ch T un =
toTouu’. Now write 77 = Frun/, 7o = Tour/, and @ = ¢'v’. Then the reader may
check that the 2-cells

witness to the 2-cell diagrams in (29) being equivalent. O

The following proposition is the dual to the previous one; however, the proof is
unfortunately not dual due to the special role played by arrows in 20.

Proposition B.2. Suppose we have two diagrams in B,

(30) w1y Wo and w1 W
f1 a 11 f1 B1 f
w3 w3
-~ <~ -~ <
w2 w2
f2l Q2 ifz f2i B2 l;
-~ -~
w3 w3

with two 2-cell diagrams

w2W3 fa
W2E; d; fOT’ = 1, 2,

w2 Ws fa
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both connecting as and Po. Suppose that there are 2-cells o;, 7; and (; fori=1,2

as in,
fi
- B
S N
S; g Sq
Gi 8;
g1,i
w2 f2
—_—
f1
such that
(31)
Wao 5S4 Wo _ S5
/ \ fli
a1 ag;
\ / g1,i = fll ws \lgu
w2 t;
- £
w2 ts
\ / B /
wa2ws3 w3
fori=1,2. Then the 2-cell diagrams,
(32)
f1 Fi
% _ —_— _
351 o1 81 So o2 S2
w11 and w12 s 02
/ w ¥2 b lt2 f
w1 W wilwsz fg
—_—
f1

are equivalent.

Proof. By Proposition A.1 we know that

51
waey 51 and w2E2 P
tv
f2

w2 W3

are equivalent 2-cell diagrams as they both connect the same pair of squares. So

there are 2-cells
(33)
S1 S2
/ w\
T1 T2
-
\w/
t1 to
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such that
(34)

1 1 S1 T1 71 S1
R _— _— _—
rzl ® J{ﬁ = TQJ, P t‘l wW2E1 lwgws and T'2l ¥ lsl = TEJ/ P J/tl 01 J{fz
R *>¢*> _— _—

52 to WwoWs3 S2 to I3
tzi WaE2 lwgwg tzl O2 lfz
- —_—

Wwaw3 f2

Note that the composites w,wss; € 2 for both ¢« = 1 and ¢ = 2. So we can use
conditions [WB3], [WB4] and [WB2] to obtain an invertible 2-cell ¢’ as in

51
&
w1 wWa ,
-

with wo3,;7; € 20. We want to define a corresponding cell ¢'. So consider the
diagram,

t
(35) —_—
\ wl’[l‘)z
T;T S1 w1C1\
/\ w1 W2
©® —_—
réi/sz wl%
1W2
O
ta

Since w1y € 2, we apply conditions [WB4] and [WB2] to lift the pasting of this
diagram with respect to wiws to obtain ¢': t;rjw’ = terbw’. Now note that wa1)’

and the composite of
t
>
\ w2
Tllw/T 1 41\
’ /\~\ Wa
w —_——

%)
T;w,i 52/@/

/ Wa

_

o

are both liftings of the pasting of (35) with respect to wy. So by condition| WB4]
there is an arrow w” such that 1)’w” is equal to the composition of this last pasting
with w”. We will need this in our calculations, so we write 7; = rjw'w”, ¢ =

©'w'w"”, and ¢ = 1'w". This gives us the following diagram

(36)

S1 52
@

T1 T2
- —>
_ ¥ _
t1 to
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These cells satisfy the required equation with the (; by construction:

T1 1 S1

To 7] N = T2 v w1 (1 w1 W2
S2

1o w1 Wa
to w12 w1 Wa

- o
w1 Ws

We will next see that after precomposing with an appropriate arrow they will also
satisfy the equation for the composites of the right hand sides of (32). Since the
cells ¢ and ¢ satisfy the equation with the §; as stated in (34), we will focus on
the cylinder with the diagram (33) as bottom and (36) as top. The sides of this
cylinder are given by

Before we can discuss the commutativity of this cylinder, we need to build cells to
fill in the following frame,

Since w1 Was1m € W, we can use conditions [WB3], [WB4] and [WB2] to con-
struct an invertible 2-cell p; as in

where wwe5171u € 20. Use this to construct a left hand square in the frame.
To obtain a cell to fill the remaining right hand square, we consider the following
pasting diagram,

E——
\~ l
91,1 1 fl\ ta

[ \L t1
wgﬁg
T2 v to
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Now lift with respect to wowsts to obtain po: gmfgut~ = rohit. So the middle
frame gets filled as follows:

S1 S2
Fut

Tiut Tout
dut

1 1o

We have defined ps in such a way that if the half of the cylinder that contains the
¥, 1,71 and 1o gets composed with wows it commutes. Condition [WB4] now gives
that there is an arrow x such that if we precompose the top of the cylinder and the
middle frame both with x, this half of the cylinder commutes. So now the top and
the middle frame are respectively,

Tirutx Toutx

S1 S2 ‘
_ gZufx o and 91,1 p1t~m hitx P2T 91,2
Trutx Toutx 1 \L To
Ju?a:
21 22

To investigate the commutativity of the other half of the cylinder, we will show

that
(37)
T utz . S1
putx
Flut~x 51
Toute 52
hitx prix g1,1 01 7 = hitx p2T 91,2 02 IR

71 51 T2 S2
waW3 wWoW2
» W2€E2
T2 52 to

WoEQ B —
Wa2wW3

t2 ’wz’lT)g
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We begin by rewriting the left hand side. By (34) this pasting is equal to the
pasting of

Tiutx 51

h1‘t‘lﬂfl plfa: Lgl‘l g1 ifl
T1 S1
Tzl P tlt wW2€E1 lwz'um

t2 w2 ﬁg

We use (34) to rewrite the right two 2-cells in this diagram to get

?1 U;QL 51 f]
- ~ ty w2 _
hqtﬂfl pitx igl 1 ¢1 art
— T1 _s wWaW3
" w2 h
T2 l 81 lfl B1
t2 1,U27’173
Now note that we have constructed ¢ and 1 such that
S1T1 T1
e —_—
, _ I N NG
tiT | QT1 | W2 = T1 T\ga
— > b1 l)
Wa
_ 12 G2 Wa
t1
_—
W
so we make this replacement in the diagram above to obtain,
utx T1
_ \ _ R
T1 T2 4 _
_ _ . i
hitx pitx -
\ 32
gi1 11 1o ¢2 Wa oy
1 - \ _
_— 1 —_— w2w3
Wo \
T2 P 5 l 1 B fl\
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We use (34) again; this time to rewrite the bottom right hand corner of the diagram:

utx T1
_ \ _ S1
T1 T2 L4 _
~ ~ ~ 1\ f1
hitx pitx [
\52
gi1,1 1 ta 1,2 o2
S2
71 i \ \ _
_— T1 7'2/ W2W3
= c
T2 P 5 lfl 2 waE2
t2 w2ﬂ73
and by the definition of ps, this is equal to
utw T1
\ _ S1
7’2\9”
hlfa:
P2 \ 02/
> w2W3
T2 /t2 W2E2
ta wao W3

This completes our proof of equation (37). Since e5 is invertible it follows that

T utx
cputa:

Tiutx 51

rgutx
hitz prtx 91,1 01 ?1 = hitx p2T 91,2 02 fi
T2 S2
\ / w woW2

It follows from condition [WB4] that there is an arrow y such that

rlutmy
Lputw
71ut~my 51
rgutmy
hitxy pitzy 91,1 01 fi = hitzy p2zY 91,2 02 f1

T1 S1 T2 S2

©
T2 S2
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Hence, it follows from the arguments above that the cells

utwy
T1 ut:cy To uf:ry
\u‘?‘y

witness to the equivalence of the 2-cell diagrams in (equivcells2). O

Remark B.3. Analogous to the situation in the Proposition A.1, we say that the
2-cell diagrams in (29) (respectively in (32)) connect the 2-cell configurations in
(28) (respectively (30)). Propositions B.1 and B.2 only state uniqueness results,
but it is not hard to prove existence as well. Since we will only need uniqueness in
the proof of associativity coherence, we will not include the proof of existence.

Proposition B.4. For any composable path of four spans,

VNN NN

the associativity 2-cells defined in Propostion A.3 make the associativity coherence
pentagon commute.

Proof. The following diagram shows the associativity coherence pentagon.

BB
@ f'@

SR< %@
/@

@\ @

We have divided the pentagon into regions corresponding to various subdivisions,
and we will show that each region commutes by one of the three results in Theorems
A.1, B.1 and B.2. We sketch the argument for each region, leaving the details for
the reader.
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For region @ both composites provide a whiskering of a 2-cell that connects the
squares

—_— _ —>
\L ag as
® and ——
\L oy Qs
_—

Since there is only one such 2-cell by Proposition A.1, this region commutes.
For region @ the two compositions connect the diagrams

as in Proposition B.1.

Region Q) is the dual of region @ and follows from Proposition B.2.
For region @ commutativity is obtained from Proposition B.1 applied to

where we view the pasting of oy and ay as a single cell.

Region () is the dual of region @ and commutativity can be obtained by applying
Proposition B.2 to

. 1

where we view the pasting of a5 and ag as a single cell and the pasting of @g and
(B3 as a single cell.
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Region ® could be done with an application of either Proposition B.1 or Propo-
sition B.2. If we use Proposition B.1, we focus on the diagrams,

N I B
1 .
b N

Here we consider the pasting of ay and « as a single cell, the pasting of ag as a
single cell, and the pasting of ag, a5 and a3 as a single cell.

For region (0 the two ways of composing provide to 2-cells that connect the
rectangles,

_— _— s —

b f e e

—_— —_——— —>

} i

and there is only one such cell by Proposition A.1, so this region commutes.
Region is the dual of region (7) whose two compositions give the 2-cell con-
necting the rectangles,

S B T Sl Kl




