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Abstract. This paper contains a comparison of several definitions of equi-
variant formality for actions of torus groups. We develop and prove some
relations between the definitions. Focusing on the case of the circle group, we
use S1-equivariant minimal models to give a number of examples of S1-spaces
illustrating the properties of the various definitions.

1. Introduction

The idea of a formal space is a space whose rational homotopy type is determined
by its rational cohomology ring, indicating relatively simple geometric properties
and also making calculations much easier. Many classes of interesting spaces turn
out to be formal, including Lie groups, classifying spaces and compact 1-connected
Kähler manifolds; see for example the discussion in [6].

Various authors have extended the concept of formality to the equivariant set-
ting. One definition was used in the influential paper of Goresky, Kottwitz and
Macpherson [8] for actions of torus groups. For finite group actions, Triantafillou
and Fine have an alternate approach in [7], and a definition following this spirit was
given for actions of circle group by the author in [12]. Lillywhite [9] has recently
presented yet another approach for actions of general Lie groups.

This paper looks at actions of torus groups, denoted T. In this context, we com-
pare the various definitions, and show some relations between them. Specializing
to the circle T1, we give a number of examples of T1-spaces which are formal in
one sense or another, illustrating the difference between the definitions. The main
technique for producing examples will be to use the T1-minimal models developed
by the author in [11], and the assorted concepts of formality will also be interpreted
via these models.

Throughout this paper, we will assume that all cohomology has rational coeffi-
cients, and all homotopy groups are rational homotopy groups. The organization
of the paper is as follows. Section 2 contains an outline of the main results of
[11], with the definition of T1-minimal models and their properties; and also dis-
cusses the generalization of these ideas other Abelian compact Lie groups. Section
3 contains the assorted definitions of T-equivariant formality: for circle actions, the
definition of the author from [12] using T1-minimal models, and some of its prop-
erties; extending this to actions of higher tori; and the other definitions mentioned
in the second paragraph. Some comparison results relating different definitions of
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T-equivariant formality are given in Section 4. Section 5 focuses on the case of the
circle group, and contains a number of examples of T1-spaces exhibiting different
types of formality and illustrating the relations between the various types of for-
mality. Finally, Section 6 contains the proofs of a couple of technical results from
Section 3.

2. Equivariant Algebraic Models

This section contains a brief summary of the major results of the author [11]
on T1-minimal models, and the results of Mandell and the author in extending
these to Abelian compact Lie groups. These models are used directly in one of the
definitions of T-equivariant formality. In addition, the T1-minimal models are used
in this paper to compare the various types of formality and to produce examples.

Throughout this paper, all T-spaces are assumed to be T-CW complexes; note
that this ensures that all orbit spaces and related constructions, such as Borel
spaces, are also CW complexes. In addition, all T-spaces are assumed to have
finitely many orbit types. We also assume that all T-spaces are T-simply connected
in the sense that the fixed point subspaces XH = {x ∈ X|hx = x for all h ∈ H}
are all connected and simply connected (and also non-empty). Lastly, we assume
that the rational cohomology of each fixed point subspace XH is of finite type.
We refer to spaces satisfying all of these conditions as Q-good, and this will be a
standing assumption in what follows.

In general, the equivariant homotopy type of a G-space X depends not only on
the homotopy type of the space itself but also on the homotopy type of all the
fixed point subspaces XH for closed subgroups H ≤ G. Together with the natural
inclusions and maps induced by the action of G, these form a diagram of spaces.
Studying this diagram is a standard equivariant technique, going back to a theorem
by Bredon [3] which states that a map which induces isomorphisms on all homotopy
groups of the diagram of fixed point subsets is an equivariant homotopy equivalence.
The shape of the diagram is described by the orbit category OG. This category has
objects the canonical orbits G/H, and morphisms given by the equivariant maps
between them. The fixed point subspaces XH thus form a functor from OG to
spaces, and this functor completely determines the equivariant homotopy type, as
shown by Elmendorf in [5]. When considering discrete algebraic invariants, we look
at functors from the discrete homotopy category hOG instead, which has the same
objects G/H with homotopy classes of maps between them. Note that the objects
of OG will be abbreviated from G/H to H for simplicity of notation.

Observe that if X is a G-space and H is not an isotropy type of X, then the fixed
set XH consists of a union of the fixed sets {XK} contained in it for H ⊃ K. Since
the value of an algebraic functor at a subgroup H reflects H-fixed information,
a space X corresponds to an algebraic functor with the following property: for
all closed subgroups H which are not isotropy subgroups of X, the value of the
functor A(H) is determined by the value at the subgroups K ⊃ H by the equation
A(H) = limK⊃H(K). If the space has finitely many orbit types, the value of A(H)
will be determined in this way for all but a finite number of subgroups; such a
functor will be said to have finitely many orbit types.

In the case of the circle group G = T1, this indexing category can be described
quite simply. Objects are canonical orbits T1/H for subgroups H = Z/n or H = T1.
Group theory tells us that any equivariant map between orbits T1/H → T1/K is
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of the form â : gH → gaK for some a ∈ T1 for which a−1Ha ⊆ K; since T1 is
Abelian this is equivalent to H ⊆ K. Two such maps â and b̂ are the same if and
only if aK = bK, that is, ab−1 ∈ K. Thus the orbit category OT1 has morphisms

Hom (H,K) =

{
T1/K if H ⊆ K

∅ otherwise

All the equivariant maps from T1/H to T1/K are homotopic, since T1 is connected;
so the homotopy orbit category hOT1 has exactly one morphism from H to K if
H ⊆ K and no other morphisms. This gives the shape of the diagram category we
use to study T1-spaces.

For the circle group, the algebraic category used to model the rational homotopy
of T1-spaces is a category of functors from hOT1 to commutative differential graded
algebras (CDGAs). In order to algebraically encode the T1-action, we work with
CDGAs which are modules over H∗(BT1) = Q[c], the polynomial ring with a single
generator of degree 2. Precisely, the category is given by the following.

Definition 2.1. ([11], Defn. 5.18) A T-system consists of
(1) A covariant functor A from hOT1 to the category of finitely generated

CDGAs under Q[c] such that A has finitely many orbit types, and such
that the functor is an injective object when regarded by neglect of structure
as a functor to rational vector spaces.

(2) A distinguished sub-CDGA AT of A(T) such that the map
AT ⊗Q[c]→ A(T) is a quasi-isomorphism.

A morphism between T-systems A and B is a natural transformation such that
AT lands in BT.

The restriction to the injective objects of the category makes sense geometrically,
and it is needed for the existence of minimal models. To establish the equivariant
analogue of minimality, we use the idea of an “elementary extension” (defined in
[11], Section 11), which builds systems of CDGAs out of diagrams of vector spaces.

Definition 2.2. ([11], Defn. 3.4) A system of CDGAs M is minimal if M =
∪
n
M(n) where M(0) = M(1) = Q and M(n) = M(n − 1)(V n) is an elementary

extension of degree n, for some diagram of vector spaces V n.

These minimal T-systems are particularly easy to understand. Some important
properties of the minimal T-systems are given by the following results.

Proposition 2.3. ([11], Prop. 5.26) If A is a T-system, then there is a minimal
T-system M with a quasi-isomorphism M→ A.

Proposition 2.4. ([11], Prop. 5.23) If f : M→ N is a quasi-isomorphism between
two minimal T-systems, then f * g where g is an isomorphism.

Corollary 2.5. ([11], Cor. 5.24) If M and M′ are two minimal T-systems and
ρ : M→ A and ρ′ : M′ → A are quasi-isomorphisms, then there is an isomorphism
f : M ∼= M′ such that ρ′f * ρ.

These results show that the minimal T-systems can serve as preferred represen-
tatives for quasi-isomorphism classes, since there is a unique minimal T-system in
each class; this allows us to make the following definition.
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Definition 2.6. ([11], Defn. 5.25) Let A be a T-system. If M is a minimal T-
system and ρ : M →A is a quasi-isomorphism, we say that M is the minimal
model of A. Note that Corrolary 2.5 implies that the minimal model is unique.

To get a T-system associated to a T1-space X we use the Borel bundle construc-
tion combined with a suitable version of the functor of de Rham differential forms
([11], Defn. 4.12), denoted here by Ω.

Definition 2.7. ([11], Defn. 6.27) Let X be a Q-good T1-space, and consider the
Borel construction X ×T1 ET1. Let ET1(X) be the T-system defined by

ET1(X)(H) = Ω(XH ×T1 ET1),

with special sub-CDGA

ET1 = Ω(XT1
) ⊂ Ω(XT1

×BT1) = ET1(X)(T1),

where the inclusion Ω(XT1
) ⊂ Ω(XT1 ×BT1) is induced by the projection

p1 : XT1 ×BT1 → XT1
.

As defined here, ET1(X) is a T-system, since it is injective as a functor to vector
spaces. Thus by Proposition 2.3 it has a minimal model MX , which by Corrolary
2.5 is unique. We say that this minimal model MX is the equivariant minimal
model of the T1-space X. There is a quasi-isomorphism MX → ET1(X), and MX

encodes rational homotopy information. The main theorem of [11] is the following.

Theorem 2.8. ([11], Thm. 6.28) Let X be a Q-good T1-space, and MX be the
minimal model of ET1(X). Then the correspondence X → MX induces a bijec-
tion between rational homotopy types of Q-good spaces and isomorphism classes of
minimal T-systems.

Moreover, the minimal model MX computes geometric information in certain
specific ways, as described below ([11], Sec. 6, 14-18).

• The cohomology ofMX(H) is equal to the rational cohomology of the Borel
construction of the fixed set XH , as a module over H∗(BT1) = Q[c]. In
particular, the Borel cohomology of the space X can be recovered by taking
the cohomology of MX(e).

• MX is generated by free Q[c]-CDGAs from the diagram of vector spaces
given by π∗, the duals of the rational homotopy groups πn(XH).

• The Grivel-Halperin-Thomas theorem [6] implies that the non-equivariant
minimal model of X×T1 ET1 is given by N ⊗Q[c], where N is the Sullivan
minimal model of X. Therefore for any fixed set XH , we can recover the
Sullivan model NXH by taking a minimal model for MX(H)/(c) where
(c) is the ideal generated by c; and the cohomology of MX(H)/(c) is the
rational cohomology of XH .

Thus the quasi-isomorphism class of the T-system determines the rational homotopy
type of the T1-space, and the minimal model provides a concrete way of calculating
many rational geometric invariants.

Extending these models to more general Abelian compact Lie groups is done in
[10], unfortunately giving algebraic models which are more complicated and less
explicit. Instead of the orbit category described above, we need to use a larger
category D which reflects pairs of subgroups H[K] for K ⊆ H. The algebraic
category used for the algebraic models are functors from D to CDGA’s with a
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map from a certain initial object P . The main result for rational homotopy is the
following.

Theorem 2.9. ([10], Thm. A) Let G be an Abelian compact Lie group. There
there is a functor A from the equivariant rational homotopy category of G-spaces to
the homotopy category of D−CDGAs under P . On the full subcategory of Q-good
spaces, this functor is full and faithful.

The basic intuition behind the functor A is similar to the case of the circle;
we look at a diagram given by taking the Borel construction of various fixed sets
{XK ×T/H E(T/H)}, and the initial object P is reflecting a diagram of classifying
spaces B(T/H). If we consider these more complicated objects in the case of the
circle T1, we can simplify the diagram back to the orbit category almost to hOT1

and take P to be the constant functor Q[c] with zero differential. One addistional
object is required, which encodes the distinguished sub-CDGA of Definition 2.1,
(2). Thus we recover the category of T-systems discussed above.

3. T-equivariant Formality

Non-equivariantly, formality is defined using commutative differential graded al-
gebras. A CDGA is formal if it is quasi-isomorphic to its cohomology ring, regarded
as a CDGA with differential d = 0. This means that A is formal if there is a chain of
quasi-isomorphisms A→A 1 ← A2 → · · ·→ H∗(A). For a minimal CDGA M this
is equvialent to requiring the existence of a single quasi-isomorphismM→ H∗(M).
To define formality for spaces, we can use the minimal model MX of a space X
defined by Sullivan in [4, 13], which is a CDGA: a space X is formal if its minimal
model MX is formal. The CDGA MX encodes all rational homotopy informa-
tion, including homotopy and homology groups, and for a formal space there is a
quasi-isomorphism MX → H∗(MX) = H∗(X); so MX may be computed as the
minimal model for the rational cohomology ring H∗(X). Therefore we see that the
rational homotopy type of a formal space can be recovered from the cohomology
ring.

We can use the T1-minimal models of Section 2 to mimic the non-equivariant
definition of formality. This is the approach used in [7] for finite group actions.
Recall that in dealing with equivariant minimal models, it is necessary to restrict
to diagrams of CDGAs which are injective. However, the cohomology of an injective
object may not be injective, and thus the diagram given by taking the cohomology
of a T-system may not be a T-system, so it may not be possible to produce a minimal
model as described in Definitionn 2.6. To remedy this we need the following result
from [12]. Note that taking the cohomology of a T-system does give a functor to
Q[c]-CDGAs, where the differential is taken to be identically zero; all morphisms
in the following theorem are thus in this category.

Theorem 3.1. ([12], Thm. 3.6 and Lemma 3.9) Let A be a T-system, and H
be the diagram given by taking its comoloogy. Then there is a T-system I and an
inclusion φ : H ↪→ I which is a quasi-isomorphism, such that (I,φ) satisfies the
following: For any T-system B with a morphism H → B, there exists a morphism
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I → B making the following diagram commute.

H !!

φ

""

B

I

##!!!!!!!!

The T-system I of the previous theorem is called the injective envelope of H; it
is unique up to quasi-isomorphism. We use the injective envelope to define a notion
of formality for T-systems, analogous to the definition for CDGAs.

Definition 3.2. Let M be a minimal T-system. Then M is formal if there is a
quasi-isomorphism of T-systems M→ IH , where IH is an injective envelope of the
cohomology H∗(M).

As in the non-equivariant case, we use T1-minimal models to define formality for
T1-spaces.

Definition 3.3. A T1-space X is model formal if its minimal model MX is formal.

Recall that MX is a model for the de Rham differential forms of the Borel
construction ET1(X), and the cohomology of the minimal model gives the Borel co-
homology of the various fixed sets H∗(MX) = H∗(XH ×T1 ET1). Therefore model
formality is equivalent to requiring that the T-systems ET1(X) and IX are quasi-
isomorphic, where IX is the injective envelope of H∗(XH ×T1 ET1) = H∗(MX).
Because the T1-minimal model encodes the rational T1-homotopy type, this can be
interpreted as saying that the equivariant rational homotopy type of the space is
determined by its equivariant cohomology, with a suitable interpretation of equi-
variant cohomology – in this case, we mean the diagram obtained by taking the
Borel cohomology (as Q[c]-modules) of the fixed point sets.

In extending the definition of model formal to higher tori, we need to adapt to
the fact that there are at present no ”minimal models” to work with. However, we
can use the algebraic category of D−CDGAs under P of Theorem 2.9. An object
A in this category is defined to be formal if there is a chain of quasi-isomorphisms
A→A 1 ← A2 → · · ·→ H∗(A) between the diagram and the diagram obtained by
taking its of cohomology. Then we define a torus version of ”model formality” as
follows.

Definition 3.4. A space X is model formal if A(X) is formal as a D−CDGA
under P .

Notice that we have avoided the problem of injective envelopes by working in this
larger category. However, it is much harder to detect this condition since actually
writing down one of these more general models is rather difficult, and they contain
less concrete geometric information. Because the models of Theorem 2.9 simplify
to the T-systems of Theorem 2.8, the two definitions are equivalent in the case of
the circle; wherever possible, we work with the minimal models.

This definition satisfies the following properties, analogous to the properties of
non-equivariant formality.

Proposition 3.5. If X, Y are model formal then X ∨ Y is also.

In the case of the circle, we can also prove the following.
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Proposition 3.6. Let T = T1. Suppose X, Y are model formal, and one of
H∗(XH ×T1 ET1) or H∗(Y H ×T1 ET1) is a free Q[c]-module for all H ≤ T. Then
X × Y is formal.

Note that if we remove the free Q[c]-module condition, this may fail; see Example
5.6. Thus even though we have stayed as close to the original definition as possible,
the properties are different in this more complicated equivariant context.

In the case of the torus, the models are sufficiently complicated that it is quite
difficult to analyze the situation; it is probable that a result similar to Proposition
3.6 holds, but no proof is attempted here.

Proofs of Propositions 3.5 and 3.6 are rather technical, and so are given at the
end of the paper in Section 6.

There are several alternate approaches to defining equivariantly formal T-spaces,
seeking to capture the flavour of the non-equivariant definition while taking into
account the richer structure of the T-action. One might ask about the individual
formality of the fixed point sets. Taking another approach, one can consider the
Borel bundle X ×T ET → BT, classically the tool used to study equivariant struc-
tures. This is the approach taken by Lillywhite in [9] (which also applies to more
general compact Lie groups).

Definition 3.7. A T-space X is bundle formal if Ω(X ×T ET) is formal in the
category of augmented CDGAs under H∗(BT).

Observe that a bundle formal space requires a quasi-isomorphism of H∗(BT)-
CDGAs between the (non-equviariant) minimal model of the Borel construction
MX×TET and the Borel cohomology H∗(X ×T ET). Because of the action of
H∗(BT), this stronger than simply requiring that the space X ×T ET be non-
equivariantly formal. If a space is bundle formal, this implies that the homotopy
type of the Borel bundle X ×T ET → BT is determined by the cohomology of the
bundle. However the Borel bundle does not determine the T-equivariant homotopy
type of the space X; we need to involve diagrams of fixed points in some way to do
so.

The Borel bundle is also used by Goresky-Kottwitz-Macpherson in [8], where
they interpret the collapse of the spectral sequence associated to the Borel con-
struction of the space as a type of equivariant formality. The collapse of this
spectral sequence and its implications were first discussed by Borel in [1], although
it was not called formality there. In our case this condition is also equivalent to
another condition, classically referred to as X totally non-homologous to zero in
X×T ET, which is defined to mean that that the map i∗ : H∗(X×T ET)→ H∗(X)
induced by the inclusion of the fibre is surjective. For this reason we refer to this
condition here as TNHZ formality.

Definition 3.8. A T-space X is TNHZ formal if the spectral sequence for the Borel
fibration

Hp(BT;Hq(X))⇒ Hp+q(X ×T ET)
collapses.

At first glance, this definition seems to have little to do with the usual notion
of formality; but it is shown in [8] that this condition is related to a more usual
notion of formality of a certain equivariant chain complex, working in the derived
category of differential graded H∗(BT)-modules.
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For actions of the circle, we can use T1-minimal models concretely to recognize
various formality conditions. As observed at the end of Section 2, if we look at the
minimal model of a space X, then the value of the minimal model at H, MX(H) is a
model (not necessarily minimal) for the Borel space XH ×T1 ET1; and MX(H)/(c)
is a model for the fixed set XH . Thus to see if a given fixed set is non-equivariantly
formal, we can simply determine whether the CDGA MX(H)/(c) is formal.

When considering the other definitions of T1-equviariant formality, we note that
the bundle X×T1 ET1 → BT1 is described by MX(e), the value of the T1-minimal
model MX at the identity subgroup e, and the Borel cohomology H∗(X×T1 ET1) is
computed by taking the cohomology ofMX(e). Thus a T1-space X is bundle formal
if MX(e) is formal as a Q[c]-CDGA, and X is TNHZ formal if the cohomology
of H∗(MX(e)) is given by H ⊗ Q[c], where H is the cohomology of the CDGA
MX(e)/(c) which models X. We will use these interpretations via the T1-minimal
models when discussing the examples of Section 5.

4. Comparing Definitions

In this section, we examine the relations that exist between the various definitions
of T-equivariant formality given in Section 3. Overall, these concepts are fairly
independent, as illustrated by the examples in Section 5. However, we do have the
following implications.

Theorem 4.1. If X is model formal, then each fixed set XH is bundle formal.

Proof. We first consider the case of the circle. Observe that a map of T1-systems
A→B can be evaluated at a subgroup H to give a map A(H)→ B(H) in the cat-
egory of augmented CDGAs under H∗(BT1) = Q[c], the category used in defining
bundle formal. By the definition of minimal model, there is a quasi-isomorphism
of T-systems MX → ET1(X); evaluating at H gives a quasi-isomorphism of Q[c]-
CDGAs MX(H) → Ω(XH ×T ET). Now MX(H) is not necessarily minimal as
a Q[c]-CDGA, so let NH be a minimal model for MX(H). Then we have quasi-
isomorphisms NH → MX(H) → ET1(XH), and so NH is a Q[c]-CDGA minimal
model for XH ×T1 ET1.

Because X is model formal, there is also a quasi-isomorphism MX(H)→ I(H),
where I is the injective envelope of H∗(X ×T1 ET1). So NH is also a minimal
model for I(H). The construction of the injective envelope comes with a quasi-
isomorphism of T-systems H∗ → I, and consequently a quasi-isomorophism of Q[c]-
CDGAs H∗(XH×T1 ET1)→ I(H), so NH is quasi-isomorphic to H∗(XH×T1 ET1)
as well. Thus Ω(XH ×T1 ET1) and H∗(XH ×T1 ET1) are quasi-isomorphic as Q[c]-
CDGAs and the space XH is bundle formal.

For the general torus case, the argument is similar, and we do not have the
injective envelopes to worry about. Evaluating a map of D−CDGAs under P at
the pair H[e] gives a map of P (H[e])-CDGA’s; the initial object P is designed so
that P (H[e]) is quasi-isomorphic to the de Rham forms on the classifying space BT,
and the value of the equivariant model A(X) at H[e], A(X)(H[e]), is given by the
de Rham forms on the Borel space XH ×T ET. The chain of quasi-isomorphisms
assumed by the model formality condition therefore will in particular give a chain
of quasi-isomorphisms in the category of H∗(BT)-CDGAs used in the definition of
bundle formal. !
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The converse of this theorem fails; Example 5.3 shows that it is possible to have
a space which is not model formal but whose fixed sets are all bundle formal.

The next results provide links between equivariant and non-equivariant formality.

Theorem 4.2. Suppose X is model formal and each fixed point set XH is TNHZ-
formal. Then each fixed set XH is non-equivariantly formal.

Proof. Theorem 4.1 gives that XH is bundle formal for each H. In ([9], Corr.
4.5) it is shown that a space which is bundle formal and TNHZ formal must be
non-equivariantly formal; applying this to each fixed set yields the result. !
Proposition 4.3. If X is model formal, then the fixed set XT is non-equivariantly
formal.

Proof. Again, we begin with the case of the circle. If X is model formal, then
by definition there is a quasi-isomorphism of T-systems MX → I, where I is the
injective envelope of the cohomology H∗(MX). The construction of the injective
envelope I given in [12] consists of enlargements of H∗(MX), and does not change
its value at T1, so in fact I(T1) = H∗(MX(T1)); consequently the map of T-
systems restricts to a quasi-isomorphism of Q[c]-CDGAs M(T1) → H∗(MX(T1)).
The value of the minimal model M(T1) is given by N ⊗Q[c] where N is a minimal
model for the space XT1

; similarly H∗(MX(T1)) = H∗(XT1
)⊗Q[c] = H∗(N )⊗Q[c].

So the quasi-isomorphism of Q[c]-CDGAs at T1 comes from a quasi-isomorphism
of CDGAs N → H∗(N ) and consequently XT1

is formal.
A similar argument will give the result for the general torus, by examinining the

value of the D−CDGA model at the subgroup pair T[e] to give a model for the
space XT ×T ET = XT ×BT. !

There are no other direct general relations between the various definitions of
equivariant formality. However, we now look at certain special types of T-actions
where the situation is simpler and more implications can be drawn.

Theorem 4.4. Suppose X has trivial T-action. Then X is TNHZ formal and the
following are equivalent:

(1) X is model formal
(2) X is bundle formal
(3) X is non-equivariantly formal

Proof. If X has trivial T-action, then the Borel bundle X×TET → BT is the trivial
bundle X ×BT. Therefore X is TNHZ formal.

(2)⇒ (1): Each fixed set XH of X is equal to X itself, and so the algebra model
functors ET1(X), MX , A(X), and H∗(XH×T ET) are all constant, taking the same
value at each subgroup H or pair H[K], with structure maps given by the identity
map. A constant functor is injective, and so I = H∗(XH ×T ET). Therefore a
quasi-isomorphism of H∗(BT)-CDGAs between Ω(X×T ET) and H∗(X×T ET) as
given for a bundle formal space induces a quasi-isomorphism between the constant
T-systems ET1(X) and H∗(XH ×T ET), and hence between MX and I (for the
circle) or, for the general torus, between the functors A(X) and H∗(A(X)).

(1)⇒ (3): Since X is TNHZ formal, we can apply Proposition 4.3.
(3)⇒ (2): Since the Borel bundle of X is trivial, the H∗(BT)-CDGA of de Rham

forms Ω(X ×T ET) is quasi-isomorphic to Ω(X) ⊗H∗(BT), and H∗(X ×T ET) is
quasi-isomorphic to H∗(X) ⊗ H∗(BT). If X is a non-equivariantly formal space,
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then Ω(X) is quasi-isomorphic to H∗(X) and so Ω(X ×T ET) is quasi-isomorphic
to H∗(X ×T ET) as a H∗(BT)-CDGA.

!
Proposition 4.5. Let T = T1. If X has a single isotropy type (apart from the
fixed basepoint) then X is model formal if and only if X is bundle formal.

Proof. If X is model formal, then X is automatically bundle formal by Theorem
4.1, since X = Xe is one fixed point set of X. Conversely, suppose X is bundle
formal. The T1-minimal model of a space with a single isotropy type is created out
of systems VH generated at the given isotropy subgroup H; to produce MX we
create a minimal Q[c]-CDGA model for XH ×T1 ET1 = X ×T1 ET1, and let MX

be an injective functor generated by this at the isotropy subgroup H. Similarly the
cohomology of the minimal model is generated by its value at the subroup H. So
the cohomology is already injective and so is equal to its injective envelope; and
a Q[c]-CDGA quasi-isomorphism MX(H) → H∗(XH ×T1 ET1) will extend to a
quasi-isomorphism of T-systems MX → H∗(MX).

!
For actions of general torus groups, this argument is complicated by the fact

that the indexing category D is larger than the orbit category, and so a given fixed
set XH contributes in several places and in several forms in the more complicated
diagram A(X). Thus the resulting models are not ”generated” by a single vector
space and a single indexing object. The models are difficult to analyze even in the
particular case of a single isotropy type.

5. Examples of T1-spaces

In this section we examine a number of examples of spaces with circle actions
to illustrate the various definitions of equivariant formality and how they relate
to each other. The tool we use to compute information about these spaces is the
T1-minimal model. Throughout Section 5, therefore, the group T will always be
T1.

A class of spaces which are formal in all senses are the T1-equivariant Eilenberg-
MacLane spaces.

Theorem 5.1. If K = K(π, n) is a T1-equivariant Eilenberg-MacLane space, then
K is model formal, and all fixed sets are bundle formal, TNHZ formal and non-
equivariantly formal.

Proof. In [12], Theorem 4.3 we saw that the minimal model of a T1-equviariant
Eilenberg-MacLane space is given by taking an injective resolution of Hn = π∗

π∗ → V 0 → V 1 → . . . ,

and defining the T-system by

MX = ⊗iQ(V i)⊗Q[c]

with differential induced by the resolution, and distinguished sub-CDGA given by
MT = ⊗iQ(V i(T1))⊗Q. It is shown in [12] that this T-system is formal, and so X
is model formal and consequently all fixed sets are bundle formal by Theorem 4.1.
Examining the cohomology

H∗(MX) = H∗(KH ×T1 ET1) = Q(π∗)⊗Q[c]
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we see that each fixed set is also TNHZ-formal and hence by Theorem 4.2 is also
non-equivariantly formal. !

A couple of concrete examples of T1-equivariant Eilenberg-MacLane spaces are
examined in detail in [12], Section 4. One is given by a free (off the fixed base-
point) T1-action on a space which is homotopy equivalent to S3. The other is the
space S∞, given complex coordinates as the units in C∞, with T1-action given by
λ[z0, z1, z2, z3, z4, . . . ] = [z0, z1,λz2,λz3,λz4, . . . ].

The rest of our examples demonstrate the independence of the various definitions,
showing that a wide range of possibilities exist for spaces being formal in some senses
but not others. For simplicity, all of our examples will be T1-spaces with semifree
T1-action, and so XH = XT1

for all H 1= e. Consequently all functors will also
have A(H) = A(T1) for all H 1= e, and so to simplify notation the functors will be
written A(e)→ A(T1) and all other subgroups will be supressed.

Example 5.2. The following example was discussed in [3] as one of the simplest
manifolds with a T1-action which is not TNHZ formal. It is bundle formal but not
formal in any other sense.

Let τ be the tangent bundle of S8, with trivial T1-action, and ε the trivial 2-
plane bundle on S8 with non-trivial T1-action. Let η be the pullback bundle of
τ ⊕ ε over S3 × S5 along a map of degree 1. We let X be the total space of S(η),
the unit sphere bundle of η. Observe that the fixed set XT1

is the sphere bundle
of the pullback of τ over S3 × S5; all other fixed sets XH are equal to XT1

except
for X = Xe, which is homotopic to S3 × S5 × S9 since the bundle τ ⊕ ε is trivial.
Therefore the only non-trivial homotopy groups are in dimensions 3, 5, 7 and 9, and
the diagrams of the dual homotopy groups π∗n = π∗n(Xe) → π∗n(XT1

) are given by
the diagrams π∗3 = π∗5 = Q → Q, π∗7 = 0→ Q and π∗9 = Q → 0. These generate the
minimal model MX ; note that π∗7 is not injective, and so an injective resolution
will be used.

The T1-minimal model for this space is given by the following functor, where the
subscripts on the generators indicate their degrees.

MX(e) = Q(x3, y5, w7, w′8, z9)⊗Q[c], dw = xy − w′, dz = xyc

""
MX(H) = MX(T1) = Q(x3, y5, w7)⊗Q[c], dw = xy

The generator w′ in MX(e) comes from the injective resolution of π∗7. In XT1
, the

twisting of the non-trivial sphere bundle is reflected by the differential dw = xy.
The cohomology of H∗(X) is a free CDGA generated by classes [x], [y], [z],

whereas the Borel cohomology H∗(X ×T1 ET1) is calculated by H∗(MX(e)), and
is generated by classes [cn], [xcn], [ycn] and [xycn]; in particular, z is not a cocycle
since dz = xyc. Therefore H∗(X ×T1 ET1) is not given by H∗(X)⊗Q[c], and X is
not TNHZ formal.

Note that although the space itself is non-equivariantly formal, the fixed set XT1

is not; in fact, this space is given in [6] as an example of a non-formal space. Thus
by Theorem 4.4, X cannot be model formal. However, the Borel construction of X
is modeled by MX(e), and this is formal as a Q[c]-CDGA, since there is an obvious
map of Q[c]-CDGAs MX(e) → H∗(MX(e)) which is a quasi-isomorphism. Thus
X is bundle formal.
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Example 5.2 does not provide a counterexample to the converse of Proposi-
tion 4.3, since although X is bundle formal the fixed set XT1

is not. Instead, it
demonstrates the way that different fixed sets of a space may exhibit very different
behaviour. The promised counterexample is given by the following.

Example 5.3. Let X be the sphere S5, given coordinates (z0, z1, z2) as the unit
sphere in C3. Give X an action of T1 by λ[z0, z1, z2] = [z0, z1,λz2]. Then the fixed
set XT1 ∼= S3 is given by (z1, z2, 0); and XH = XT1

for all H 1= e.
The space X has one non-trivial homotopy group π5, and XT1

has one non-
trivial homotopy group π3; so the diagrams of the dual homotopy groups of the
fixed point sets π∗n(Xe) → π∗n(XT1

) are given by π∗3 = 0 → Q and π∗5 = Q → 0,
and X has a two-stage equivariant Postnikov tower with a non-trivial k-invariant.
Note that π∗3 is not injective, and so when we form the minimal model we use an
injective resolution.

The minimal model of X is given by the following, where the subscripts indicate
degrees of the generators.

MX(e) = Q(x3, x′4, y5)⊗Q[c], dx = x′, dy = x′c

""
MX(T1) = Q(x3)⊗Q[c], d = 0

The generator x′ inMX(e) comes from the injective resolution of π∗3; the non-trivial
k-invariant is expressed by dy = x′c. A calculation shows that the cohomology of
this system H∗(MX)−HX is given by

HX(e) = Q(b5)⊗Q[c]

""
HX(T1) = Q(a3)⊗Q[c]

where the cohomology class a = [x] and b = [y − xc].
Observe that this space is bundle formal, since there is a Q[c]-CDGA map

MX(e)→ HX(e) given by taking y → b and x, x′ → 0 which is a quasi-isomorphism.
Moreover HX(e) = H∗(X) ⊗ Q[c] and the space is TNHZ formal. The fixed set
XT1

is easily seen to be both bundle and TNHZ formal also.
However, this space fails to be model formal. The cohomology HX is not injec-

tive, and so we form the injective envelope as described in [12]. In this case, the map
HX(e)→ limK⊃eHX(K) is not surjective, and coker{HX(T1)→ limK⊃T1 HX(K)}
is generated by the elements acm. To create the injective envelope we choose a to
be a Q[c]-generator of this cokernel and define the enlargement HX ⊗Q[c] ΛT1(a)
where ΛT1(a)(H) = Q[c] and ΛT1(a)(T1) is the free acyclic Q[c]-CDGA generated
by a and a′, with d(a) = a′. We see that the injective envelope of HX has gener-
ators of the same degrees as the minimal model MX , but with db = 0. There is
no quasi-isomorphic map between these two T-systems: the generator x must be
mapped to (some non-zero multiple of) a, and then to respect the differential x′

must map to a′. But to get a quasi-isomorphism we must also have y − xc map
to b, so y maps to b − ac. It is impossible to get a map which does this and also
commutes with structure maps, since y maps to 0 in MX(T1) whereas b− ac maps
to ac in HX(T1). Thus X is not model formal.
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It is interesting to compare this space to the space Y which has the same homo-
topy groups of all fixed sets, but with a trivial equivariant k-invariant. The space
Y is therefore a product of equivariant Eilenberg-MacLane spaces. The minimal
model in this case has generators of the same degrees as MX above, but with
dy = 0. The cohomology is the same as the cohomology functor H described above
and so the injective envelope is also the same; therefore the minimal model for Y
is isomorphic to the injective envelope, and Y is model formal.

Example 5.4. Any space with a trivial group action is automatically TNHZ formal
by Theorem 4.4. Therefore if we take a space X which is not formal and consider
it as a T1-space with trivial T1 action we produce an example of a space which
is TNHZ formal but not model formal, bundle formal or non-equivariantly formal
(these are equivalent in this case, by Theorem 4.4). For example, we can take
the fixed set of Example 5.2, with non-equivariant minimal model given by N =
Q(x, y, z) with dx = dy = 0 and dz = xy, deg x = 3, deg y = 5. Considering
this as a T1-space with a trivial T1-action, we see that every fixed point set is the
same, and so it has a constant T1-minimal model given by MX(H) = N ⊗Q[c] for
every H ≤ T1. We can see directly that this is not bundle or model formal, since
H∗(MX) = H∗(N ) ⊗ Q[c] and there is no quasi-isomorphism N → H∗(N ), and
hence no Q[c]-CDGA quasi-isomorphism MX → H∗(MX).

Example 5.5. We describe a space X which is free off the fixed basepoint, so that
MX(H) = Q[c] for every H 1= e. We build X using a two-stage Postnikov tower
with non-zero homotopy groups π4 and π5, and with a non-trivial equivariant k
invariant; so that the minimal model MX is a free Q[c]-CDGA generated by x of
degree 4, y of degree 5 with d(y) = xc. Then the cohomology of H∗(MX(e)) is
generated by classes [xn] and [cn], where [x][c] = 0.

If we ignore the T1-action, the non-equivariant model for X is given byM(e)/(c) =
Q(x, y) with dx = dy = 0, and we see that the space X is the product of Eilenberg-
MacLane spaces K(Q, 4)×K(Q, 5). Thus the Borel cohomology H∗(M(e)) is not
freely generated by H∗(X) and this space is not TNHZ formal. However, we have an
obvious map MX → H∗(MX) induced by x → [x] which is a quasi-isomorphism.
(Note that in this case H∗(MX) is already injective, and so equal to its injective
envelope.) Thus X is model formal and consequently bundle formal.

We can use Example 5.5 to show that the product of two model formal spaces may
not be model formal if the spaces are not TNHZ formal and their Borel cohomologies
are not Q[c]-free.

Example 5.6. Let X be the space from Example 5.5 and consider Y = X × X.
Then Y is also free off the fixed basepoint, and the T1-minimal model of Y is
given by MY (H) = Q[c] for every H 1= e. The model for Y = Y e is given by
MY (e) = Q(x1, x2, y1, y2) ⊗ Q[c] with xi of degree 4, yi of degree 5 and d(yi) =
xic. A calculation shows that the cohomology H∗(MY (e)) is generated by classes
[xm

1 xn
2 ], [cn], and [xm

1 xn+1
2 y1 − xm+1

1 xn
2y2]. It is the existence of these last-named

cohomology classes which show that this space is not model formal; a map M →
H∗(M) must take y1 → 0 and y2 → 0 and so cannot be a quasi-isomorphism. (Note
that once again the cohomology functor H∗(MX) is injective.) Thus we have a
space which is not T1-equivariantly formal in any sense, even though its underlying
space is non-equivariantly formal since Y , like X, is a product of Eilenberg-MacLane
spaces.
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Our final example demonstrates that it is possible to have a T1-space which
is model formal, but whose underlying space is not formal as an ordinary non-
equivariant space. Hence this space is in some sense the simplest T1-homotopy
type which has the given diagram of Borel cohomologies, the Q[c]-module diagram
H∗(XH); but this equivariant homotopy type is not realized by a formal under-
lying space. Thus we see the separation between equivariant and non-equivariant
phenomena, and the fact that spaces which are relatively easy to understand equiv-
ariantly may still be quite complicated.

Example 5.7. Let X be a T1-space which is free off the basepoint, so that as
in the previous two examples MX(H) = Q[c] for H 1= e. We consider the space
whose minimal model at e is given as follows, where again the subscripts indicate
the degrees of the generators: MX(e) = Q(x3, y3, w,4 z5)⊗Q[c] with d(x) = d(y) =
d(w) = 0 and d(z) = −xy+wc. Observe that the minimal model for the underlying
space is given by N = MX(e)/(c) = Q(x, y, w, z) with d(z) = −xy, and so has
cohomology generated by [1], [x], [y], [xz], [yz], [xyz] as well as any of the above
multiplied by [wn]; we see immediately that the presence of elements [xz] mean
that this is not a formal space, since any map N → H∗(N ) must take z to 0.

Nevertheless this space is model formal, since we find that the cohomology of
H∗(MX(e)) consists of free Q[c]-generators [x], [y], [w], and generators [xwn], [ywn]
and [xywn] which become 0 when multiplied by [c]; note that in this algebra,
we also have the relation [xy] = [wc]. So there is an obvious map of T-systems
MX → H∗(MX) induced by taking x → [x], y → [y], w → [w] and z → 0, which
is a quasi-isomorphism.

Note that this space is not TNHZ formal, and in fact the Borel cohomology
H∗(X ×T1 ET1) = H∗(MX(e)) is far from being Q[c]-free. We expect this, since
otherwise we would have a counter-example to Theorem 4.5.

6. Proofs from Section 3

We now give the deferred proofs of Propositions 3.5 and 3.6 about model for-
mality.

Proof of Proposition 3.5. Once again, we begin with the case T = T1. For simplic-
ity of notation we assume that direct sum and tensor product are always taken over
the base ring Q[c]. Observe that (X∨Y )×T1 ET1 = X×T1 ET1∨BT1 Y ×T1 ET1 and
(X∨Y )H = XH∨Y H , so ET1(X∨Y ) = ET1(X)⊕ET1(Y ) and H∗((X∨Y ))×T1ET1 =
H∗(X×T1 ET1)⊕H∗(Y ×T1 ET1) = H∗(MX)⊕H∗(MY ). Now if H∗(MX) ↪→ IX

and H∗(MY ) ↪→ IY are the quasi-isomorphic inclusions to the injective envelopes,
then the induced map H∗(MX∨Y )→ IX⊕IY is also a quasi-isomorphism. Then by
Lemma 3.1 we have a map from the injective envelope IX∨Y of H∗(MX)⊕H∗(MY )
to IX ⊕ IY , and by the commutativity of the diagram of Lemma 3.1 this map will
also be a quasi-isomorphism. Uniqueness of minimal models ensures that both
IX∨Y and IX ⊕ IY have the same minimal model. Therefore it will suffice to show
that there is a quasi-isomorphism MX∨Y → IX ⊕ IY , and so MX∨Y is a minimal
model for both T-systems.

The quasi-isomorphisms MX → H∗(MX) and MY → H∗(MY ) induce a quasi-
isomorphismMX⊕MY → IX⊕IY . NowMX⊕MY may not be the minimal model
for X∨Y , but the quasi-isomorphisms MX → ET1(X) and MY → ET1(Y ) induce a
quasi-ismorphismMX⊕MY → ET1(X)⊕ET1(Y ), and so again using the uniqueness
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of minimal models, the minimal models of ET1(X) ⊕ ET1(Y ) and MX ⊕MY are
isomorphic. But by definition, MX∨Y is a model for ET1(X∨Y ) = ET1(X)⊕ET1(Y ).
Therefore we have quasi-isomorphisms MX∨Y →MX ⊕MY → IX ⊕ IY and so
X ∨ Y is model formal.

The same reasoning (minus the injective envelopes) holds for the general torus
case, since examining the algebraic model of Theorem 2.9 in detail shows that it
also satisfies the basic equality A(X ∨ Y ) = A(X) ⊕H∗(BT) A(Y ), and the rest
follows. !

From here on, we restrict to the case T = T1; again, the base ring for direct
sums and tensor products is always Q[c].

Lemma 6.1. The T1-minimal model MX×Y of X ×Y is isomorphic to the tensor
product MX ⊗MY .

To prove this we use the following construction.

Definition 6.2. A commutative square of CDGAs

A !!

""

A′′

""
A′ !! C

is an EM square if the induced map Tor∗A(A′, A′′) → H∗C is an isomorphism (see
[2], p. 13).

EM squares satisfy the following algebraic property, proved in [11]

Lemma 6.3. If a map between EM squares

A !!

""

A′′

""
A′ !! C

−→ B !!

""

B′′

""
B′ !! D

induces isomorphisms H∗(A) ∼= H∗(B), H∗(A′) ∼= H∗(B′) and H∗(A′′) ∼= H∗(B′′)
then it also induces an isomorphism H∗(C) ∼= H∗(D).

Proof of 6.1. It is shown in [11] that any T1-equvairant pullback of spaces produces
an EM square of T-systems when the differential form functor ET1(−) is applied.
Therefore we have an EM square

ET1(BT1) !!

""

ET1(X)

""
ET1(Y ) !! ET1(X × Y )

Now any minimal T-system is a free Q[c]-module, and so Tor∗Q[c](MX ,MY ) =
MX ⊗MY . Therefore

Q[c] !!

""

MX

""
MY

!! MX ⊗MY



16 LAURA SCULL

is also an EM square. Then the quasi-isomorphisms MX → ET1(X), MY →
ET1(Y ), and Q[c]→ ET1(BT1) ensure that the induced map MX⊗MY → ET1(X×
Y ) is also a quasi-isomorphism by Lemma 6.3. Since MX ⊗MY is also minimal,
it is the minimal model of X × Y . !
Proof of 3.6. We know that there are quasi-isomorphisms MX → IX and MY →
IY , where I− is the injective envelope of H∗(−). We wish to show that there
is a quasi-isomorphism MX×Y → IX×Y . We know that MX×Y = MX ⊗MY

by Lemma 6.1. Moreover, since the minimal models M− are free, the Künneth
theorem gives an isomorphism H∗(MX ⊗MY ) ∼= H∗(MX)⊗H∗(MY ).

Again because of freeness of minimal models, Tor∗Q[c](MX ,MY ) = MX ⊗MY .
By assumption, one of H∗(XH×T1ET1) and H∗(Y H×T1ET1) is a free Q[c]-modules
for all H ≤ T1; assume it is H∗(XH ×T1 ET1) = H∗(MX). Then its injective
envelope IX is also a free Q[c]-module, since it is created by adding free generators
to H∗(MX). Therefore Tor∗Q[c](IX , IY ) = IX ⊗ IY , and the quasi-isomorphisms
MX → IX and MY → IY induce a map of the EM squares

Q[c] !!

""

MX

""
MY

!! MX ⊗MY

−→ Q[c] !!

""

IX

""
IY

!! IX ⊗ IY

and so the map MX ⊗MY → IX ⊗ IY is also a quasi-isomorphism.
nb The lifting property of injective envelopes of Lemma 3.1 gives a map from

the injective envelope of H∗(MX) ⊗ H∗(MY ), denoted IX×Y , to IX ⊗ IY ; and
commutativity ensures that this is also a quasi-isomorphism. Then sinceMX⊗MY

is the minimal model for IX ⊗ IY , it is also the minimal model for IX×Y and so
the required quasi-isomorphim MX ⊗MY → IX×Y exists. Thus X × Y is model
formal.

!
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