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Abstract We show that the category of graphs has the structure of a 2-category with homotopy
as the 2-cells. We then develop an explicit description of homotopies for finite graphs, and use it to
create a homotopy category for finite graphs in the sense that our homotopy category satisfies the
universal property for localizing homotopy equivalences. We then show that finite stiff graphs form
a skeleton of this homotopy category.
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1 Introduction

Homotopy traditionally studies continuous transformations of spaces and maps between them.
Translating such a fundamentally continuous concept into a discrete setting such as graphs can
be approached in several ways. The first strategy used was to create a ’Hom complex’, a simplicial
set which represents information about the morphisms between two graphs. This simplicial complex
can then be turned into a topological space, and the homotopy of this space encodes information
about homotopy of graphs [1,2,9,15–18]. More recently, Dochtermann has shown that it is possible
to define a homotopy for graphs, called ×- homotopy, using only categorical constructions inside of
graphs, and get the same homotopy theory as that provided by studying the simplicial space [6].
Others have since developed results strictly within the graph category [7, 8, 11, 21]. We follow this
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second approach and study ×-homotopy, which we simply call homotopy, and work strictly with
graphs and discrete constructions.

In homotopy of topological spaces, the existence of the homotopies and their structure gives rise
to a 2-categorical structure on spaces, in which the homotopies form 2-cells. In this paper, we show
that the category of graphs also has the structure of a 2-category with homotopies of morphisms as
the 2-cells, and verify the necessary conditions. We then develop an explicit description of homotopy
for finite graphs, based around our notion of ’spider moves’. Our spider moves can be seen as a
generalization of the idea of folds, which have been linked to homotopy of graphs by [3,5,14]. Then
we use our spider moves to define a homotopy category for finite graphs, in the sense that we produce
a category which satisfies the universal property for localization of homotopy equivalences. Such a
localization is often created via a Quillen model category, which offers extra structure for working
with the homotopy category that is created. The existence of model structures for the category of
graphs has been studied by [8,20], where they examine a number of different model structures which
localize with respect to various notions of graph homotopy. They do not produce a model structure
for the ×-homotopy that we are studying, and in fact it is shown in [11] that no such model structure
exists. Thus we simply provide a direct construction of the localized homotopy category. To give
some handle on the structure of the localized category, we show that the subcategory formed by
stiff graphs forms a skeleton of our homotopy category, and hence the stiff graphs give canonical
representatives for finite graphs up to homotopy.

We begin in Section 2 by reviewing the basic definitions and properties of the graph category,
including products, exponential objects and walks and their concatenations following [6,10,14,21].
In Section 3, we establish that the category of graphs forms a 2-category. In Section 4 we give a
concrete description of the structure of a homotopy of graph morphisms, showing that a homotopy
with finite domain can be broken down into a sequence of simple ’spider moves’ which move only
one vertex at a time. In Section 5 we use our spider moves from Section 4 to show that the quotient
of the 2-category constructed is a categorical homotopy category for finite graphs in the sense that it
satisfies the universal property for localization of homotopy equivalences. In Section 6, we show that
the finite stiff graphs form a skeleton for the new homotopy category and briefly discuss what can
be said about the structure of this skeleton in the absence of any model categorical infrastructure.

2 Background

In this section, we give background definitions and notations. We include some basic results which
seem like they should be standard, but we were unable to find specific references in the litera-
ture, so we include them here for completeness. We will use standard graph theory definitions and
terminology following [4, 10,14], and category theory definitions and terminology from [19,22].

2.1 The Graph Category

We work in the category Gph of finite undirected graphs, where we allow at most one edge connecting
any pair of vertices. We do allow a (single) loop connecting a vertex to itself.

Definition 2.1 [14] The category of graphs Gph is defined by:

– An object is a graph G, consisting of a set of vertices V (G) = {vλ} and a set E(G) of edges
connecting them, where each edge is given by an unordered set of two vertices. If two vertices
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are connected by an edge, we will use notation v1 ∼ v2 ∈ E(G), or just v1 ∼ v2 if the parent
graph is clear.

– An arrow in the category Gph is a graph morphism f : G → H. Specifically, this is given by a
set map f : V (G)→ V (H) such that if v1 ∼ v2 ∈ E(G) then f(v1) ∼ f(v2) ∈ E(H).

We will work in this category throughout this paper, and assume that ’graph’ always refers to
an object in Gph. When we have an invertible graph morphism f : G→ H we will say that G and
H are isomoprhic and write G ∼= H.

Definition 2.2 [21] Given a homomorphism f : G → H, we define the image Im(f) to be the
subgraph of H where V (Im(f)) = {f(v) : v ∈ G} and E(Im(f)) = {f(v) ∼ f(w) : v ∼ w ∈ E(G)}.
Thus we specifically consider Im(f) to contain only edges which are images of edges in G.

Definition 2.3 [14, 21] The (categorical) product graph G×H is defined by:

– A vertex is a pair (v, w) where v ∈ V (G) and w ∈ V (H).
– An edge is defined by (v1, w1) ∼ (v2, w2) ∈ E(G×H) for v1 ∼ v2 ∈ E(G) and w1 ∼ w2 ∈ E(H).

Example 2.4 Let G be the graph on two adjacent looped vertices: V (G) = {0, 1} and E(G) = {0 ∼
0, 1 ∼ 1, 0 ∼ 1}. Let H = K2 with V (H) = {a, b} and E(H) = {a ∼ b}. Then G×H is isomorphic
to the cyclic graph C4:

a b

0

1

(0, a) (0, b)

(1, a) (1, b)

Lemma 2.5 [14] If w ∈ V (H) is looped, i.e. w ∼ w ∈ E(H), then there is an inclusion G→ G×H
given by v → (v, w) which is a graph morphism.

Proof If w is looped then v ∼ v′ in G if and only if (v, w) ∼ (v′, w) in G ×H. Thus the subgraph
G× {w} is isomorphic to G.

Definition 2.6 [6] The exponential graph HG is defined by:

– A vertex in V (HG) is a set map V (G)→ V (H) [not necessarily a graph morphism].
– There is an edge f ∼ g if whenever v1 ∼ v2 ∈ E(G), then f(v1) ∼ g(v2) ∈ E(H).

Example 2.7 Let G and H be the following graphs:

G =
0 1

H = a b c

Then the exponential graph HG is illustrated below, where the row indicates the image of 0 and
the column the image of 1. So for example the vertex in the (a, c) spot represents the vertex map
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f(0) = a, f(1) = c.

a b c

0

a

b

c

1

Observation 2.8 If f is looped in HG, this means exactly that if v1 ∼ v2 ∈ E(G), then f(v1) ∼
f(v2) ∈ E(H). Thus a set map f : V (G)→ V (H) is a graph morphism if and only if f ∼ f ∈ E(GH).

Lemma 2.9 If φ : H → K is a graph morphism and f ∼ g ∈ E(HG) then φf ∼ φg ∈ E(KG). So
φ induces a graph morphism φ∗ : HG → KG.

Proof Suppose that f ∼ g ∈ E(GH). So for any v1 ∼ v2 ∈ E(G), we know that f(v1) ∼ g(v2) ∈
E(H). Since φ is a graph morphism, φ(f(v1)) ∼ φ(g(v2)) ∈ E(K). So φf ∼ φg.

Lemma 2.10 If ψ : K → G is a graph morphism and f ∼ g ∈ E(HG) then fψ ∼ gψ ∈ E(HK).
So ψ induces a graph morphism ψ∗ : HG → HK .

Proof Suppose that v1 ∼ v2 ∈ E(K); then we know that ψ(v1) ∼ ψ(v2) ∈ E(G). Since f ∼ g in
HG, f(ψ(v1)) ∼ g(ψ((v2)). Sofψ ∼ gψ.

Proposition 2.11 [6] The category Gph is cartesian closed. In particular, we have a bijection

Gph(G×H,K) ∼= Gph(G,KH)

2.2 Walks and Concatenation

Definition 2.12 Let Pn be the path graph with n + 1 vertices {0, 1, . . . , n} such that i ∼ i + 1.
Let I`n be the looped path graph with n+ 1 vertices {0, 1, . . . , n} such that i ∼ i and i ∼ i+ 1.

Pn =
0 1 2

· · ·
n I`n =

0 1 2
· · ·

n

Definition 2.13 A walk in G of length n is a morphism α : Pn → G. A looped walk in G of
length n is a morphism α : I`n → G. If α(v0) = x and α(vn) = y we say α is a walk [resp. looped
walk] from x to y.

A walk can be described by a list of vertices (v0v1v2 . . . vn) giving the images of the vertices
α(i) = vi, such that vi ∼ vi+1. Thus this definition agrees with the usual graph definition of walk.
In the looped case, since i ∼ i ∈ E(I`n), we will have vi ∼ vi and so a looped walk is simply a walk
where all the vertices along the walk are looped.
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Definition 2.14 Given a walk α : Pn → G from x to y, and a walk β : Pm → G from y to z, we
define the concatenation of walks α ∗ β : Pm+n → G by

(α ∗ β)(i) =

{
α(i) if i ≤ n
β(i− n) if n < i ≤ n+m

Since we are assuming that α(n) = y = β(0), α∗β defines a length n+m walk from x to z. In vertex
list form, the concatenation (xv1v2 . . . vn−1y)∗ (yw1w2 . . . wm−1z) = (xv1v2 . . . vn−1yw1 . . . wm−1z).
Contatenation of looped walks is defined in the same way.

Example 2.15 Consider the graph below, and let α be a length 1 looped walk (v1v2) and β a length
2 looped walk (v2v3v4).

v1

v2

v3

v4

α(0)

α(1) β(0)

β(1)

β(2)

Then α ∗ β is a length 3 looped walk (v1v2v4v3).

v1

v2

v3

v4

(α ∗ β)(0)

(α ∗ β)(1)

(α ∗ β)(2)

(α ∗ β)(3)

Observation 2.16 For any vertex x, there is a constant length 0 walk cx from x to x defined by
cx(0) = x. Then for any other walk α from x to y, cx ∗α = α and α ∗ cy = α. If x is looped, we can
similarly define a constant looped walk at x.

It is also straightforward to compare definitions and see both of the following:

Lemma 2.17 Contatenation of [ordinary or looped] walks is associative: when the endpoints match
up to make concatenation defined, we have (α ∗ β) ∗ γ = α ∗ (β ∗ γ)

Lemma 2.18 Contatenation of [ordinary or looped] walks is distributive: when φ and ψ are graph
homomorphisms, then φ(g ∗ h) = φg ∗ φh and (g ∗ h)ψ = gψ ∗ hψ.
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3 Graphs as a 2-Category

In this section, we develop results on homotopies that allow us to show that Gph has the structure
of a 2-category, with homotopies between morphisms as 2-cells.

We define a homotopy between graph morphisms G→ H via the graph G× I`n. Because we use
a looped interval graph, we have a graph inclusion G ∼= G× {k} ↪→ G× I`n for each vertex k of I`n.

Definition 3.1 [6] Given f, g : G→ H, we say that f is homotopic to g, written f ' g, if there
is a map Λ : G × I`n → H such that Λ|G×{0} = f and Λ|G×{n} = g. We will say Λ is a length n
homotopy.

In [6], Definition 3.1 is referred to as ×-homotopy.

Observation 3.2 [6] By Propostion 2.11, a morphism Λ : G×I`n → H is equivalent to a morphism
Λ : I`n → HG. Since all the vertices of I`n are looped, they can only be mapped to looped vertices in
HG which correspond to graph morphisms by Lemma 2.11. So the restriction of H to G×{k} always
gives a graph morphism, and a length n homotopy corresponds to a sequence of graph morphisms
(ff1f2f3 . . . fn−1g) such that fi ∼ fi+1 ∈ E(HG). Thus we can think of a homotopy from f to g as
a looped walk in the exponential object HG. We will switch between these two views of homotopy
as convenient.

Observation 3.3 [6] f ' g defines an equivalence relation on morphisms G→ H.

Example 3.4 Suppose we have the graph
G = P2 a b c

Consider the maps idG, f : G → G where f(a) = f(c) = a and f(b) = b. We abbreviate these
morphisms by listing the images of vertices a, b, and c in order, so idG = abc and f = aba.

a

id(a)

b

id(b)

c

id(c)

id

a
f(a)

f(c)

b

fb)

c

f

We can define a homotopy Λ : G× I`1 → G from idG to f , where Λ((x, 0)) = x and Λ((x, 1)) =
f(x). Since 0, 1 are both looped in I`1, the subgraphs G× {0} and G× {1} are both isomorphic to
G. It is easy to verify that Λ is a graph homomorphism and thus is a length 1 homotopy.

(a, 0) (b, 0) (c, 0)

(a, 1) (b, 1) (c, 1)

P2 × I`1

Λ
Λ(a, 0)

Λ(a, 1)Λ(c, 1)

Λ(b, 0)

Λ(b, 1)

Λ(c, 0)

Lemma 3.5 Suppose that g ' g′ : G → H. If h : H → K, then hg ' hg′; and if f : F → G, then
gf ' g′f .
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Proof Since g ' g′, there is a length n homotopy Λ from g to g′ in HG. Then h∗Λ defines a length
n homotopy from hg to hg′ by Lemma 2.9. Similarly, Λ(f × idI`n)∗ defines a length n homotopy
from gf to g′f by Lemma 2.10.

Definition 3.6 (Concatenation of Homotopies) Given Λ1 : f ' g and Λ2 : g ' h, we define
Λ1 ∗ Λ2 : f ' h using the concatenation of looped walks in GH of Definition 2.14.

Example 3.7 Let G = C4 and H = P2 with vertices labeled as below.

0

1

2

3
G

a b c

H

Let f : G → H be defined by f(0) = f(2) = b, f(1) = a, f(3) = c. Again, we will abbreviate
this morphism by listing the images of 0, 1, 2, 3 in order, so f = babc. Let f ′ : G→ H be defined by
baba, and let f ′′ : G→ H be defined by bcbc. One can check that f, f ′, f ′′ ∈ Gph(G,H).

a

f(1)

b

f(0), f(2)

c

f(3)

a
f′(1)

f′(3)

b

f′(0), f′(2)

c a b

f′′(0), f′′(2)

c

f′′(1)
f′′(3)

Since f ∼ f ′ ∈ E(HG) we have a length one homotopy α : I`1 → HG defined by α(0) =
f, α(1) = f ′. Similarly, f ′ ∼ f ′′ ∈ E(HG) and so we have a homotopy α′ : I`1 → HG defined by
α′(0) = f ′, α′(1) = f ′′. Then α ∗ α′ : I`2 → HG is defined by the looped walk (ff ′f ′′) in HG,
depicted in Figure 1 below.

babc

baba

bcbc

bcba

α(0)

α(1) α′(0)

α′(1)
cbab

abab

cbcb

abcb

Fig. 3.1 Here we have depicted the walks α and α′. We have drawn only the subgraph of HG induced by graph
homomorphisms rather than the whole exponential graph.

Proposition 3.8 The concatenation operation on homotopies is unital and associative.

Proof The constant homotopy defines a unit by Observation 2.16, and associativity is given by
Lemma 2.17.

We now define another composition of homotopies.
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Definition 3.9 (Composition of Homotopies) Suppose that f, f ′ : G→ H and g, g′ : H → K.
Given α : f ' f ′ and β : g ' g′, we define α ◦ β from gf to g′f ′ as follows: let gα = g∗α denote the
homotopy from gf to gf ′, and (f ′)∗β = βf ′ denote the homotopy from gf ′ to g′f ′, as defined in
Lemma 3.5. Then

α ◦ β = gα ∗ βf ′.

Example 3.10 As in Example 3.7, let G = C4, H = K = P2 and let f : G→ H be defined by babc,
and f ′ : G→ H by baba, with α the length 1 homotopy (ff ′).

a

f(1)

b

f(0), f(2)

c

f(3)

f

a
f′(1)

f′(3)

b

f′(0), f′(2)

c

f ′

Let g : H → K be defined by g(a) = g(c) = b, g(b) = a and let g′ : H → K be defined by
g′(a) = g′(c) = b, g′(b) = c, with β the length 1 homotopy (gg′).

a

g(b)

b

g(a), g(c)

c

g

a b

g′(a), g′(c)

c

g′(b)

g′

Then α ◦ β is a length 2 homotopy βα : I`2 → KG defined by the looped walk (gf gf ′ g′f ′).
Concretely, both gf and gf ′ are given by the map abab and g′f ′ is defined by cbcb. Thus α ◦ β is a
length 2 homotopy defined by the walk (abab abab cbcb).

babc

baba

bcbc

bcba

cbab

abab

cbcb

abcb

We could equally well have chosen to define the composition as βf ∗ g′α. This is not the same
homotopy; however, we will show that the two resulting homotopies are themselves homotopic. To
make this notion precise, we observe that a homotopy α from f to g is defined as a looped walk

in (HG)I
`
n given by (fh1h2h3 . . . hn−1g). Then for [looped or unlooped] walks, we define the notion

of homotopy rel endpoints. The idea of fixing a subspace and allowing only homotopies which are
constant on this subspace is a common one from homotopy theory, and when the fixed subspace is
A, this is referred to as homotopy rel A [12]. In our case, we will take the subspace to be the end
vertices of the path graph v0, vn.

Let G be any graph. Recall that a looped vertex of the exponential object GPn represents a

length n walk in G, and similarly a looped vertex of GI
`
n represents a looped walk in G. Such an α

is given by (α(0)α(1)α(2) . . . , α(n)) = (v0v1v2 . . . , vn). Define s, t : XPn → X by s(v0v1 . . . vn) = v0
and t(v0v1 . . . vn) = vn. Note that these are NOT graph homomorphisms, just maps of vertex sets.
Thus α is a walk from x to y if s(α) = x and t(α) = y.
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Definition 3.11 Suppose that α, β are walks in G from x to y. We say α and β are homotopic
rel endpoints if they are homotopic in the subgraph

(GPn)x,y = {γ ∈ GPn | s(γ) = x and t(γ) = y}
Thus two walks α = (xv1 . . . vn−1y) and β = (xw1 . . . wn−1y) are homotopic rel endpoints if there
is a looped walk of walks in GPn given by Λ = (αλ1λ2 . . . λk−1β) where each walk λi starts at x
and ends at y.

For looped walks, we make the same definitions in GI
`
n .

Now we apply this notion to homotopies, viewed as looped walks in (HG)I
`
n .

Definition 3.12 Two homotopies α, α′ from f to g are themselves homotopic if they are homotopic

rel endpoints viewed as looped walks in (HG)I
`
n .

Proposition 3.13 Suppose that f, f ′ : G→ H and g, g′ : H → K. Given α : f ' f ′ and β : g ' g′,
the two homotopies defined by gα ∗ βf ′ and βf ∗ g′α are homotopic.

Proof First, suppose that both α and β are length 1 homotopies, so that there are edges f ∼ f ′ and
g ∼ g′. We consider the two length 2 homotopies gα∗βf ′ = (gf gf ′ g′f ′), and βf∗g′α = (gf g′f g′f ′).
We want to show that these are homotopic. In fact, we claim that they are connected by an edge in
KG. Since I`2 has edges connecting 0 ∼ 1 and 1 ∼ 2, this requires that (gα∗βf ′)(i) ∼ (βf∗g′α)(i+ 1)
and (gα ∗ βf ′)(i + 1) ∼ (βf ∗ g′α)(i) for i = 0, 1. So there are four conditions to check. Decoding
them, they are: gf ∼ gf ′, gf ∼ g′f, g′f ∼ g′f ′ and gf ′ ∼ g′f ′. Each of these holds by Lemma 3.5.
Lastly, we consider the loops i ∼ i: for i = 0, 2 we have α(i) = β(i), and since these are looped
vertices, α(i) ∼ β(i). For i = 1, we have α(1) = g′f and β(1) = gf ′. If v ∼ w ∈ E(G), then
f(v) ∼ f ′(w) ∈ E(H) and hence g′f(v) ∼ gf ′(w) ∈ E(K), verifying the last condition. Observe
that this length 1 homotopy fixes the endpoints, and thus we have a homotopy of homotopies (that
is, the homotopies are homotopic rel endpoints).

f f ′

g

g′

βf ∗ g′α

f f ′

g

g′

gα ∗ βf ′

Now if α and β are homotopies of length n and m, each of them is defined by a looped walk
(ff1f2f3 . . . fn−1f

′) and (gg1g2g3 . . . gm−1g
′). Since each successive pair is connected, the outer

edges of each square are connected by an edge, ie a length 1 homotopy, and we can repeatedly swap
squares and get a length nm homotopy rel endpoints between gα ∗ βf ′ and βf ∗ g′α.

f0 f1 f2
g0

g1

g2

f0 f1 f2
g0

g1

g2

f0 f1 f2
g0

g1

g2

f0 f1 f2
g0

g1

g2

f0 f1 f2
g0

g1

g2



10 Tien Chih, Laura Scull

Proposition 3.14 The composition operation on homotopies is unital and associative.

Proof Unital: If α is the constant homotopy at f , then gα is just constant at gf , and gα∗βf ′ = βf ′

by Observation 2.16. Similarly if β is the constant homotopy at gf ′, then βf ′ = f ′ and gα∗βf ′ = βf ′.
Associative: Suppose we have homotopies α : f ' f ′, β : g ' g′ and γ : h ' h′. Then the

distributive property of Lemma 2.18 and the associative property of Lemma 2.17 give:

(α ◦ β) ◦ γ = (gα ∗ βf ′) ◦ γ
= h(gα ∗ βf ′) ∗ γg′f ′

= (hgα ∗ hβf ′) ∗ γg′f ′

= hgα ∗ (hβf ′ ∗ γg′f ′)
= hgα ∗ (hβ ∗ γg′)f ′

= α ◦ (hβ ∗ γg′)
= α ◦ (β ◦ γ)

We will show that Gph forms a 2-category [22]. We want our 2-cells to be defined by homotopies
of morphisms, but this does not satisfy the required properties. However, since a homotopy α is
defined by a looped walk given by a map α : I`n → HG, we have a notion of when two such maps are
themselves homotopic, as in Definiton 3.12. In order to get a 2-category, we will define our 2-cells
to be homotopy classes of homotopies.

We begin by showing that concatenation and composition operations are well defined up to
homotopy. We will use the following more general result about homotopies of walks:

Lemma 3.15 If f and g are looped walks of length n in G from x to y, and f ' g are homotopic
rel endpoints, then if h is a walk from y to z, then f ∗ h ' g ∗ h rel endpoints; and if k is a walk
from w to x, then k ∗ f ' k ∗ g rel endpoints.

Proof We have f and g representing vertices in GI
`
n , and α a length m homotopy from f to g. So α is

defined by a looped walk (ff1f2 . . . fn−1g) in GI
`
n . Now suppose that h is a walk from y to z. Define

a sequence (f0 ∗ h f1 ∗ h f2 ∗ h . . . fn ∗ h) in GI
`
n+m , where each of these is a walk from x to z. We

claim that each successive pair of these is connected by an edge in GI
`
n+m . The requirement for this

edge to exist is that given any edge vi ∼ vi+1 in I`n+m, we have (fk ∗ h)(vi) ∼ (fk+1 ∗ h)(vi+1). By
definition of concatenation, if i ≤ n these are defined by fk(vi) and fk+1(vi+1), which are connected
in G since fk ∼ fk+1; if i > n, these are defined by h(vi) and h(vi+1), which are connected since h
is a walk in G. Thus f ∗ h ' g ∗ h rel endpoints. The other case follows by an analogous argument.

Corollary 3.16 If α ' α′ are homotopic as homotopies (ie homotopic rel endpoints) and β ' β′

as homotopies, then α ∗ β ' α′ ∗ β′.

Lemma 3.17 If α ' α′ and β ' β′ then α ◦ β ' α′ ◦ β′.

Proof Start with α ◦ β = gα ∗ βf ′. Now by Lemma 3.5, we have a homotopy gα ' gα′, and hence
by Lemma 3.15 a homotopy gα ∗ βf ′ ' gα′ ∗ βf ′. Then Lemma 3.15 also says that βf ′ ' β′f ′, and
so gα′ ∗ βf ′ ' gα′ ∗ β′f ′ = α′β′. Thus we have α ◦ β ' α′ ◦ β′ as homotopies.

Theorem 3.18 We can define a 2-category Gph as follows:

– Objects [0-cells] are given by objects of Gph, the finite undirected graphs.
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– Arrows [1-cells] are given by the arrows of Gph, the graph morphisms
– Given f, f ′ : G→ H, a 2-cell from f to f ′ is a homotopy rel endpoints class [α] of homotopies
α : I`n → HG such that α : f ' f ′.

– Vertical composition is defined using concatenation [α] ∗ [α′] = [α ∗ α′]
– Horizontal composition is defined using composition [α] ◦ [β] = [α ◦ β]

Proof We have shown that vertical and horizontal composition are well-defined in Corollary 3.16
and Lemma 3.17, and that these operations are associative and unital in Propositions 3.8 and 3.14.
Therefore what remains is to check the interchange law.

Our set-up is as follows: we have maps f, f ′, f ′′ : G → H and g, g′, g′′ : H → K, with two cells
α : f ' f ′, α′ : f ′ ' f ′′ and β : g ' g′, β′ : g′ ' g′′:

We want to show that (α◦β)∗(α′ ◦β′) ' (α∗α′)◦(β ∗β′). Unravelling the definitions here shows
that (α ◦ β) ∗ (α′ ◦ β′) = (gα ∗ βf ′) ∗ (g′α′ ∗ β′f ′′), while (α ∗α′) ◦ (β ∗ β′) = g(α ∗α′) ∗ (β ∗ β′)f ′′ =
(gα ∗ gα′) ∗ (βf ′′ ∗ β′f ′′) using the distributivity of Lemma 2.18. Since concatenation is associative,
we are comparing gα ∗βf ′ ∗ g′α′ ∗β′f ′′ with gα ∗ gα′ ∗βf ′′ ∗β′f ′′. Therefore it suffices to show that
βf ′ ∗ g′α′ ' gα′ ∗ βf ′′. But this is exactly Proposition 3.13.

4 Structure of Homotopies for Finite Graphs

In this section, we develop a more explicit description of homotopies between graph morphisms
when G is a finite graph. We show that such graph homotopies can always be defined ’locally’,
shifting one vertex at a time. We imagine a spider walking through the graph by moving one leg at
a time.

Definition 4.1 Let f, g : G→ H be graph morphisms. We say that f and g are a spider pair if
there is a single vertex of G, say x, such that f(y) = g(y) for all y 6= x. If x is unlooped there are
no additional conditions, but if x ∼ x ∈ E(G), then we require that f(x) ∼ g(x) ∈ E(H). When
we replace f with g we refer to it as a spider move.

Lemma 4.2 If f and g are a spider pair, then f ∼ g ∈ E(HG).

Proof For any y ∼ z ∈ E(G) we need to verify that that f(y) ∼ g(z) ∈ E(H). If y, z 6= x then
g(z) = f(z) and so this follows from the fact that f is a graph morphism. If y ∼ x for y 6= x, then
f(y) ∼ g(x) since f(y) = g(y) and g is a graph morphism; similarly, f(x) ∼ g(y). Lastly, if x ∼ x,
then we have asked that f(x) ∼ g(x). Therefore f ∼ g have an edge in the exponential graph HG.

Example 4.3 Let G and H be the graphs from Example 2.7:

G =
0 1

H = a b c
.

Let f, g : G → H be defined by f(0) = a, f(1) = b, and g(0) = a, g(1) = a. So f, g are a spider
pair, and we see that the morphisms f, g are adjacent in the exponential object HG.
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a b c

0

a

b

c

1
f

g

We now prove that all homotopies with finite domain can be decomposed as a sequences of
spider moves, moving one vertex at a time.

Proposition 4.4 (Spider Lemma) If f, g : G→ H and G is a finite graph, and f ∼ g ∈ E(HG),
then there is a finite sequence of morphisms f = f0, f1, f2, . . . , fn = g such that each successive pair
fk, fk+1 is a spider pair.

Proof Since G is a finite graph, we can label its vertices v1, v2, . . . , vn. Then for 0 ≤ k ≤ n, we
define:

fk(vi) =

{
f(vi) for i ≤ n− k
g(vi) for i > n− k

First we check that each fk is a graph morphism. Suppose vi ∼ vj ∈ E(G); we need to show
that fk(vi) ∼ fk(vj). If i, j ≤ n − k then fk = f for both vertices, and so since f is a morphism,
f(vi) ∼ f(vj). Similarly if i, j > n − k then fk = g on both vertices. Lastly, if i ≤ n − k and
j > n − k, we know that f ∼ g in HG, so by the structure of edges in the exponential object,
f(vi) ∼ g(vj). Thus fk(vi) ∼ fk(vj).

It is clear that each pair fk, fk+1 agrees on every vertex except vn−k. So to show this is a
spider pair, we only need to check that if vn−k is looped, then fk(vn−k) ∼ fk+1(vn−k). But since
f ∼ g ∈ E(HG), we know that if vn−k ∼ vn−k then f(vn−k) ∼ g(vn−k).

Corollary 4.5 Whenever f, g : G→ H with G finite and f ' g, there is a finite sequence of spider
moves connecting f and g.

Thus we can see explicitly what homotopies of graph morphisms betweem finite graphs can do.

Example 4.6 Let G = C4, H = P2 as in Example 3.7. The morphisms f = babc and g = bcba are
adjacent in HG. They are not a spider pair since f(1) 6= g(1) and f(3) 6= g(3). However, if we define
h = baba; then there is a spider move f to h, and another from h to g, giving a sequence of spider
moves from f to g, shown below.

A special case of the spider moves can be used to analyze homotopy equivalences. In the liter-
ature, homotopy has been linked to the idea of a fold or a dismantling [5, 6, 9, 14]. This can be
seen as a special case of our more general spider moves.

Definition 4.7 If G is a graph, we say that a morphism f : G→ G is a fold if f and the identity
map are a spider pair.
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babc

baba

bcbc

bcba

f

g

h

cbab

abab

cbcb

abcb

Proposition 4.8 If f is a fold, then f : G → Im(f) is a homotopy equivalence, where Im(f) is
as defined in Definition 2.2.

Proof Since f and idG form a spider pair, the map f is the identity on every vertex except one,
call it v. If f(v) = v then f is the identity and we are done.

If f(v) = w 6= v, then Im(f) = G\{v}. Consider ι : Im(f)→ G to be the inclusion map. Then
the composition fι is the identity on Im(f). Now consider ιf : G→ G. Since ι is just the inclusion
of the image, ιf = f . By Lemma 4.2, f ' id.

We identify when we have a potential fold by a condition on neighborhood of vertices. In [5] [6]
folds are defined using this condition. We denote the neighbourhood of a vertex v by N(v) = {w ∈
V (G) |w ∼ v}.

Proposition 4.9 Suppose that f : V (G)→ V (G) is a set map of vertices such that f is the identity
on all vertices except one. Explicitly there exists a vertex w ∈ V (G), and f(x) = x for all x 6= w.
Let v = f(w). Then f is a fold if and only if N(w) ⊆ N(v).

Proof First, suppose that f is a fold, and hence a graph morphism. Let y ∈ N(w); then y ∼ w, and
so f(y) ∼ f(w). If y 6= w, then f(y) = y and f(w) = v, so y ∼ v and hence y ∈ N(v). If y = w
then w ∼ w so by the looped condition for spider pair, we assume that f(w) ∼ id(w). So v ∼ w
and w ∈ N(v). Hence the neighbourhood condition is satisfied.

Conversely, suppose that f is a set map of vertices satisfying the neighbourhood condition.
To show that f is a morphism, we check that it preserves all connections. If x, x′ ∈ V (G)\{w}
and x ∼ x′, then f(x) = x, f(x′) = x′, and so f(x) ∼ f(x′). If y ∈ V (G)\{w} and w ∼ y, then
y ∈ N(w) ⊆ N(v), so v ∼ y and hence f(w) ∼ f(y). Lastly, if w is looped, then w ∈ N(w) ⊆ N(v), so
v ∼ w. But then v ∈ N(w) ⊆ N(v), and consequently v must be looped as well. Thus f(w) ∼ f(w).

To see that f is a fold, we know that if x ∈ V (G), we have that f(x) = x if and only if
x 6= w. So we just need to check that the extra condition on looped vertices holds. If w ∼ w then
w ∈ N(w) ⊆ N(v) and so v ∼ w.

Example 4.10 Let X = P2 and let f : G→ G be defined by f(a) = a, f(b) = b, f(c) = a.

a

f(a), f(c)

b

f(b)

c

The vertex that f does not fix is c, and N(c) = {b} = N(a). Hence the neighborhood condition
of Proposition 4.9 holds here, and this is a fold map.

The fact that a fold, as defined using the neighbourhood condition, gives a homotopy equivalence
is proved in [17] by looking at the simplicial Hom complex. Propositions 4.8 and 4.9 offer an alternate
approach which is internal to graphs.
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5 Defining a Homotopy Category for Finite Graphs

For this section, we restrict to finite graphs and consider the full sub-category FGph of Gph consisting
of graphs with a finite set of vertices. We will be applying Proposition 4.4 to decompose homotopies
as a sequence of spider moves, and so will require a finite set of vertices in our domains.

Since our 2-cells are defined by homotopies, known to be an equivalence relation on morphisms
[6], we can make the following definition.

Definition 5.1 We define the homotopy category hFGph by modding out the 2-cells in the
2-category FGph. The objects of hFGph are the same as the objects of FGph, finite graphs, and
the arrows of hFGph are given by equivalence classes [f ] of graph morphisms, where f and g are
equivalent if they have a 2-cell between them, that is, if they are homotopic. This also defines a
natural projection functor Ψ : FGph→ hFGph which takes any graph G to G, and any morphism f
to its homotopy class [f ].

Since all the 2-cells of FGph have become isomorphisms in hFGph, the result is an ordinary
1-category. We will show that this is a homotopy category for FGph in the sense that it satisfies the
universal property for localizing homomotopy equivalences as described in the following result.

Theorem 5.2 G any functor F : FGph → C such that F takes homotopy equivalences to isomor-
phisms, then there is a unique functor F ′ : hFGph→ C such that F ′Ψ = F .

FGph

hFGph C

Ψ
F

∃!F ′

=

Proof It is clear that F ′ : hFGph → C needs to have F ′(G) = F (G) for any G ∈ Obj(hFGph) and
F ′([f ]) = F (f) for any [f ] ∈ Hom(hFGph). Since Obj(Gph) = Obj(hFGph), we have that F ′ is well
defined on Obj(hFGph). It remains to show that F ′ is well defined on Hom(hFGph): that is, given
f, f ′ ∈ [f ], we always have F (f) = F (f ′). By Proposition 4.4, it suffices to show that F (f) = F (f ′)
whenever f, f ′ are a spider pair.

Let f, f ′ : G→ H be a spider pair. Then there is a vertex v ∈ V (G) such that f(w) = f ′(w) for
all w 6= v. Define a new graph Ĝ as follows:

V (Ĝ) = V (G) ∪ {v∗}.

E(Ĝ) =


w1 ∼ w2 when w1 ∼ w2 ∈ E(G),

v∗ ∼ w when v ∼ w ∈ E(G)

v∗ ∼ v∗ when v ∼ v ∈ E(G)

.

Thus the new vertex v∗ is attached to the same vertices as v, and is looped if and only if v is looped.
Let ι1 : G → Ĝ be the inclusion defined by ι1(w) = w for w ∈ V (G). Let ι2 : G → Ĝ be the

inclusion defined by ι2(w) = w for each w ∈ V (G)\{v} and ι2(v) = v∗. Since N(v) = N(v∗) in Ĝ,
this is a graph morphism.
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Define f̂ : Ĝ→ H by

f̂(w) =

{
f(w) if w ∈ V (G)

f ′(v) if w = v∗
.

We claim that f̂ is a graph morphism: suppose w1 ∼ w2 ∈ E(Ĝ). If w1, w2 ∈ V (G), then f̂

agrees with f , so since f is a graph morphism, f̂(w1) ∼ f̂(w2). Now suppose that w1 = v∗ and

w2 ∈ V (G). Then f̂(w1) = f ′(v) and f̂(w2) = f(w) = f ′(w). Then f ′(v) ∼ f ′(w) since f ′ is a graph

morphism, so f̂(w1) ∼ f̂(w2). Lastly, if w1 = w2 = v then f̂(wi) = f ′(v), which will be looped since
v was looped and f ′ is a graph morphism.

It is clear from the definition that f = f̂ ι1 and f ′ = f̂ ι2. Define ρ : Ĝ→ G by

ρ(w) =

{
w if w ∈ V (G)

v if w = v∗

This is a fold by Proposition 4.9 since N(v∗) = N(v). Moreover, ρι1 = ρι2 = idG.
Replace with ref argument By Proposition 4.8, we know that ρ and ι1, ι2 are homotopy inverses,

so ι1ρ ' idH ' ι2ρ. Thus F (ι1ρ) = F (ι1)F (ρ) = idH = F (ι2)F (ρ) = F (ι2ρ). So F (ρ) is an
isomorphism and F (ι1) = F (ι2).

Finally, we conclude that

F (f) = F (f̂ ι1)

= F (f̂)F (ι1)

= F (f̂)F (ι2)

= F (f̂ ι2)

= F (f ′).

Thus, given f, f ′ ∈ [f ], we have that F ′([f ]) = F (f) = F (f ′) = F ′([f ′]) and F ′ is well defined.

6 A Skeleton for the Homotopy Category

Because we have created a homotopy category without a model structure, we look for another way
to describe the structure of hFGph. In this section, we will show that finite stiff graphs represent all
finite graphs up to homotopy. More precisely, we show that the finite stiff graphs form a skeleton
of the homotopy category hFGph in the following sense.

Definition 6.1 [22] A full subcategory D of a category C is a skeleton of C provided

– the inclusion D ↪→ C is essentially surjective, meaning that every object C ∈ C is isomorphic to
an object D ∈ D

– no two distinct objects of D are isomorphic.

In the literature, graphs that cannot folded are referred to as stiff graphs [5] [3].

Definition 6.2 We say that a graph G is stiff if there are no two distinct vertices v, w such that
N(v) ⊆ N(w).
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Example 6.3 One large family of stiff graphs are cores [13,14]. Since folds are graph morphisms, a
core C cannot admit any folds and thus must be stiff. Therefore complete graphs, odd cycles, and
all graphs where the only endomorphisms are automorphisms are minimal retracts.

Example 6.4 Another family of pleats is given by cycles of size 6 or greater. It is clear that C4 will
admit a fold, but for any greater cycle, distinct vertices can share at most 1 neighbor. The odd
cycles are covered under Example 6.3; large even cycles are also stiff.

Fig. 6.1 Three examples of pleats. On the left a core K5, in the middle an even cycle C6, on the right a graph that
is neither a core nor even cycle.

Let stGph refer to the full subcategory of finite stiff graphs in hFGph. Thus the objects of stGph
are the finite stiff graphs, and the morphisms are homotopy classes of graph morphisms.

Theorem 6.5 stGph is a skeleton of hFGph in the sense of Definition 6.1.

We will consider the two conditions of Definition 6.1 separately.

Proposition 6.6 The inclusion stGph ↪→ hFGph is essentially surjective.

Proof We proceed via induction on n := |V (G)|. Note that if n = 1, G is necessarily stiff. Suppose
n > 1 and G is not stiff, then there are distinct vertices v, w such that N(v) ⊆ N(w), and we can
define a fold map ρ : G → G − {v} which takes v to w and is the identity on all other vertices.
By Propositons 4.8 and 4.9, this is a homotopy equivalence. By induction, G − {v} is homotopy
equivalent to a stiff graph, and thus G is as well.

To show the second condition, we note that any sequence of folds yields a unique graph up to
isomorphism, proved in [3, 5, 14] in the context of cops and robbers on graphs. In [6] Proposition
6.6, Dochterman applies this and the interpretation of homotopy in the simplicial Hom complex to
show that if G and H are stiff graphs then G and H are homotopy equivalent if and only if they are
isomoprhic, verifying the second condition for the skeleton. Here we offer an alternate proof which
does not use the simplicial construction.

We start with the following.

Lemma 6.7 If G is stiff, then G is not homotopy equivalent to any proper subgraph of itself.

Proof We first show that for a stiff graph G, the identity is not homotopic to any other endomor-
phism. Suppose that f ∼ idG. Let v ∈ V (G), and let x ∈ N(v). Then f(v) ∼ idG(x), i.e. f(v) ∼ x
so x ∈ N(f(v)). So N(v) ⊆ N(f(v)). By the neighbourhood condition, we conclude that v = f(v)
and so f = id.

Then, suppose that G is homotopy equivalent to a subgraph of itself H. So we have f : G→ H
and g : H → G such that gf is homotopic to idG. Then gf must actually be the identity on G.
Hence G is isomorphic to H.
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Lemma 6.8 If f : G→ G such that f ∼ idG then G is homotopy equivalent to Im(f).

Proof Let ι denote the inclusion map Im(f) → G. Then ιf = f which is homotopic to idG. We
need to show that fι is homotopic to idH where H = Im(f). Suppose that v ∼ w ∈ E(H). Then
by our definition of Im(f) in Definition 2.2, this edge is the image of an edge v′ ∼ w′ ∈ E(G),
where f(v′) = v, f(w′) = w. Since f ∼ idG, we know that v′ ∼ f(w′) ∈ E(G) and therefore
f(v′) ∼ f(f(w′)) ∈ E(H). So v ∼ fι(w) whenever v ∼ w, and so idH ∼ fι.

Theorem 6.9 ( [6], Proposition 6.6) If G,H are finite stiff graphs which are homotopy equiva-
lent, then G and H are isomorphic.

Proof Suppose we have graph morphisms f : G → H, g : H → G such that gf ' idG and
fg ' idH . Thus by Proposition 4.4 we have a sequence of maps idG, k1, k2, . . . , kn = gf such that
each successive pair is a spider pair. So by Lemma 6.8 Im(gf) is homotopy equivalent to G. Since
G is stiff, it follows that Im(gf) = G. Similarly Im(fg) = H, and f, g are isomorphisms.

This completes the proof of Theorem 6.5.

Observation 6.10 Any graph which is not stiff may be folded. Thus, we obtain a homotopy
equivalent graph by continuous applying folds as in Lemma 6.6. A consequence of Theorem 6.9 is
that one may apply these folds in any arbitrary fashion, and the resulting pleats will be isomorphic.
See Figure 4.1 below.

Fig. 6.2 Any series of folds of will eventually terminate with a subgraph isomorphic to K2, although not necessarily
the same subgraph.

We end with some observations about the structure of the skeleton category stGph, and show that
it respects some basic graph operations.

Definition 6.11 We will refer to a stiff graph obtained from applying folds to a graph G, which
is homotopy equivalent to G, as a pleat of G, with notation P`(G). Note that this is only defined
up to isomorphism.

Corollary 6.12 Two graphs G,H are homotopy equivalent if and only if their pleats P`(G) and
P`(H) are isomorphic.
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Observation 6.13 If we have a graph G with an unlooped isolated vertex v, then N(v) = ∅, and
thus v may be folded into any other vertex; and P`(G) = P`(G\{v}) (unless G\{v} = ∅). Thus
unlooped isolated vertices are homotopically null.

Observation 6.14 If we consider graphs with no isolated vertices, then the disjoint union (or
categorical coproduct [14, 21]) of pleats is itself a pleat, since it will be stiff. More generally, given
any graph G without isolated vertices, P`(G

∐
H) ∼= P`(G)

∐
P`(H).

We show that pleating also respects products in the absence of unlooped isolated vertices.

Proposition 6.15 Let G,H ∈ FGph be graphs with no unlooped isolated vertices. Then P`(G) ×
P`(H) is stiff.

Proof Suppose (v, w), (v′, w′) ∈ V (P`(G) × P`(H)) such that N(v, w) ⊆ N(v′, w′). Since we do
not have any isolated vertices, there exists y ∈ N(w). Then for any x ∈ N(v), (x, y) ∼ (v, w) ∈
E(P`(G) × P`(H)), and thus (x, y) ∼ (v′, w′) ∈ E(P`(G) × P`(H)). This implies that x ∈ N(v′).
Therefore N(v) ⊆ N(v′). Since P`(G) is stiff, v = v′. Similarly, w = w′.

Lemma 6.16 Let v ∈ V (G) such that there is a fold ρ : G → G\{v}. Then G × H is homotopy
equivalent to G\{v} ×H.

Proof Since there is a fold ρ : G → G\{v}, there is a v′ ∈ V (G) where N(v) ⊆ N(v′) and
ρ(v) = v′ by Proposition 4.9. Let w ∈ V (H). Given any x ∈ N(v) and y ∈ N(w), we have that
x ∈ N(v′) and thus (x, y) ∈ N(v′, w). Thus N(v, w) ⊆ N(v′, w), and thus there is a fold from
ρ̂ : G×H → G×H\{(v, w)} where ρ̂(v, w) = (v′, w).

We also note that if N(v, w′) ⊆ N(v′, w′), then NG\{(v,w)}(v, w
′) ⊆ NG\{(v,w)}(v

′, w′) since
deletion of vertices preserves neighborhood containment. Thus, through a series of folds for each
w ∈ V (H), we have a homotopy equivalence between G×H and G\{v} ×H.

Theorem 6.17 Let G,H ∈ FGph be graphs with no unlooped isolated vertices. Then P`(G×H) ∼=
P`(G)× P`(H).

Proof Since P`(G) is the pleat of G, by Theorem 6.9, there is a series of folds from G to P`(G).
Thus by repeated applications of Lemma 6.16, we have that G × H is homotopy equivalent to
P`(G)×H, and then to P`(G)×P`(H). Since P`(G)×P`(H) is stiff by Proposition 6.15, Theorem
6.9 says that it is the pleat of G×H.

Corollary 6.18 If G,G′ are homotopy equivalent and H,H ′ are homotopy equivalent, and none of
these graphs have unlooped isolated vertices, then G×H is homotopy equivalent to G′ ×H ′.

Proof We know that P`(G) ∼= P`(G′) and P`(H) ∼= P`(H ′), so P`(G × H) ∼= P`(G) × P`(H) ∼=
P`(G′) × P`(H ′) ∼= P`(G′ × H ′). Since G × H and G′ × H ′ are both homotopy equivalent to
P`(G)× P`(H), they are homotopy equivalent to each other.
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