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1 Introduction

A space is formal if its rational homotopy type is determined by its rational co-
homology ring. To make this precise, formality is defined using the category of
commutative differential graded algebras (CDGAs). A CDGA is formal if it is
quasi-isomorphic to its cohomology ring, regarded as a CDGA with differential
d = 0. This means that A is formal if there is a zig-zag of quasi-isomorphisms
A →A 1 ← A2 → · · · → H∗(A). For CDGAs which are minimal in the sense
of Sullivan ([8], [19]), formality can be described more simply, since the zig-zag
of quasi-isomorphisms in this case is equivalent to the existence of a single quasi-
isomorphism A→ H∗(A).

To define formality for spaces, we use the minimal model MX of a space X
from ([8], [19]), which is a minimal CDGA. A space X is formal if its minimal
model MX is formal. The CDGA MX encodes all rational homotopy informa-
tion, including homotopy and homology groups; in particular, the cohomology
H∗(X; Q) = H∗(MX). If a space X is formal then there is a quasi-isomorphism
MX → H∗(MX) = H∗(X; Q), and we may compute the model MX of X
as the minimal model for the rational cohomology ring H∗(X; Q). Therefore the
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rational homotopy type of a formal space can be recovered from the cohomology
ring. Since cohomology is generally more accessible than other invariants, this
can make calculations much easier. Several interesting classes of spaces turn out
to be formal, and the paper of Deligne, Griffith, Morgan, and Sullivan [8] which
introduced Sullivan’s minimal models used them to show the formality of simply
connected compact Kähler manifolds as its primary application.

Equivariantly, where algebraic models exist which describe the rational homo-
topy type of G-spaces, they can be used to define an analogous notion of formality.
For actions of finite groups, Triantafillou and Fine [10] have shown that simply
connected compact Kähler manifolds are equivariantly formal over the complex
numbers. In this paper, we extend this result and consider actions of torus groups
T. Working with complex coefficients, we prove that simply connected compact
Kähler manifolds with holomorphic T-actions are equivariantly formal. This re-
sult uses the definition of equivariant formality from [17], which is based on the
algebraic models for T-spaces developed in [14] and [15].

Throughout this paper, the T-spaces under consideration will be compact man-
ifolds with a smooth action of a torus T; in particular, this implies that they are
T-CW complexes, and all orbit spaces and related constructions, such as Borel
spaces, are also CW complexes. In addition, compactness assures that all T-spaces
have finitely many orbit types and that the rational cohomology of each fixed point
subspace XH = {x ∈ X |hx = x for all h ∈ H} is of finite type for all closed
subgroups H ⊆ T. We will also assume that all T-spaces are based, with basepoint
fixed by the T-action, and T-simply connected in the sense that the connected com-
ponents of the fixed point subspaces XH are all simply connected. These will be
standing assumptions in what follows; note that we are not assuming that the fixed
point sets are also connected, as needed for the minimal models of [15], but in-
stead are allowing disconnected fixed sets as in [14], as is necessary for the study
of Kähler manifolds.

Section 2 gives a quick sketch of the background material on equivariant for-
mality. Section 3 contains the proof of the equivariant formality of compact Kähler
T-manifolds. Section 4 has two simple examples of computations for a linear circle
action on complex projective spaces, and Section 5 contains the proof of an impor-
tant but somewhat involved proposition used to translate from the usual equivariant
model to a more convenient one in the proof of the main theorem.

The author would like to thank the referree for his or her helpful suggestions,
particularly concerning the explanation of the proposition proved in Section 5, and
for suggesting the second example of Section 4.

2 Equivariant Models and Formality

The equivariant homotopy type of a space X with the action of a group G depends
not only on the homotopy type of the space itself but also on the homotopy type
of the fixed point subspaces XH for all closed subgroups H ⊆ G. Together with
the natural inclusions and maps induced by the action of G, these form a diagram
of spaces indexed by the closed subgroups of G. Much of equivariant homotopy
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theory makes use of this diagram, and we often define algebraic invariants by con-
structing diagrams of algebras reflecting the fixed point data.

In defining equivariant algebraic models for the rational homotopy of spaces
with actions of torus groups, we use the diagram category defined in [14]. Be-
cause we are dealing with actions of connected torus groups, we do not need the
full generality of the diagrams defined in [14], Definition 1.2, but can instead use
the simplified diagrams discussed in [14], Section 4. Therefore we define our in-
dexing category D as follows. The objects of D are pairs of closed subgroups
{K[H] |H ⊆ K, H connected } of T, and maps are defined by

D(K1[H1],K2[H2]) =

{
π0(T/H1) if H2 ⊆ H1 ⊆ K1 ⊆ K2

∅ otherwise

Such a diagram is designed to give a framework for information about the fixed
sets XK of a T-space X , and the extra indexing subgroup allows us to consider
a fixed set XK as a T/H space for any connected H ⊆ K, allowing for the
necessary comparison maps.

To get from a space to a D-diagram, we construct the diagram whose entries
are the Borel spaces {XK ×T/H E(T/H)} of the various fixed sets associated
to pairs of subgroups K[H]. The inclusions of the fixed sets XK2 ⊆ XK1 for
K1 ⊆ K2 and the projection maps T/H2 → T/H1 for H2 ⊆ H1 induce the
necessary structure maps to give a (contravariant) diagram of shape D. Note that
just as all spaces have a map to the terminal one-point object in the category of
spaces, these diagrams have natural maps to the diagram of classifying spaces
B(T/H) associated with the one-point space. The map B(T/H2) → B(T/H1)
is a rational equivalence when the index of H2 in H1 is finite; moreover, so is the
projection XK ×T/H2 E(T/H2) → XK ×T/H1 E(T/H1). This is what allows us
to index all our diagrams on the smaller indexing category discussed here, which
has as its objects pairs K[H] for connected subgroups H in K, rather than indexing
on all pairs of nested subgroups.

By considering these diagrams of bundles and applying a suitable version of
de Rham differential forms functor Ω, we obtain a (covariant) diagram of CDGAs;
we refer to such diagrams as D−CDGAs. The diagram obtained from the Borel
bundles of a space also comes with a map from an initial diagram object P , where
the object P is obtained by applying Ω to the diagram associated with the one point
space, the diagram of classifying spaces B(T/H). In fact we can simplify this by
taking the entries of P to be the minimal models for these CDGAs; since the clas-
sifying spaces are formal, this P has entries which are the CDGAs given by the
rational cohomologies of the classifying spaces B(T/H). The diagram Ω(X) ob-
tained by taking differential forms of the Borel bundles is an object in the category
of D−CDGAs under P , and is an algebraic model which encodes T-equivariant
rational homotopy information. This describes the mechanism for passing from a
T-space to an algebraic object, and the algebraic category used for the models is
the homotopy category of D−CDGAs under P .

Note that when considering diagrams of spaces, it makes sense (and is some-
times necessary) to consider diagrams with structure maps between entries induced
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by all equivariant maps T/H2 → T/H1. Once we pass to an algebraic category
like CDGAs, however, we need only consider homotopy classes of structure maps,
and so use the discrete indexing category D. It is worth making a couple of obser-
vations about this category, which gives the basic shape of the algebraic diagrams
considered. First, for a torus group T, the morphisms in the indexing category D
are defined by connected torus groups T/H . So in the discrete indexing category,
the structure maps between entries are unique where they exist. Moreover, there are
only two basic types of morphisms we need to consider: maps K[H1] → K[H2]
for H2 ⊆ H1, and maps K1[H] → K2[H] for K1 ⊆ K2. Any other structure map
is the composition of maps K1[H1] → K1[H2] → K2[H2]. This will be useful
when defining diagrams in D−CDGA later.

A quasi-isomorphism in the category of D−CDGAs under P is a morphism
of diagrams which is a quasi-isomorphism at each entry. As with CDGAs, an ob-
ject A in the category D−CDGAs under P is formal if there is a zig-zag of
quasi-isomorphisms A →A 1 ← A2 → · · · → H∗(A) between A and the di-
agram H∗(A) defined by taking the cohomology of each entry A(K[H]). For a
space X with the action of a torus group, we define X to be T-equviariantly for-
mal if its model Ω(X) is formal as a D−CDGA under P . Thus we can interpret
equivariant formality as meaning that the equivariant rational homotopy type of the
space is determined by its equivariant cohomology, where in this case equivariant
cohomology means the diagram of the cohomology of the Borel bundles, which is
also the diagram of the Borel cohomology of the fixed sets.

If we consider actions by the circle group T1, there are more explicit minimal
models which can be used, which also have more transparent encoding of geo-
metric information [15]. These can be used to define formality as in [16], and this
definition is equivalent to the one just discussed [17]. However, currently these
models have only been defined for spaces whose fixed sets are connected as well
as simply connected, and so are not well suited for studying Kähler manifolds.
Therefore we work here with the more general models described above.

3 Formality of Kähler Manifolds

We now turn to the study of equivariant Kähler manifolds and the proof of the
main result. Recall that a Kähler manifold is a complex manifold M admitting a
positive definite Hermitian metric

H(x, y) = S(x, y) + iA(x, y) for x, y,∈ T (M)

which satisfies the Kähler condition: the imaginary part A of the metric is closed,
that is, dA = 0. The complex structure is vital to understanding the topology of
Kähler manifolds, and so the natural setting for our algebraic investigations is over
the complex numbers. Note that a compact simply connected Kähler manifold with
a holomorphic action of a torus group will always contain a fixed point to act as
the basepoint [11], and so satisfies the conditions for the models discussed in the
previous section to exist.



Equivariant formality of Kähler manifolds 5

Formality can be defined over any extension field k of Q by requiring a quasi-
isomorphism MX ⊗ k → H∗(X; k). In the original work on (nonequivariant)
Kähler manifolds, Deligne et al [8] prove formality over C and R, and then Sul-
livan’s generalization [19] contains (among other things) an argument to descend
to formality over Q. In [10] where Triantafillou and Fine consider spaces with
actions of finite groups, a similar strategy is used, and their paper proves equivari-
ant formality over C. They give an argument for descent to formality over Q, but
this argument does not work when the corrected definition of equivariant minimal
model is used; see [15] for a discussion of this issue.

We will work with complex coefficients and do not attempt a descent to Q
here. The main therem of this paper is the following.

Theorem 3.1. Suppose M is a compact simply connected Kähler manifold with a
holomorphic action of a torus group T. Then M is equivariantly formal over C.

The proof of this theorem consists of two parts. As discussed in the previous
section, we usually use a version of the de Rham differential form functor applied
to the Borel bundles of the fixed sets to pass from geometry to algebra. In order to
make use of the Kähler structure of M , however, we would like a model in which
the forms on M appear directly, rather than the forms on the Borel space. Thus
we introduce an alternate model based on the Cartan complex. The first part of the
proof is to translate from the usual model to this Cartan version, which we do in
Proposition 3.2. We then use the Cartan diagram to show formality.

We begin by describing the constuction of the Cartan complex, which is quite
general. Let M be a smooth manifold with a smooth action of a connected compact
Lie group G. The dual Lie algebra of G is denoted g∗, and S(g∗) is the symmetric
algebra generated by g∗. If the set of vector fields {ξk} is a basis for g, then let
{ξk} denote the dual basis for g∗. Then {ξk} is also a set of algebra generators for
S(g∗), and we make S(g∗) into a graded algebra by giving the generators degree
2.

We denote the C∞ de Rham complex of differential forms on M by Ω∞(M).
The Cartan complex of equivariant differential forms is defined by

A•
G(M) = ([Ω∞(M)⊗ S(g∗)]G, dG)

The differential dG is defined to be zero on S(g∗), and on Ω∞(M) is given by the
formula

dG = d + Σξkiξk

where iξk denotes interior multiplication by the generating vector field ξk. This
complex was first defined by Cartan in ([4], [5]), and its properties are discussed
at length in [12]. In the case of the Abelian torus group T, we can get an alternate
description of this complex

A•
T(M) = Ω∞

T (M)⊗ S(t∗) ) Ω∞
T (M)[uk]

where uk are polynomial generators in degree 2 and Ω∞
T (M) are the (left) T-

invariant forms (that is, those for which L(ξk)(ω) = 0 for the generating vector
fields ξk of the T-action) [1].
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Now consider a manifold M with a smooth action of the torus group T. Any
fixed set MK is also a manifold with a smooth action of T, and in fact an action
of the quotient torus group T/H for any connected H ⊆ K. Therefore we can
define a Cartan object A•

T(M) of M in the category of D−CDGAs under P
as follows. (Since the Cartan model is intrinsically real rather than rational, we
need to consider the real version ofD−CDGAs under P , where the CDGAs have
underlying real vector spaces and the initial object is P R = P ⊗Q R; we continue
to denote this by the same notation.) As with the de Rham model, the idea is
that the entry K[H] comes from the fixed set MK regarded as a T/H-manifold;
accordingly, we define the entries A•

T(M)(K[H]) = A•
T/H(MK). We also need

to describe the structure maps.
Recall that the homotopy classes of morphisms in the indexing category D

are all compositions of the two basic types of maps: K1[H] → K2[H] for K1 ⊆
K2, and K[H1] → K[H2] for H2 ⊆ H1. The inclusion maps between the fixed
sets MK2 → MK1 are smooth and equivariant, so they induce a restriction of
differential forms φ : Ω∞(MK1) → Ω∞(MK2) in which invariant forms are
preserved. So we get structure maps A•

T/H(MK1) → A•
T/H(MK2) of the form

φ ⊗ id for a fixed H . Structure maps associated to different subgroups H2 ⊆
H1 ⊆ K are induced by projections T/H2 → T/H1, which in turn induce maps
t/h∗1 → t/h∗2; so we get maps Ω∞

T/H1
(MK)⊗S(t/h∗1) → Ω∞

T/H2
(MK)⊗S(t/h∗2).

Now observe that if Hi ⊆ K, any form defined on MK will be invariant under
the action of T/Hi if and only if it is invariant under the action of T/K; and so
these maps will pass to the invariant elements and give the necessary structure
maps A•

T/H1
(MK) → A•

T/H2
(MK). Taking M to be a one-point space yields a

diagram whose entry at K[H] is S(t/h∗). This is isomorphic to P , since S(t/h∗)
is isomorphic to H∗(BT/H; R) and a model for Ω∞(BT/H) [12]. Therefore the
inclusions S(t/h∗) → A•

T/H(MK) induce the basing map P → A•
T(M) and we

have an object in the category of D−CDGAs under P .
This Cartan diagram can be used in place of the equivariant model Ω(M) of

[14], as shown by the following.

Proposition 3.2. In the categoryD−CDGAs under P , the Cartan diagram A•
T(M)

is quasi-isomorphic to the model Ω(M).

The comparison between these diagrams goes through a number of intermedi-
ates, and the proof consists of careful checking that each of these comparisons is
sufficiently natural to give a quasi-isomorphism of diagrams. We defer this proof
to Section 5. In fact, what we need is the following immediate corollary.

Corollary 3.3. A T-manifold M is equivariantly formal if and only if the Cartan
diagram A•

T(M) is formal.

We are now ready to prove the main theorem.

Proof (of Theorem 3.1).
We adapt the argument from [8] to the equivariant setting. We begin with a

brief sketch of the original proof, and show how the Kähler structure on a (non-
equivariant) manifold M can be used to construct a zig-zag of quasi-isomorphisms
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between the complex de Rham CDGA of smooth forms Ω∞(M ; C) and its coho-
mology ring H∗(M ; C).

The complex structure can be used to refine the grading to a bidgrading on
Ω∞(M ; C) by splitting the complexified real tangent bundle T (M) into conju-
gate subbundles T ′(M) ⊕ T ′(M), which splits the fundamental vector fields ξk

into holomorphic and anti-holomorphic parts ξk = Zk + Zk. There is an in-
duced splitting on the cotangent bundle ΛnT (M)∗ defined by Λp,qT (M)∗ =
ΛpT ′(M)∗ ⊗ ΛqT ′(M)∗, and each differential form can be written as a unique
sum of its (p, q) components; the differential splits as d = ∂ + ∂. The spectral
sequences associated to the filtrations in each degree both degenerate at E1, and
the two filtrations are n-oppposite on Hn(M ; C), meaning that the two filtrations
′F p and ′′F q satisfy ′F p ⊕′′ F q ) Hn(M ; C) for p + q − 1 = n. This condition
can be re-expressed in a number of ways, including:
The ∂∂ Lemma ([8], Prop. 5.11) If α is a differential form which is ∂-closed and
∂-closed, and α = ∂β, then α = ∂∂γ for some γ.

Using the ∂∂ lemma, it is straightforward to show that the maps

{Ω∞(M ; C), d} i←↩ {ker(∂), ∂} ρ→ {H∂(M), ∂}

are quasi-isomorphisms, and also that the differential induced by ∂ on H∂(M) is
zero ([8], Section 6). Thus the cohomology of {H∂(M), ∂} is H∗(M ; C) and we
have exhibited a chain of quasi-isomorphisms connecting Ω∞(M) to its cohomol-
ogy ring.

The ideas of this proof have been adapted to equivariant spaces and Borel co-
homology; see Teleman [21] for a sheaf-theoretic approach, and also Lillywhite
[13]. Here, we apply the outline of the argument in [21] to the diagram category
D−CDGAs under P . We will invoke Corollary 3.3 to show formality, and so the
basic tool will be the Cartan diagram A•

T(M) of the Kähler T-manifold M . Note
that from here on we will work with complex coefficients, so we use S(t/h∗)⊗R C
which we will continue to denote by S(t/h∗), and define the Cartan complex by
[Ω∞(MK ; C) ⊗C S(t/h∗)]T/H . All cohomology will also have complex coeffi-
cients and we will supress this in the notation.

Since the T-action is holomorphic, all of the fixed sets MK associated to the
action are also Kähler. The entries of the diagram A•

T(M) consist of A•
T/H(MK)

for the various subgroups H ⊆ K of T. We use the bigrading described above on
Ω∞(M), and extend this bigrading to the Cartan complex by giving t/h∗ bidegree
(1, 1). Similarly we split the equivariant differential as d = (∂ + ΣξkiZk) + (∂ +
ΣξkiZk

) = ∂T + ∂T. The result is that each entry of the diagram becomes a first-
quadrant double complex.

Consider the filtration defined by the first degree, under the differential ∂T =
(∂ + ΣξkiZk). We get a spectral sequence

Ep,q
1 = H([Ωp(MK)⊗Sq(t/h∗)]T/H , ∂T) ⇒ Hp+q(MK×T/HE(T/H)) (SS1)

To identify this E1 term, we further refine the p-grading into a bigrading with
respect to the two differentials ∂ and ΣξkiZk and get a double complex and a
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spectral sequence

Êr,s
1 = Hs(Ωr(MK)⊗ Sq(t/h∗)]T/H , ∂) ⇒ Ep,q

1 (SS2)

Now we calculate Ê1:

H([Ω∞(MK)⊗ S(t/h∗)]T/H ; ∂) ) [H(Ω∞(MK)⊗ S(t/h∗)); ∂]T/H

) [H∗
∂
(MK)⊗ S(t/h∗)]T/H

) H∗
∂
(MK)⊗ S(t/h∗)

) H∗
∂
(MK)⊗H∗(B(T/H))

But each MK is (nonequivariantly) a compact Kähler manifold, and therefore
H∗

∂
(MK) ) H∗(MK) [8], and

Ê1 ) H∗
∂
(MK)⊗H∗(B(T/H)) ) H∗(MK)⊗H∗(B(T/H))

We are looking at a holomorphic action of a torus group, and so each com-
ponent of the space MK has a T-fixed base point; then a theorem of Blanchard
([2], Chapter XII) now states that the Serre spectral sequence associated to the
bundle MK ×T/H E(T/H) → B(T/H) collapses. So the target for the original
spectral sequence SS1 is H∗(MK ×T/H E(T/H)) ) H∗(MK)⊗H∗(B(T/H))
and we observe that as graded vector spaces, the Ê1 entries of the second spectral
sequence SS2 are already isomorphic to the target vector spaces of SS1. Therefore
there can be no non-trivial differentials in either spectral sequence and they both
collapse at the first stage.

A similar argument shows that an analogous result also holds for the complex
conjugate filtration. Thus we have produced two filtrations of the entries of the
diagram A•

T(M) associated to ∂T and ∂T such that the spectral sequence asso-
ciated to each collapses. Moreover, we recall that these filtrations were induced
by n-opposite filtrations on Ω∞(MK); with the collapse of the associated spec-
tral sequences to H∗(Ω∞(MK))⊗H∗(S(t/h∗)) we see that the two equivariant
filtrations on on A•

T/H(MK) are also n-opposite. Therefore the same algebraic
argument produces an equivariant ∂T∂T-lemma as described above.

The inclusion maps between the MK are all holomorphic, and so the splitting
d = ∂T + ∂T is natural with respect to the inclusions of fixed points. On the
Cartan complex, the change of group structure maps are induced by inclusions of
generators t/h∗1 → t/h∗2. Therefore the arguments of [8], Section 6 can be used to
produce quasi-isomorphisms between the diagrams

A•
T(M) ←↩ ker(∂T) → H∗(A•

T(M))

By Corollary 3.3 this implies that M is equivariantly formal over the complex
numbers.
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4 Example: Complex Projective Spaces

In this section we discuss a couple of examples coming from linear actions of
the circle group on a complex projective space. The circle group T1 has only two
connected subgroups, e and T1; and so the indexing category D is relatively sim-
ple. Diagrams associated to a T1-space X have entries at K[e] associated to the
space XK ×T1 ET1 for each closed subgroup K of T1; the only other entry in the
diagram is for the subgroup pair T1[T1], associated to the space XT1

. The base dia-
gram P has constant value P (K[e]) = H∗(BT1) ) C[c] for a polynomial genera-
tor c of degree 2, except for the entry P (T1[T1]) = H∗(∗) = C. Therefore we can
think of a diagram in D−CDGA under P as a diagram of C[c]-module CDGAs
indexed on subgroups K of T1, with one extra basing map T1[T1] → T1[e] which
is induced by the projection XT1×BT1 → XT1

. This alternate description is used
in [15] for describing equivariant models for actions of the circle group.

A linear action of S1 on CPn is given by λ[z0 : z1 : z2 : · · · : zn] =
[λw0z0 : λw1z1 : λw2z2 : · · · : λwnzn] and is determined by the values of
the integer weights w0, w1, . . . , wn. The Borel cohomology of such a space is
well understood; as a module over H∗(BT) = C[c], it is freely generated by
H∗(CPn) = C[x]/xn+1 where x is a degree two generator. Moreover, the inclu-
sion of the T fixed set into the space induces an injection of the Borel cohomology
into the Borel cohomology of the fixed space, and the ring structure can be pre-
sented as H∗

T(X) = C[x, c]/
∏

(x− wic) where wi are the weights of the action.

We can apply this to a couple of specific examples to demonstrate the calcula-
tion of the equivariant models.

Example 4.1. Consider the space X = CP 1 with T1- action given by λ[z0 : z1] =
[λz0 : z1]; so the weights are w0 = 1 and w1 = 0. This space is semi-free, with
two fixed points [1 : 0] and [0 : 1]. So for any nontrivial subgroup K ⊆ T1,
the fixed set XK = XT1

. Thus in any diagram B associated to X , we will have
that B(K[e]) = B(T1[e]) with the identity map between them for any subgroups
K -= e of T1. Therefore all of the information in such a system is contained in the
portion B(e[e]) → B(T[e]) together with the basing map B(T[T]) → B(T[e]).

By Theorem 3.1, the T-equivariant homotopy type of X is determined by the
diagramHX of Borel cohomologies of the fixed sets XH . The fixed set consists of
two isolated points and so its Borel cohomology is H∗(BT)⊕H∗(BT) = C[c]⊕
C[c]; the projection XT1×BT1 → XT1

induces the inclusion C⊕C → C[c]⊕C[c]
as the degree zero piece. The Borel cohomology of the entire space H∗(X×T ET)
can be calculated from the weights using the formula discussed above, and can be
written as C[x, c]/x(x− c); so the generator x satisfies x2 = xc, and as a module
over C[c] the cohomology is freely generated by the two generators 1 and x.
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Therefore the cohomology diagram HX of X is given by

HX(e[e]) = C[x, c]/(x2 = xc)

!!

HX(K[e])

HX(T1[T1]) = C⊕ C "" HX(T1[e]) = C[c]⊕ C[c]

where the non-trivial vertical structure map takes 1 → (1, 1) and x → (0, c). Our
theorem states that this is a formal space, and so this is a model for the equivariant
complex homotopy type.

Example 4.2. Another simple linear action we consider is the action of T1 on Y =
CP 2 defined by λ[z0 : z1 : z2] = [z0 : λz1 : λ2z2], with weights 0, 1 and 2. This
space has three isolated fixed points Y T1

= [1 : 0 : 0] ∪ [0 : 1 : 0] ∪ [0 : 0 : 1]. In
addition, there is a subspace [z0 : 0 : z2] ∪ [0 : 1 : 0] ) CP 1 ∪ [0 : 1 : 0] which
is fixed by the subgroup Z/2 ⊆ T1 generated by eπi. Therefore to encode the
information about Y in a digaram B, we need to consider the entries B(e[e]) →
B(Z/2[e]) → B(T1[e]) together with the basing map B(T1[T1]) → B(T1[e]).
From this portion of the diagram, we can fill in the rest by observing that for any
non-trivial H ⊂ T1, Y H = Y Z/2 if H = Z/2 and Y H = Y T1

otherwise; and so
B(H[e]) = B(Z/2[e]) if H = Z/2, and B(H[e]) = B(T1[e]) otherwise.

The cohomology of the fixed set Y T1
is given by C[c] ⊕ C[c] ⊕ C[c], since

the fixed set consists of 3 isolated points, with the projection XT1 ×BT1 → XT1

inducing the inclusion C⊕C⊕C → C[c]⊕C[c]⊕C[c] as the degree zero piece.
The cohomology of the entire space Y = Y e can be calculated using the weights,
and we get H∗(Y ×T1 ET1) = C[y, c]/y(y − c)(y − 2c); so the generator y
satisfies y3 = 3y2c − 2yc2, and the module generators of the cohomology are
1, y, y2. We can apply the same formula to calculate the Borel cohomology of the
fixed space CP 1 ⊂ Y Z/2, since the action on this set is also linear, defined by
λ[z0 : 0 : z2] = [z0 : 0 : λ2z2] with weights 0 and 2; so the cohomology can be
presented as H∗(Y Z/2 ×T1 ET1) = C[x, c]/x(x− 2c)⊕ C[c].

Therefore the cohomology diagram HY of Y , and model for the equivariant
complex homotopy type of Y , is given by

HY (e[e]) = C[y, c]/y(y − c)(y − 2c)

α

!!

HY (Z/2[e]) = C[x, c]/x(x− 2c)⊕ C[c]

β

!!

HY (T1[T1]) = C⊕ C⊕ C "" HY (T1[e]) = C[c]⊕ C[c]⊕ C[c]
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The srtructure maps are C[c]-maps induced by the inclusions of the fixed sets,
and the map α is defined by 1 → (1, 1) and y → (x, c), while β is defined by
(1, 0) → (1, 0, 1), (0, 1) → (0, 1, 0) and (x, 0) → (0, 0, 2c). Note that the map
HY (e[e]) → HY (T1[T1]) is determined by βα, and is defined by 1 → (1, 1, 1)
and y → (0, c, 2c).

5 Proof of Proposition 3.2

This section contains the proof of the key fact that the Cartan model may be used
in place of the standard equivariant model, as we did in the main theorem. The
comparison between these diagrams goes through a number of intermediates. In
order to work with some of these, it will be convenient to cut down on the size of
our diagrams. Therefore we begin with a discussion of how to do this.

For any subset S of the set of closed subgroups of T, we can restrict the dia-
gram categoryD−CDGAs under P to the entries indexed by the full subcategory
on pairs of subgroups from S. Conversely, suppose that S is closed under arbitrary
intersections, and also that for any subgroup H of S, the connected identity com-
ponent H0 is also in S. Then we can extend a restricted diagram N to an object
Ñ of D−CDGAs under P . We fill in the missing entries as follows: for any pair
K[H], let K ′ be the intersection ∩Ki of all Ki in S such that K ⊆ Ki, and let
H ′ be the identity component of K ′. Then since K ⊆ K ′ and H ⊆ K with H
connected, we also have that H ⊆ H ′; so we have a map P (K ′[H ′]) → P (K[H])
induced by the projection T/H → T/H ′. Thus we can define Ñ (K[H]) to be
P (K[H])⊗P (K′[H′]))N (K ′[H ′]). Then any map of restricted diagramsN1 → N2

can be extended to a map Ñ1 → Ñ2, and we also have the following result.

Lemma 5.1. IfN1 → N2 is a quasi-isomorphism of S-diagrams, then the induced
map Ñ1 → Ñ2 is a quasi-isomorphism in D−CDGAs under P .

Proof. We need to show that we have a quasi-isomorphism between the entries
K[H] which are not in S. Since both Ñ1 and Ñ2 are defined by the process
described above, we need to consider the induced map Ñ1(K[H]) = P ⊗P ′

N1(K ′[H ′]) → Ñ2(K[H]) = P⊗P ′N2(K ′[H ′]) where P = P (K[H]) and P ′ =
P (K ′[H ′])). We are assuming that the map N1 → N2 is a quasi-isomorpism of
S-diagrams, and therefore N1(K ′[H ′]) → N2(K ′[H ′]) is a quasi-isomoprhism,
since by constructrion K ′ and H ′ belong to S. But in addition, the map P ′ → P
is given by the map H∗(B(T/H ′)) → H∗(B(T/H)) induced by the projections
T/H → T/H ′ for H ⊆ H ′, where H,H ′ are subtori; so this map can be expressed
as an inclusion of generators Q[c1, c2, . . . , ci] → Q[c1, c2, . . . , ci, . . . , cn]. There-
fore, as a P ′-module, P is free, and so the tensor product is exact and preserves
quasi-isomorphisms.

Our interest in this construction comes from the fact that for any compact T-
manifold, there are only a finite number of isotropy subgroups of the group action.
This means that we do not actually need all of the entries of Ω(M) to encode the
information contained in a space; we only need those indexed by isotropy groups.
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For a given T-manifold M , we can define IM to be the collection of subgroups
generated by intersections of isotropy subgroups of M . This gives a diagram in-
dexed on a finite number of pairs of subgroups K[H], which still contains all the
information needed to describe the structure of M .

Lemma 5.2. Suppose that M is a compact T-manifold and let IM be the set of all
closed subgroups of T which can be produced by taking intersections of isotropy
subgroups of M and their connected components. Let Ω|(M) denotes the restric-
tion of Ω(M) to those entries indexed by subgroups in IM . Then Ω̃|(M) is quasi-
isomorphic to Ω(M).

Proof. The entries of Ω(M) are defined by Ω(MK ×T/H E(T/H)), where the
T/H action on MK is induced by the T action; since H ⊆ K, the space MK

is fixed by H and so the T action factors through the projection T → T/H .
Now if H,K are not both in IM , then Ω̃|(M) is defined by P (K[H])⊗P (K′[H′]))

Ω(MK′ ×T/H′ E(T/H ′)).
The fixed set MK consists of all points whose isotropy subgroups contain K,

so it is equal to the union ∪MKi over all isotropy subgroups Ki which contain
K. Thus if K ′ is the intersection of all the isotropy subgroups Ki in S contain-
ing K, then MK = MK′

. Moreover, since H ′ is the connected component of
K ′, then for any H ⊆ H ′ the T/H-action on MK′

is induced by the projec-
tion T/H → T/H ′. Therefore MK′ ×T/H E(T/H) is the pullback of the fibra-
tion MK′ ×T/H′ E(T/H ′) → B(T/H ′) over the map B(T/H) → B(T/H ′).
For any fibration of spaces, the CDGA associated to the pullback fibration is
quasi-isomorphic to the CDGA pushout of the associated commutative square ([9]
Section 15); this pushout is precisely the tensor product P (K[H]) ⊗P (K′[H′]))

Ω(MK′ ×T/H′ E(T/H ′)). Therefore we have that Ω(MK ×T/H E(T/H)) =

Ω(M)(K[H]) is quasi-isomorphic to Ω̃|(M)(K[H]) as claimed.

A quick check of the definitions also shows that a similar result holds for the
Cartan diagram.

Lemma 5.3. If we restrict the Cartan diagram A•
T(M) to entries indexed by isotropy

subgroups IM and denote this restricted diagram by A•
T|(M), then A•

T(M) is
quasi-isomorphic to Ã•

T|(M).

These results on restricted diagrams allow us to make use of the following
restricted version of Proposition 3.2.

Proposition 5.4. If we restrict the to entries indexed by isotropy subgroups IM ,
the Cartan diagram A•

T|(M) is quasi-isomorphic to the model Ω|(M).

Proof. All diagrams in this proof will be restricted diagrams over IM ; we will
drop the bar from the notation for simplicity.

The version of the functor Ω used in the original models of [14] is the Sullivan
- de Rham rational polynomial forms applied to the singular simplicial set of the
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space (see [18]; also defined by Thom, [20]). The first step in the desired compar-
ison is to translate from this model to one using the de Rham algebra of smooth
differential forms Ω∞. For any manifold M , a good functorial way to do this is
outlined in [9], Section 11, which we now describe.

In order to make a comparison between smooth and rational polynomial forms,
we use as an intermediate the simplicial set given by smooth simplicial forms: for
a manifold M , the simplicial complex S∞∗ (M) is defined using k-simplices which
are smooth maps 1k → M which extend smoothly to some neighbourhood of
1k in Rk+1. Then we can define smooth differential forms on S∞∗ (M) using the
smooth structure on each simplex. The complex S∞∗ (M) is a sub-complex of the
singular simplicial complex of M , and the inclusion induces a map Ω(S∗(M); R) =
Ω(M, R) → Ω(S∞∗ (M), R) which is a quasi-isomorphism. Similarly we can use
the inclusion of the polynomial forms into the smooth forms on any simplex1k to
get a quasi-isomorphism Ω(S∞∗ (M), R) → Ω∞(S∞∗ (M)). Lastly, we can restrict
any smooth form on M to the image of a smooth simplex 1k and get a quasi-
isomorphism Ω∞(M) → Ω∞(S∞∗ (M)). Thus we obtain an equivalence between
Ω∞(M) and Ω(M ; R).

Now we want to apply this to our case of a manifold M with a smooth T
action. The Borel construction X ×T ET is of course not a smooth manifold.
The usual way to work around this is by describing it as a colimit of compact T-
manifolds. The standard description for ET is S∞ × S∞ × · · · × S∞, where the
number of copies is equal to the rank of the torus T, and the action is given by
having each copy of S1 act on one S∞ by complex multiplication λ(z1, z2, . . . ) =
(λz1,λz2, . . . ). This can be approximated by the compact T-manifolds (ET)n =
S2n+1 × S2n+1 × · · · × S2n+1, where the inclusions on each factor are given
by the complex coordinate maps (z1, z2, . . . , zn) → (z1, z2, . . . , zn, 0). We can
then define smooth forms on ET to be the limit of the smooth forms on these
approximations, and similarly we can approximate M×TET as a colimit of spaces
M ×T (ET)n, and define smooth forms accordingly.

We now want to define a diagram of smooth differential forms on the Borel
spaces Ω∞(MK ×T/H E(T/H)) for any pair K[H] of subgroups H ⊆ K from
the isotropy subgroups SM , where H is connected. In order to define the di-
agram, we need to approximate these Borel spaces by smooth manifolds, and
the maps between them by smooth maps. For any closed connected subgroup
H of T, the quotient group T/H is another torus and a smooth approximation
of E(T/H) can be used to define smooth forms on MK ×T/H E(T/H). In-
clusions of fixed point sets are smooth maps; for the change of group maps, we
also need to ensure that the projection maps E(T/H1) → E(T/H2) induced by
the projections T/H1 → T/H2 are smoothly approximated in the models used.
To allow for this, we use a variation on the standard models for these universal
spaces which have been fattened up to make room for these comparison maps:
we define ET =

∏
H∈IM

SH where each SH =
∏

S∞ is a product of r =
rank T/H copies of S∞ as described above; and T acts on each SH through
the projection T → T/H . Similarly, for any connected H in IM , we define
E(T/H) =

∏
H′∈IM |H⊆H′ SH′ . Then each of these spaces can be approximated

by compact T-manifolds using the same approximations of the spheres S∞ de-
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scribed above; and the maps between these spaces are given by smoothly approxi-
mated projection maps. Thus we can obtain an IM - diagram Ω∞(M) by defining
smooth forms as a limit of forms defined on the approximations of each space
M ×T/H (ET/H)n. Note that it is in this construction where it is particularly use-
ful to be working with diagrams indexed on the finite collection of subgroups in
IM , and not the full D diagrams which need entries at all subgroups of T.

Once we have described a diagram of spaces M ×T/H (ET/H) which are
colimits of compact manifolds, with the structure maps a colimit of smooth maps,
it is straightforward to apply the comparisons between the smooth and rational
polynomial forms, creating the intermediate smooth simplicial forms using the
same approximation of the spaces; since all these comparisons were functorial,
we see that the IM -diagrams of smooth and rational polynomial forms are quasi-
isomophic.

The next step is to compare Ω∞(M) to the Cartan complex we defined. In
order to do this we introduce another intermediate complex associated to a T-
manifold M known as the Weil complex; again, this is a very general construction
[12]. To form the Weil complex, we start with the acyclic algebra generated by
t∗. This is defined by S(t∗) ⊗ Λ(t∗) where generators {θk} of Λ(t∗) are given
degree 1 and generators {uk} of S(t∗) are given degree 2, and the differential is
defined by dθk = uk and duk = 0. Then the Weil complex W •

T (M) is defined
to be a sub-complex of Ω∞(M) ⊗ S(t∗) ⊗ Λ(t∗) consisting of ’basic’ elements
[Ω∞(M) ⊗ S(t∗) ⊗ Λ(t∗)]bas. An element is ’basic’ if it is both invariant under
the group action and horizontal; horizontal means that it is annihilated by iξk , the
interior multiplication of all generating vector fields ξk of t; we extend this interior
multiplication to S(t∗) ⊗ Λ(t∗) by iξk(θj) = δj

k for the basis {θk} dual to the
vector fields ξk, and iξk(uj) = 0.

The two complexes W •
T (M) and A•

T(M) are quasi-isomorphic. The obvious
inclusion Ω∞(M)⊗ S(t∗) → Ω∞(M)⊗ S(t∗)⊗Λ(t∗) does not induce a quasi-
isomorphism from the Cartan complex to the Weil complex, as it does not neces-
sarily land in the basic forms. However there is a map known as the Mathai-Quillen
isomorphism φ : W •

T (M) → A•
T(M) which adjusts a basic form to make it hor-

izontal ([12], Section 4.1). The general form of this isomorphism is somewhat
complicated and involves a change of variables to identify [S(g∗) ⊗ Λ(g∗)]bas

with S(g∗) [12]. In the case of a torus group, however, this is unnessessary and
it is easy to see that the basic forms [S(t∗) ⊗ Λ(t∗)]bas ) S(t∗), since we have
defined iξk(θk) = 1 and iξK (uj) = 0. There is also an equivariant de Rham the-
orem which shows that the Weil complex is a model for the Borel construction
Ω∞(M ×T ET) [1], [12]. Thus the Cartan complex is a model for the Borel bun-
dle.

To adapt this to diagrams, we define a Weil diagram W •
T(M) analogous to the

Cartan diagram A•
T(M). Entries are defined by W •

T(M)(K[H]) = W •
T/H(MK).

For the torus group T, the groups T/H are also torus groups and so [S(t/h∗) ⊗
Λ(t/h∗)]bas ) S(t/h∗). So the diagram W •

T(∗) associated to the one point space
is equivalent to the diagram P , and the inclusion of S(t/h∗) in each entry induces
a map P → W •

T(M).
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As always, we also need to define the structure maps. The structure maps be-
tween the entries K1[H] → K2[H] are straightforward, and are of the form φ⊗ id
where φ is the induced map Ω∞(MK1) → Ω∞(MK2) as with the Cartan dia-
gram. For the change of group structure maps K[H1] → K[H2], we need to define
maps [Ω∞(MK)⊗S(t/h∗1)⊗Λ(t/h∗1)]bas → [Ω∞(MK)⊗S(t/h∗2)⊗Λ(t/h∗2)]bas

. The projections T/H2 → T/H1 induce maps t/h∗1 → t/h∗2; since the subgroups
Hi are connected, we can think of this as an inclusion of generators corresponding
to the torus H1/H2. We need some care in using this map, however, since an el-
ement which is basic for T/H1 may not necessarily be basic for T/H2; although
invariance is automatic, the horizontal condition is not.

We consider the Mathai-Quillen map as inspiration, since this map gives a
way of adjusting a differential form to make it horizontal. In order to adjust a
form ω so that it vanishes under the interior multiplication iξk , we can replace
ω by ω + (−1)|w|iξk(ω)θk where θk is the dual of the vector field ξk; since we
have defined iξk(θj) = δj

k the addition of this fudge factor gives a horizontal
element. Similarly, if we have a number of generating vector fields {ξk} of a torus
T, we define a fudge factor map γ(w) = (−1)|w|Σkiξk(w)θk. Then if we let
φ = expγ = 1 + γ + 1

2γ2 + 1
3!γ

3 + . . . , the element φ(ω) will be horizontal with
respect to the vector fields {ξk}, and so land in elements basic with respect to T as
desired.

In our situation, we want to take an element of [Ω∞(MK) ⊗ S(t/h∗1) ⊗
Λ(t/h∗1)]bas and adjust it so that it will land in [Ω∞(MK)⊗S(t/h∗2)⊗Λ(t/h∗2)]bas;
that is, so that it will be horizontal for the additional generating vector fields ξk of
the action of the torus group H1/H2. The Mathai-Quillen adjustment will do this
for us. Here, however, we observe that the structure maps we need defined in the di-
agram are those for pairs of subgroups H2 ⊆ H1 ⊆ K; since the forms are defined
on MK , they are automatically fixed by the action any subgroup of K; in particu-
lar, by the action of the additional torus H1/H2. Therefore in this case the Mathai-
Quillen fudge factor is zero, and the inclusion of generators we so optimistically
started with turns out to land in the horizontal forms in the cases we are consider-
ing; we can take our structure maps W •

T(M)(K[H1]) → W •
T(M)(K[H2]) to be

the maps induced by the inclusions of generators t/h∗1 → t/h∗2, without needing
further adjustments. Moreover, if we denote the Mathai-Quillen adjustment iso-
morphism on T/H-spaces WT/H(M) → AT/H(M) by φH , the structure maps
give the following commutative diagram

W •
T(M)(H[K])

!!

φH
"" A•

T(M)(K[H])

!!

W •
T(M)(H ′[K ′])

φH′
"" A•

T(M)(K ′[H ′])

showing that the Mathai-Quillen maps fit together to give an isomorphism of dia-
grams.

Next, we need to check that the comparison maps

W •
T/H(MK) → Ω∞(MK ×T/H ET/H)
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of the equivariant de Rham theorem fit together to give quasi-isomorphisms of
diagrams. These comparison maps can be described as follows: choose T/H-
invariant forms θi in Ω∞(ET/H) which are everywhere dual to the generating
vector fields ξi of the T/H-action on E(T/H); these are called ’connection’
forms, and their derivatives dθi = µi are called ’curvature’ forms [12]. These
forms then induce a map from the Weil algebra W (t/h∗) = S(t/h∗)⊗Λ(t/h∗) →
Ω∞(E(T/H)) of T/H , and makes Ω∞(E(T/H)) into an algebra over W (t/h∗).
Since both S(t/h∗)⊗ Λ(t/h∗) and Ω∞(E(T/H)) are acyclic W (t/h∗)-algebras,
[Ω∞(MK) ⊗ S(t/h∗) ⊗ Λ(t/h∗)]bas → [Ω∞(MK) ⊗ Ω∞(E(T/H))]bas is a
quasi-isomorphism. Then a spectral sequence argument shows that

[Ω∞(M)⊗Ω∞(E(T/H))]bas → [Ω∞(M × E(T/H))]bas

is also a quasi-isomorphism, and then the approximation of the universal space
E(T/H) by compact T-manifolds E(T/H)n allows us to identify H∗([Ω∞(MK×
E(T/H)]bas) ) H∗(MK ×T/H E(T/H)) [12].

To show that these comparison maps pass to the diagram categories, we need
to make sure that these maps are compatible with structure maps and the maps
from P . As usual, the inclusions of fixed sets MK1 → MK2 present no difficulty,
as we can choose our connection forms so that the restriction of the forms on M
give the forms on MK . For the change of group maps T/H2 → T/H1, we need
to show that we can choose the maps from the Weil algebras in a compatible way
for each E(T/H). Recall that our model for E(T/H) =

∏
H′∈IM |H⊆H′ SH′ , and

that each space SH is a product of infinite dimensional spheres S∞. For each space
SH , therefore, we can define connection forms dual to the vector fields generating
the T/H-action by observing that λj ∈ T/H acts by complex multiplication on
the vector vj of v = (v1, . . . , vr) ∈ S∞ × · · ·× S∞. So if we define zij(v) = ith
coordinate of the vector vj , let Z be the matrix with entries zij , then the matrix
ϑ = ZtdZ has components θi

H with the desired property [12]. These θi
H then can

be used to define the required map W (t/h∗) → Ω∞(SH).
Now if H ⊆ L are connected subgroups of IM , we have an inclusion W (t/l∗) →

W (t/h∗) induced on generators by the projection map T/H → T/L. We can
therefore extend the map defined using the connection forms to a map W (t/h∗) →
Ω∞(SL) by zero on the additional generators. Using these maps we can get a map
W (t/h∗) → ⊗L⊇HΩ∞(SL) ↪→ Ω∞(

∏
L⊇H SL) = Ω∞(E(T/H)); and these

maps will satisfy the following commutative diagrams:

W (t/h1
∗)

!!

"" Ω∞(E(T/H1))

!!

W (t/h2
∗) "" Ω∞(E(T/H2))

Therefore the comparison maps respect the structure maps.
Lastly, observe that if we restrict these maps W (t/h∗) → Ω∞(E(T/H))

to the basic forms of each complex, we get S(t/h∗) → Ω∞(E(T/H))bas =
Ω∞(B(T/H)) acting as a Sullivan minimal model for the space B(T/H). There-
fore these maps act as our basing map P → Ω∞(B(T/H)), and the comparison
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maps [Ω∞(MK) ⊗ S(t/h∗) ⊗ Λ(t/h∗)]bas → [Ω∞(MK) ⊗ Ω∞(E(T/H))]bas

also respect the basing maps.
It is now straightforward to check that all the comparison maps in the equiv-

ariant de Rham theorem give equivalences of diagrams. Therefore we get quasi-
isomorphisms A•

T(M) ← W •
T(M) → Ω∞(M) in the category of IM -CDGAs

under P .

Proof (of Proposition 3.2). We can use Lemma 5.1 applied to each of the compar-
ison maps used in Proposition 5.4 to show that Ã•

T|(M) is quasi-isomorphic to the
model Ω̃|(M) in the category of D−CDGAs under P . But then Lemmas 5.2 and
5.3 show that this also gives a quasi-isomoprhism between Ω(M) and A•

T(M) as
required.
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