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Formality and S1-Equivariant Algebraic Models

Laura Scull

Abstract. We define a notion of S1-equivariant formality using S1-equivariant
algebraic models. In order to apply the existing S1-models, we show the exis-
tence of injective envelopes for the cohomology of S1-minimal models.

1. Introduction

The idea of a space being formal is that its rational homotopy type is determined
by its rational cohomology ring, simplifying many calculations. To make this pre-
cise, we can use the minimal model MX of a space X defined by Sullivan in [2, 10],
which is a commutative differential graded algebra (CDGA). A commutative differ-
ential graded algebra A is formal if it is quasi-isomorphic to its cohomology, that is,
if there is a chain of quasi-isomorphisms A → · ← · → · · · → H∗(A). For minimal
algebras this is equvialent to requiring a single quasi-isomorphism A → H∗(A), and
a space X is formal if its minimal model is formal. The algebra MX encodes all ra-
tional homotopy information, including homotopy and homology groups, and for a
formal space we get a quasi-isomorphism MX → H∗(MX) = H∗(X ; Q); therefore
rational homotopy type of a formal space can be recovered from the cohomology
ring. Many classes of interesting spaces turn out to be formal, including Lie groups,
classifying spaces and compact 1-connected Kähler manifolds; see for example the
discussion in [4].

For actions of groups where an equivariant analogue of minimal models exist
we can use them to define a notion of equivariant formality. Equivariant minimal
models have been developed by Triantafillou for actions of finite groups [11], and
by the author for the circle group S1 = T [9]. The difficulty in defining formality
in both cases is that not all objects in the algebraic category have minimal models;
models only exist for objects which are “injective” in a certain sense. In particular,
although the space X has a minimal model its cohomology ring may not. To get
around this in the finite case, Fine and Triantafillou produce injective envelopes
[5, 6] and use them in the definition of formality. This paper contains an analogous
result for the T-minimal models and develops the necessary technical results to be
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able to define T-equivariant formality using minimal models. We illustrate this
definition by showing that T-equivariant Eilenberg-MacLane spaces are formal and
using this to provide a couple of examples of formal spaces. Further properties of
this definition and a comparison to alternate approaches to equivariant formality
will be explored in a forthcoming paper.

2. T-minimal models

This section contains a brief summary of the major results of the author [9]
on the existence of T-minimal models. For these results, T-spaces are assumed
to be T-CW complexes; note that this ensures that all orbit spaces and related
constructions, such as Borel spaces, are also CW complexes. In addition, all T-
spaces are assumed to have finitely many orbit types. We also assume that all
T-spaces are T-simply connected in the sense that the fixed point subspaces XH

are all connected and simply connected (and also non-empty). Lastly, we assume
that the rational cohomology of each fixed point subspace XH is of finite type. We
refer to spaces satisfying all of these conditions as Q-good.

The equivariant homotopy type of a G-space X depends not only on the ho-
motopy type of the space itself but also on the homotopy type of all the fixed point
subspaces XH for closed subgroups H ≤ G. Together with the natural inclusions
and maps induced by the action of G, these form a diagram of spaces where the
shape of the diagram is described by the orbit category OG. This category has
objects the canonical orbits G/H, with morphisms given by the equivariant maps
between them. The fixed point subspaces XH form a functor from OG to spaces
which completely describes the equivariant homotopy type, as shown by Elmendorf
in [3]. When defining discrete algebraic invariants, we look at functors from the
discrete homotopy category hOG instead, which has the same objects G/H with
homotopy classes of maps between them. Note that the objects of OG will be
abbreviated from G/H to H for simplicity of notation. Observe that if X is a G
space and H is not an isotropy type of X , then the fixed set XH is determined by
the fixed sets XK contained in it for H ⊃ K. Since the value of the functor at
a subgroup H reflects H-fixed information, a space X corresponds to an algebraic
functor such that for all subgroups H which are not isotropy subgroups of X , the
value of the functor A(H) is given by A(H) = limK⊃H(K). If the space has finitely
many orbit types, the value of A(H) will be determined in this way for all but a
finite number of subgroups; such a functor will be said to have finitely many orbit
types.

For the group in question G = T, this indexing category can be described quite
simply. Objects are orbits T/H for subgroups H = Z/n. Group theory tells us that
any equivariant map between orbits T/H → T/K is of the form â : gH → gaK for
some a ∈ T for which a−1Ha ⊆ K; since T is abelian this is equivalent to H ⊆ K.
Two such maps â and b̂ are the same if and only if aK = bK, that is, ab−1 ∈ K.
Thus the orbit category OT has morphisms

Hom (H, K) =

{
T/K if H ⊆ K

∅ otherwise

All the equivariant maps from T/H to T/K are homotopic, since T is connected;
so the homotopy orbit category hOT has exactly one morphism from H to K if
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H ⊆ K and no morphisms otherwise. This gives the shape of the diagram category
we use to study T-spaces.

The algebraic category used to model the rational homotopy of T-spaces is a
category of functors from hOT to commutative differential graded algebras. We
work with CDGAs which are modules over H∗(BT) = Q[c], the polynomial ring
with a single generator of degree 2. Precisely, the category is given by the following.

Definition 2.1. ([9], Defn. 5.18) A T-system consists of
(1) A covariant functor A from hOT to the category of finitely generated

CDGAs under Q[c] such that A has finitely many orbit types, and such
that the functor is injective in a categorical sense when regarded by neglect
of structure as a functor to rational vector spaces.

(2) A distinguished sub-CDGA AT of A(T) such that the map
AT ⊗ Q[c] → A(T) is a quasi-isomorphism.

A morphism between T-systems A and B is a natural transformation such that
AT lands in BT.

The restriction to injective objects is important because it allows us to define a
minimal model. Minimal T-systems are particularly nice T-systems which are built
up in stages from elementary extensions which are freely generated by a diagram
of vector spaces; for further details see [9].

The most important properties of the minimal T-systems are given by the
following.

Proposition 2.2. ([9], Prop. 5.26) If A is a T-system, then there is a minimal
T-system M with a quasi-isomorphism M → A.

Theorem 2.3. ([9], Prop. 5.23) If f : M → N is a quasi-isomorphism between
two minimal systems, then f ) g where g is an isomorphism.

Corollary 2.4. ([9], Cor. 5.24) If M and M′ are two minimal systems and
ρ : M → A and ρ′ : M′ → A are quasi-isomorphisms, then there is an isomorphism
f : M ∼= M′ such that ρ′f ) ρ.

This shows that minimal models serve as preferred quasi-isomorphism class
representatives, and allows us to make the following definition.

Definition 2.5. ([9], Defn. 5.25) If M is minimal and ρ : M → A is a
quasi-isomorphism, we say that M is the minimal model of the system A.

To get a T-system associated to a T-space X we use the Borel bundle construc-
tion combined with a suitable version of the functor of de Rham differential forms
([9], Defn. 4.12), denoted here by A.

Definition 2.6. ([9], Defn. 6.27) Let X be a Q-good T-space, and consider
the Borel construction X ×T ET. Let ET(X) be the T-system defined by

ET(X)(H) = A(XH ×T ET),

with special sub-CDGA

ET = A(XT) ⊂ A(XT × BT) = ET(X)(T),

where the inclusion A(XT) ⊂ A(XT × BT) is induced by the projection
p1 : XT × BT → XT.

This is a T-system according to the definition above, as it is injective as a
functor to vector spaces. Thus it has a minimal model MX , the minimal model
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of X . There is a quasi-isomorphism MX → ET(X), and MX encodes rational
homotopy information. The main theorem of [9] shows

Theorem 2.7. ([9], Thm. 6.28) Let X be a Q-good T-space, and MX be the
minimal model of ET(X). Then the correspondence X → MX induces a bijec-
tion between rational homotopy types of Q-good spaces and isomorphism classes of
minimal T-systems.

Furthermore, MX computes geometric information in the following way ([9],
Sec. 6; 14-18).

• the cohomology of MX(H) is equal to the rational cohomology of the
Borel construction of the fixed set XH , as a module over H∗(BT) = Q[c]

• MX is generated by free Q[c]-CDGA’s on the diagram of vector spaces
π∗, the duals of the rational homotopy groups πn(XH

Q )
• the Grivel-Halperin-Thomas theorem [4] implies that the non-equivariant

minimal model of X ×T ET is given by N ⊗Q[c], where N is the Sullivan
minimal model of X . Therefore for any fixed set XH , we can recover the
Sullivan model MXH by taking a minimal model for MX(H)/(c) where
(c) is the ideal generated by c; and the cohomology of MX(H)/(c) is the
rational cohomology of XH .

Thus the quasi-isomorphism class of the T-system determines the rational ho-
motopy type of the T-space, and the minimal model provides a concrete way of
calculating many rational geometric invariants.

3. Injective Envelopes

The most problematic technical consideration for working with T-systems is the
requirement that they be injective objects in the category of functors to rational
vector spaces. An analysis of what such injectives look like was done in [9].

Proposition 3.1. ([9], Prop 8.37) A functor V from hOT to vector spaces is
injective if the map V (H) → limK⊃H V (K) induced by the structure maps of A is
surjective for all H.

We construct the injective systems from rational vector spaces as follows.
Definition 3.2. The injective functor from hOT to vector spaces generated by

the vector space V at the subgroup H is

V H(G/K) =

{
V if K ⊆ H

0 otherwise

with structure maps equal to either the identity or 0, as appropriate.
Observe that these meet the criterion given in Proposition 3.1. We use these

as the basic building blocks for all injective systems.
Proposition 3.3. ([9], Prop 8.39) A functor Afrom hOT to rational vector

spaces is injective if and only if it is of the form A = ⊕HV H for some collection of
vector spaces VH .

Corollary 3.4. ([9], Cor 8.41) Any functor from hOT to rational vector
spaces can be embedded in an injective system.

We produce the injective by defining

VH = ker [A(H) → lim
K⊃H

A(K)]
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and using the natural map A → ⊕V H . When constructing the minimal model of
the space, which is a T-system and therefore injective, this procedure is used to
create injective envelopes for the diagrams of vector spaces π∗ given by the duals
of the rational homotopy groups π∗

n(X)(H) = (πn(XH) ⊗ Q)∗.
Now we consider functors to algebras; we would like to construct an injective

envelope which respects the multiplicative structure, and use this to get a minimal
model. Precisely, we consider the following.

Definition 3.5. A coh-T-system is a covariant functor from hOT to commu-
tative graded Q[c]-algebras, such that the functor has finitely many orbit types;
together with a distinguished sub-algebra which is a Q[c]-basis for the value of the
functor at T.

This is exactly the structure given by taking the cohomology of a T-system.
Theorem 3.6. Suppose A is a coh-T-system. Then there is a T-system I and

an inclusion A → I which is a quasi-isomorphism when A is regarded as a functor
to Q[c]-CDGA’s with zero differential.

The T-system I is called the injective envelope of A. The strategy will be to
create I by adding acyclic pieces to A, designed to make the result injective without
changing cohomology. The basic construction used is the following.

Definition 3.7. Suppose A is a coh-T-system, and let V be a vector space
with a map V → limK⊃H A(K). Let V H be the injective system of vector spaces
generated by V at H , as defined in 3.2. Let sV H be a copy of V H shifted up one
degree, and define ΛH to be the free acyclic Q[c]-CDGA generated by V H ⊕ sV H

with d(V H) = sV H . The enlargement IH of A by V at H is defined to be

IH(K) =

{
A(K) ⊗Q[c] ΛH(K) if K ⊆ H

A(K) otherwise

To define structure maps out of ΛH(H), we use the map V → limK⊃H A(K)
to produce maps V → A(K) for K ⊃ H ; and send sV (H) to zero. This can
be extended over ΛH(H) by freeness. Since d = 0 on limK⊃H A(K), this gives
morphisms of Q[c]-CDGAs. The structure maps on the rest of IH are the obvious
maps induced by these maps and the structure maps of A and ΛH .

Observe that the inclusion A → IH is a cohomology isomorphism since ΛH

is acyclic. The strategy will be to produce the injective envelope by enlarging as
necessary, choosing vector spaces VH to make the maps IH → limK⊃H IH(K) onto.

Proof of Theorem 3.6. We create I by performing the enlargement defined
above to create an injective system. By assumption A has finitely many orbit types,
and so the map A(H) → limK⊃H A(K) is an isomorphism for all but finitely many
H . Let {Hi} be the list of all problem subgroups for which this map fails to be
surjective; we will perform an enlargement for each one.

We work by induction. Choose a subgroup H from the list of Hi which is not
contained in any of the others; note that this means that for any H ′ ⊂ H , the
map A(H ′) → limK⊃H′ A(K) is onto. Let CH = coker[A(H) → limK⊃H A(K)].
This is a commutative graded Q[c]-algebra; choose a set of Q[c]-module genera-
tors and let VH be the vector space they span. There is a vector space splitting
limK⊂H IH(H) = im⊕CH , and also CH = VH ⊕W . We use this to produce a map
VH → limK⊂H IH(H), which we then use to create an enlargement IH . Observe
that since VH contains a generating set for CH , and the enlargement contains a
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free Q[c]-CDGA generated by VH , the induced map IH → limK⊃H IH(K) will be
onto. All other structure maps in IH are induced from A and the injective system
ΛH , and so away from H the maps IH(H ′) → limK⊃H′ IH(K) will fail to be onto
in the same places that A failed; precisely, all Hi on the original list other than the
chosen H .

We continue inductively through the finite list of Hi, adding an enlargement
at each one; each enlargement removes one subgroup from the list of problem
subgroups, and the end result is I. The resulting system satisfies the condition of
Proposition 3.1 and so is injective. Moreover, since each ΛHi is acyclic the inclusion
map A → I is a quasi-isomorphism. !

The main application is the following.
Corollary 3.8. If A is a T-system and H is the functor obtained by taking

the cohomology of A, then H has an injective envelope.
The injective envelope constructed above specifies a unique quasi-isomorphism

type, as can be shown using the following lifting property.
Lemma 3.9. If A is a coh-T-system and B is a T-system, and there is a mor-

phism A → B then the morphism may be extended to a map of T-systems from the
injective envelope I of A making the following diagram commute.

A !!

""

B

I

##!
!

!
!

Proof. The morphism A → B induces commuting maps

A(H)/(c) !!

""

B(H)/(c)

""
limK⊃H A(K)/(c) !! limK⊃H B(K)/(c)

Since limK⊃H A(K)/(c) = VH ⊕ WH we can restrict to get a map
VH → limK⊃H B(K)/(c). Now B is a T-system and therefore injective, so the
vertical map on the right is onto. Therefore we can choose a lift and get a vector
space map VH → B(H)/(c); and a vector space splitting B(H) = B(H)/(c)⊕W will
allow us to extend this to a map φ : VH → B(H). We then define a map sVH → B
that commutes with the differential on B; since dVH = sVH this is determined by
φ(sv) = dφ(v). Using the injective property we can extend this to a map of functors
of vector spaces V H ⊕sV H → B. Now for each Hi where an enlargement was done,
ΛHi is a free acyclic Q[c]-CDGA generated by a vector space V Hi

⊕ sV Hi
, and so

φ extends to a map of systems of Q[c]-CDGA’s ΛH → B. Repeating this extension
process for each Hi gives the desired map from I. !

Corollary 3.10. If A is a coh-T-system and B is a T-system, and there is a
quasi-isomorphism A → B then B is quasi-isomorphic to the injective envelope I.

Proof. We use the lifting property of Lemma 3.9 to produce a map I → B
which must be a quasi-isomorphism by the commutativity of the diagram. !
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4. T-equivariant Formality

We now use the results of the previous section to give a definition for T-
equivariant formality using T-minimal models. We begin by considering formal
T-systems. We cannot mimic the non-equivariant definition exactly because the
functor given by the cohomology of a T-system may not itself be a T-system; but
we can use the injective envelope of Theorem 3.6 instead.

Definition 4.1. A minimal T-system is formal if there is a quasi-isomorphism
of T-systems M → I, where I is an injective envelope of H∗(M).

We use the minimal model of a T-space X to define formality for spaces.

Definition 4.2. A T-space X is formal if its minimal model MX is formal.

Recall that the cohomology of the minimal model computes the cohomology of
the Borel space of the various fixed sets H∗(MX) = H∗(XH ×T ET; Q). Therefore
the condition that X is formal is equivalent to the existence of a quasi-isomorphism
of T-systems MX → IX , where IX is the injective envelope of H∗(XH ×T ET, Q).
Because the T-minimal model encodes the rational T-homotopy type, this notion
of formality can be interpreted as meaning that the equivariant rational homotopy
type of the space is determined by its equivariant cohomology, as long as we use a
suitable interpretation of equivariant cohomology. In this case, we take equivariant
cohomology to refer to the functor determined by taking the Borel cohomology
H∗(XH ×T ET; Q), as a Q[c]-module, of the diagram of fixed point sets {XH}.

There are several alternate definitions of equivariant formality in use, which
make sense for the action of more general groups. In [8], Lillywhite defines equivari-
ant formality of a G-space X by also looking at the Borel bundle XG = X×GEG →
BG and taking the CDGA of differential forms A(XG); this is an object in the cat-
egory of augmented CDGA’s under H∗(BG). A formal space is defined to be one
which admits a quasi-isomorphism of H∗(BG)-CDGA’s between the minimal model
of the Borel construction MX×GEG and H∗(X ×G EG, Q) in this category. Be-
cause this takes into account the action of H∗(BG), this is stronger than simply
requiring that the space X×T ET be non-equivariantly formal; this definition could
be interpreted to mean that the rational homotopy type of the Borel construction,
as a bundle, is determined by its cohomology as an H∗(BG)-module. However,
the Borel construction does not determine the equivariant homotopy type of the
original space, even when considered as a bundle instead of simply a space. In order
to capture the equivariant homotopy type of a G-space, we need information about
the fixed sets. So this definition does not translate into capturing the equivariant
homotopy type of X .

Yet another definition of G-equivariant formality has been given by Goresky-
Kottwitz-Macpherson in [7], where the authors interpret the collapse of the spectral
sequence associated to the Borel construction of the space as a type of equivariant
formality. A future paper will develop further comparisons concerning these various
definitions in the case of the circle group T.

It is natural to ask about the equivariant formality of various classes of spaces
such as H-spaces or Kähler manifolds. This is work in progress; it is expected that
Kähler manifolds are in fact formal under some reasonable conditions. The proof
of this poses some difficulty, however, and even for the case of finite group actions
it is not yet proven. The proof given in [6] was based on some incorrect results in
[11] and has not currently been fixed.
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One class of spaces which are easily shown to be formal are equivariant Eilenberg-
MacLane spaces.

Theorem 4.3. If K = K(π, n) is a T-equivariant Eilenberg-MacLane space,
then K is formal.

Proof. By the definition of T-equivariant Eilenberg-MacLane space, each fixed
point set KH = K(π(H), n) is an ordinary non-equivariant Eilenberg-MacLane
space, so H∗(KH , Q) = Q(π(H)); and the maps i∗ : H∗(KH′

) → H∗(KH) are
induced by the structure maps of the dual coefficient system π∗. When we consider
the Borel construction, we see that the inclusions induce maps of the fibrations
over BT and the structure maps for the functor H∗(KH ×T ET) are given by
i∗ ⊗ id : H∗(KH′

) ⊗ Q[c] → H∗(KH) ⊗ Q[c]. So as a functor,

H = H∗(KH ×T ET) = Q(π∗) ⊗ Q[c].

To produce a minimal model M for K, we take an injective resolution of
Hn = π∗ given by

π∗ → V 0 → V 1 → . . . ,

and let
M = ⊗iQ(V i) ⊗ Q[c]

be the T-system with differential d = vi induced by the resolution, with sub-DGA
VT = ⊗iQ(V i(T/T)) ⊗ Q. (See [9], Section 9 for further discussion.)

To show formality, observe that there is a map H → M induced by the inclusion
π∗ → V0; and Lemma 3.9 gives an extension to the injective envelope I → M which
must be a quasi-isomorphism by commutativity. The uniqueness of the minimal
model given by Corollory 2.4 shows that M is the minimal model of I and so K is
T-formal. !

We end by using this result to provide the following examples of formal spaces.
Example 4.4. Let π be the diagram of vector spaces given by π(e) = Q and

π(H) = 0 for all other subgroups H . Then K(π, 3) has contactible fixed sets
XH ) ∗ for all H /= T, and X = K(Q, 3) ) S3. We can construct such a space by
defining X = S3 ∧ S∞

+ where S3 has a trivial T-action and S∞ has a free T-action.
The system of vector spaces π∗ is injective, and so the minimal model of the space
is given by Q(π∗)⊗Q[c]; in this case, MX(H) = Q[c] for all subgroups H /= e, and
MX(e) = Q(x)⊗Q[c] where x has degree 3 and the differential d = 0. Observe that
in this case the cohomology of this T-system H ∼= MX , and no injective envelope
is needed.

Example 4.5. Let π be the diagram of vector spaces given by π(e) = 0 and
π(H) = Q for all other subgroups H . Then K(π, 3) has XH ∼= K(Q, 3) ) S3 for
all H /= e, and X itself is contractible. We can construct such a space by defining
X = S∞ with T-action λ[z0, z1, z2, z3, z4, . . . ] = [z0, z1, λz2, λz3, λz4, . . . ]. Observe
that in this case π∗ is not injective as a vector space, and so to produce the minimal
model we take the injective resolution

π∗(e) = 0 ! " !!

""

Q !!

""

Q

""
π∗(H) = Q ! " !! Q !! 0
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Thus the minimal model is given by

MX(e) = Q(x, y) ⊗ Q[c]

""
MX(H) = Q(x) ⊗ Q[c]

where x has degree 3 and d(x) = y in MX(e). The homology of the system is given
by

H(e) = Q[c]

""
H(H) = Q(x) ⊗ Q[c]

which is again not injective; the map H(e) → limK⊃e H(K) is not surjective, and
coker{HX(T) → limK⊃T HX(K)} is generated by the elements xcm. To create the
injective envlelope we can choose x to be a Q[c]-generator and define the enlarge-
ment HX ⊗ΛT(x) where ΛT(x)(H) = 1 and ΛT(x)(T ) is the free acyclic Q[c]-CDGA
generated by x and sx, with d(x) = sx. Thus we see that in this case the injective
envelope of HX is isomorphic to the minimal model MX .
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