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Abstract

Spider web graphs are a recent development related to the study of ×-homotopy of graphs. This
paper focuses on spider web graphs between complete graphs. We prove that these graphs are distance
degree regular, and give a recursive formula for their distance degree sequences using techniques from
group theory and combinatorics.

1 Introduction
In this paper we investigate a novel set of mathematical objects, called spider web graphs. These come
out of work by Chih and Scull [4] exploring ×-homotopies of graphs as defined in [1,5]. Chih-Scull proved
that two graph homomorphisms are ×-homotopic if they are connected by a sequence of spider moves
which shift one vertex at a time. This leads to the concept of spider web graphs, defined by looking at
graph morphisms from one graph to another, and creating a graph with these morphisms as vertices and
edges connecting morphisms which are related by a spider move. Thus a spider web is a subgraph of the
exponential graph.

In this work, we consider the particular case of spider webs between complete graphs. We partially
characterize all such spider webs by use of a graph attribute known as distance degree regularity. Distance
degree regularity was first introduced in [2] and has been examined to a limited degree as outlined in the
survey paper [9]. This paper makes use of basic combinatorial and group theoretic concepts in order to
prove that the subset of spider webs in question are distance degree regular, and to provide a method for
calculating their distance degree sequence. The question of what additional constraints are required to
characterize the graphs up to isomorphism is a difficult open problem [6,10,12].

Our paper begins with a background section, starting with basic definitions and concepts standard in
graph theory, followed by a more detailed exposition on spider web graphs, and finishing with a section on
distance degree regularity and the associated concept of distance degree sequences. The main section of
our paper contains our results on the structure of spider web graphs between complete graphs, including
our main theorems, the proof that such graphs are distance degree regular and the computation of the
distance degree sequence. We conclude with some consequences of our theorems and a discussion of
questions still left unanswered.

Acknowledgements This work was supported by NSF DMS-1722563. We wish to thank Cinnamon
Hobbs for her help with the proof of Lemma 3.3, Matthew Welz for general inspiration and specific
guidance in finding and applying Lemma 3.12, and Dr. Chih for general assistance and advice with this
project.

2 Background

2.1 General Graph Theory Definitions
The results here are standard and can be found in many introductory graph theory textbooks, see for
example [3].
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Definition 2.1. A graph is a pair G = (V,E), where V is a set of vertices (singular: vertex), and E is
a set of two-sets of vertices which we call edges. We denote the vertex set and edge set of a graph G as
V (G) and E(G) respectively. We denote the existence of an edge between two vertices {v, u} ∈ E(G) by
writing v ∼ u.

The elements of our edge sets are two-sets and not ordered pairs, so we are considering undirected
graphs. In this work, we will always assume that V (G) (and hence E(G)) is a finite set. Thus whenever
we refer to a graph, we assume it is a finite graph. Since our main interest is the complete graphs defined
below, we will also assume that our graphs do not contain loops, although some of these concepts apply
more generally to looped graphs.

Of particular interest are the following.

Notation. Let Kn denote the complete graph with n vertices, and edges between every pair of distinct
vertices.

Definition 2.2. The order of a graph G is the cardinality of its vertex set. So the order of G is |V (G)|.
Definition 2.3. A path in a graph G is an ordered set of vertices in G such that each vertex (except
the last) is connected to its successor by an edge in E(G). That is, if the path consists of the j vertices
(v1, v2, ..., vj), then for 1 ≤ i < j we have vi ∼ vi+1.

Definition 2.4. A graph map is a function from the vertices of one graph to the vertices of another
graph which preserves edges. That is, if G and H are graphs then f is a graph map if f : V (G)→ V (H)
such that for v1, v2 ∈ V (G) we have v1 ∼ v2 implies f(v1) ∼ f(v2). These are often referred to as graph
homomorphisms in the literature.

Definition 2.5. A graph isomorphism is a function f : V (G)→ V (H) which is both a graph map and
a bijection on both vertices and edges. If such a function exists, we say that G and H are isomorphic,
denoted G ∼= H.

Definition 2.6. An isomorphism from a graph to itself is called an automorphism.

Definition 2.7. The automorphism group of a graph G is the set of automorphisms on G. This set
forms a group under composition. We denote the automorphism group of a graph G by Aut(G).

Definition 2.8. A graph G is vertex transitive if given any two vertices v, u ∈ V (G), there exists
α ∈ Aut(G) such that α(v) = u.

We conclude the section with an example that illustrates the various definitions given.

Example 2.9. Let G = K4 be a graph with V (G) = {v1, v2, v3, v4} and

E(G) = {{v1, v2}, {v1, v3}, {v1, v4}, {v2, v3}, {v2, v4}, {v3, v4}}

Let H be a graph with V (H) = {u1, u2, u3, u4, u5, u6} and

E(H) = {{u1, u2}, {u2, u3}, {u3, u4}, {u4, u5}, {u5, u0}, {u2, u5}, {u0, u6}, {u1, u6}, {u5, u6}}.

These graphs can be represented by the following diagrams:

v1

v2

v3 v4

u1

u2

u3 u4

u5

u6

Then (v2, v3, v1, v4) is a path in G and (u3, u2, u5, u1, u6) is a path in H.
We can define two graph maps by the functions f : V (G)→ V (H) and g : V (H)→ V (H) given by:

v f(v)

v1 u2

v2 u1

v3 u6

v4 u5

u g(u)

u1 u1

u2 u5

u3 u4

u4 u3

u5 u2

u6 u6

Observe that g constitutes a bijective graph map and so is a graph isomorphism. Therefore we have
g ∈ Aut(H). While G is vertex transitive, H is not since, for instance, there is no automorphism of H
which brings u3 to u6.
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2.2 Spider Web Graphs
The main objects of study of this paper are graphs called spider webs. Here, we give the definition of these
spider web graphs and explain how they relate to a notion of homotopy of graphs from the literature.

Definition 2.10. Let f, g : G→ H be graph maps. We say f and g are a spider pair if there exists a
single vertex v such that f(u) = g(u) for all u 6= v and f(v) 6= g(v). When we replace f with g we refer
to it as a spider move.

Example 2.11. Let G and H be the graphs corresponding to the following diagrams, with the vertices
of G labeled as below

v1

v2 v3
G = H =

Then, the following two diagrams represent functions f : V (G)→ V (H) and g : V (G)→ V (H) which
are graph maps forming a spider pair, since f(vi) = g(vi) for all i except i = 2, and f(v2) 6= g(v2).

v1

v3v2

v1

v3

v2

f = g =

The motivation for the definition of spider moves comes from the notion of ×-homotopy for maps of
graphs. The formal definition for ×-homotopy can be found in [5], and properties of this definition found
in [4, 5]. The connection to spider webs comes from the following result.

Theorem 2.12 ([4]). If f, g : G → H and f and g are ×-homotopic, then there is a finite sequence of
morphisms f = f0, f1, f2, ..., fn = g such that each successive pair fk, fk+1 is a spider pair.

Thus information about spider moves between graph maps gives us information about ×-homotopies
between graph maps. Inspired by this result, we define spider web graphs, our main object of interest in
this work. The spider web W (G,H) is a subgraph of the exponential graph HG, where the vertices are
given by graph morphisms and the edges correspond to spider moves.

Definition 2.13. Let G,H be graphs. The spider webW (G,H) is a graph with a vertex corresponding
to each graph map f : G→ H. For clarity, we will refer to the vertices of W (G,H) by ḟ and denote their
associated graph map by f . For any two vertices ḟ and ġ, then ḟ ∼ ġ ∈ E(W (G,H)) if and only if f, g
are a spider pair per Definition 2.10.

These objects are complex, so we will take a moment to give examples:

Example 2.14. Let G = K2 and H = K3:

G = H =

We have labeled the vertices of G by making them square and triangular respectively. The diagram
below gives all possible graph maps G→ H, labeled as f1 through f6 respectively:

f1

f2f3

f4

f5 f6

Edges in W (G,H) are defined by spider moves between graph maps. In the above diagram, adjacent
maps are connected by spider moves around the outside perimeter. Thus, W (G,H) forms a cycle graph
on 6 vertices:
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f1

f2f3

f4

f5 f6

W (G,H) =

Example 2.15.

Domain G Codomain H Spider Web W (G,H)

Make note in particular of the spider web in the last row of this example. What a mess it appears
to be! This is not because it was intentionally laid out in a chaotic manner, it is a genuinely complex
object. This is an example of the kind of spider web which we partially characterize in this paper.

2.3 Distance Degree Sequences and Distance Degree Regularity
A standard concept in the study of graphs is distance, which follows from Definition 2.3.

Definition 2.16. The distance between two vertices, v and u in a graph G is the number of edges in a
shortest path between them. We denote the distance by d(v, u).

This concept of distance leads naturally to the following concept.
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Definition 2.17. The diameter of a graph G is the greatest distance between any pair of vertices in
the graph. We denote the diameter by dia(G).

Example 2.18. Consider the graph given by the following diagram with some vertices labeled.

v1 v2 v3

v4

Then we have d(v1, v4) = 1, d(v1, v2) = 2 and d(v1, v3) = 3. In this case the diameter of the graph is
3.

One of many areas of continued study in graph theory is into the properties and patterns associated
with distance degree sequences.

Definition 2.19. The distance degree sequence (dds) of a vertex v in a graph G is a list of the
number of vertices at distance 1, 2, ..., τ from v in G in that order, where τ is the maximum distance from
v to any other vertex.

Example 2.20. Consider again the graph from example 2.18. Observe that the distance degree sequence
of v1 is 3, 5, 2, while the dds of v4 is 4, 4, 2. Note that 3 + 5 + 2 + 1 = 4 + 4 + 2 + 1 = 11, which is the
order of our graph.

Determining what graph properties are tied to certain distributions of distance degree sequences,
which distributions are constructable, and the implications of imposing various conditions on distance
degree sequences are all of continuing interest in mathematical research. See [9] for an overview of results
in this area. A prime example, and the one which we will be making use of in this work, is the condition
that a graph be distance degree regular.

Definition 2.21. A graph G is distance degree regular (ddr) if all vertices in the graph have the
same distance degree sequence. When this is the case, we can refer to this shared distance degree sequence
as the dds of G itself.

In particular we will make use of the following result of [2], given as proposition 5, pp.101.

Theorem 2.22 ([2]). Let G be a graph. If G is vertex transitive, then G is distance degree regular.

Example 2.23. Three distance degree regular graphs with their respective distance degree sequences.

3, 2

3, 6, 4
3, 4, 4, 4

3 Main Results: Structure of Spider Webs of Complete Graphs
The main results of this paper are on the structure of spider web graphs between complete graphs. We
have already seen examples of this, since Example 2.14 isW (K2,K3) andW (K3,K5) is drawn in Example
2.15. We abbreviate W (Kn,Km) by Wm

n .
If n > m then Wm

n is empty, since it is not possible to get a graph homomorphism from a larger Kn to
a smaller. When n = 1 then Wm

n
∼= Km. In the case that n = m then this problem reduces to the study

of Aut(Kn) which, while worthwhile, has already been done far more thoroughly elsewhere. Thus going
forward we will assume that 1 < n < m. Our goal is to understand the structure of W (Kn,Km) = Wm

n

in these cases.
We start with one of the first, most obvious questions: “what is the order of Wm

n in terms of n and
m?" To answer this, we begin with the following basic observation.

Observation 3.1. The graph maps from Kn to Km for n < m correspond to injective functions on
vertices: since every pair of distinct vertices is connected, they cannot be mapped to the same vertex,
and since all distinct vertices of Km are connected, any injective vertex function respects connections and
gives a map of graphs Kn → Km.
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Theorem 3.2. Wm
n has

(
m
n

)
n! vertices.

Proof. Definition 2.13 tells us that the number of vertices in Wm
n equals the number of graph maps

from Kn to Km, and Observation 3.1 shows that these are all the injective vertex maps. A standard
combinatorial argument tells us that number of injective functions V (Kn) → V (Km) is given by

(
m
n

)
n!

where
(
m
n

)
selects the range and n! determines the placement of the n domain vertices in this range.

We now examine the structure of the web graph Wm
n in more detail. We will first establish that Wm

n is
always distance degree regular (ddr), and then provide a complete characterization of its distance degree
sequence (dds).

3.1 A Spider Web Between Complete Graphs is ddr
To show that Wm

n is distance degree regular, we make use of Theorem 2.22 that vertex transitivity implies
ddr. This leaves us now the task of showing that Wm

n is in fact vertex transitive. In order to accomplish
this, we will use the following more general result.

Lemma 3.3. Let G, H be graphs, and let X = W (G,H) be the spider web of graph maps G → H. Let
ϕ ∈ Aut(H) be given. Define Ψ : V (X)→ V (X) such that for ḟ ∈ V (X), we define Ψ(ḟ) to be the vertex
associated to the map ϕf . Then Ψ is an automorphism of the spider web X.

Proof. First, we show that Ψ is a bijection. We start by showing it is an injective function. Let ḟ , ġ ∈
V (X) be given such that Ψ(ḟ) = Ψ(ġ). Then per the definition of Ψ we have ϕf = ϕg. Since ϕ is an
automorphism, it must be a bijection and therefore has a well defined inverse ϕ−1 and so ϕ−1ϕf = ϕ−1ϕg
and hence f = g. From Definition 2.13 we know that each vertex in X is associated with a unique graph
map. Therefore, f = g implies that the vertices ḟ = ġ and so Ψ is an injection. Next, Ψ is a function
from a finite set to itself, and so its domain and co-domain have the same cardinality. This means that
injectivity and surjectivity are equivalent, and showing that Ψ is injective was sufficient to show that it
is a bijection.

We now show that Ψ is edge preserving. To that end, let ḟ , ġ ∈ V (X) be such that ḟ ∼ ġ in X. By
definition of spider web, this means that f, g are a spider pair and differ on a single vertex: there is a
unique v ∈ V (G) such that f(v) 6= g(v). To show that Ψ(ḟ) ∼ Ψ(ġ) in X, we must show that ϕf , ϕg
are also a spider pair. Since ϕ is injective, ϕf(v) 6= ϕg(v). Next, suppose u ∈ V (G) with u 6= v. Then
f(u) = g(u) and therefore ϕf(u) = ϕg(u). Thus ϕf , ϕg are a spider pair, and Ψ is a graph map.

We have shown that Ψ is a bijective graph map and hence an automorphism of X.

We now use this to show the vertex transitivity of our main spider web of interest Wm
n .

Theorem 3.4. Wm
n is vertex transitive.

Proof. Let distinct ḟ , ġ ∈ V (Wm
n ) be given. We know from Observation 3.1 that the maps f, g : Kn → Km

are defined by injective functions f, g : V (Kn) → V (Km). Define a permutation ϕ : V (Km) → V (Km)
by the following: if x = f(y) then ϕ(x) = g(y). This is well-defined since f is injective and it is injective
since g is injective. Extend this to a permutation ϕ : V (Km)→ V (Km), which defines an automoprhism
of the graph Km; there are many ways to do this, so our permutation is not unique. Then define
Ψ : V (Wm

n ) → V (Wm
n ) by Ψ(ḟ) = ϕ̇f . This is an automorphism of Wm

n by Theorem 3.3 and Ψ(ḟ) = ġ
by construction. Since ḟ and ġ were arbitrary vertices of Wm

n , this satisfies Definition 2.8.

We immediately obtain the desired result from Theorems 2.22 and 3.4.

Theorem 3.5. Wm
n is distance degree regular.

3.2 The dds of A Spider Web Between Complete Graphs
Now that we know that Wm

n is ddr, it is reasonable to ask if we can determine the dds of Wm
n given values

of n and m. Thus we consider how to find the λth element of the dds of Wm
n for 1 ≤ λ ≤ dia(Wm

n ). By
definition this is equal to the number of vertices which are distance λ away from an arbitrarily chosen
vertex in Wm

n . To reference this number, we introduce some notation.

Notation. We denote the number of vertices distance λ away from an arbitrary vertex in Wm
n by

Dλ(n,m).

Example 3.6. The spider web from example 2.14 is W3
2. It is easily observed that D1(2, 3) = 2,

D2(2, 3) = 2, and D3(2, 3) = 1. Thus the dds of W3
2 is 2, 2, 1.
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Finding the dds of Wm
n is equivalent to finding a formula for Dλ(n,m) in terms of λ, n and m. This

formula will be combinatorial in nature, but make use of some permutation group results. Thus we will
take a moment to ensure everyone is on the same page with the specific group theoretic concepts being
referenced and the notation being used to reference them.

Elements of the group of permutations on j elements, Sj , are often written in disjoint cycle form. That
is, the element of S6 which takes the elements 1, 2, 3, 4, 5, 6 to the ordered list 4, 6, 3, 1, 2, 5 would be written
as (5 2 6)(1 4), with an implied cycle (3). It is well established that each element of Sj can be written as a
product of disjoint cycles, and this presentation is unique up to the ordering of the cycles. This means that
for a given permutation in Sj it makes sense to ask about its cycle structure, that is how many cycles it has
of what sizes when written in disjoint cycle form. For example, the above element of S6 would have cycle
structure {3, 2}, with the 1 associated with the trivial cycle omitted. Likewise, the element of S20 which
takes the elements 1 through 20 to the ordered list 8, 11, 4, 6, 10, 3, 7, 1, 18, 20, 2, 12, 5, 15, 14, 16, 9, 17, 19, 13
can be written as (20 13 5 10)(18 17 9)(6 3 4)(11 2)(1 8)(14 15), meaning that it has cycle structure
{4, 3, 3, 2, 2, 2}, where the multi-set of cycle sizes omits the four implied 1-cycles.
Notation. We will use L to denote a multi-set of cycle sizes. Moreover, Lϕ will denote the multi-set of
cycle sizes corresponding to the cycle structure of a specific permutation ϕ.
Notation. Let A be any set or multi-set of integers. Define

sum(A) :=
∑
x∈A

x.

We now turn to looking at the distances between vertices ḟ , ġ ∈ V (Wm
n ). We will start by considering

the case where the images of the corresponding graph maps f, g : Kn → Km are the same. We know
by Observation 3.1 that both of these maps will be injective on vertices. We can then get the following
relationship between these functions.
Observation 3.7. As we saw in the proof of Theorem 3.4 there exists a permutation ϕ ∈ Sm such that
ϕf = g. In the particular case where f, g have the same range, we can choose ϕ to fix all vertices outside
of the range, and we can think of ϕ as a permutation on n elements (the vertices in the range) rather than
the full m elements. Considered as an element of Sn, such a permutation ϕ is unique: if we restrict the
codomain to the range, then f has a well defined inverse, and then the specification ϕ = gf−1 uniquely
determines the permutation ϕ. We refer to this as the permutation transforming f to g, and note that
this is only well-defined when f, g have the same range.

Our first goal is to count the number of vertices ġ of a given distance from a chosen vertex ḟ in the
case when the maps f, g have the same range. Leaning on Observation 3.7, we will in fact count the
number of permutations which give rise to the given distance. Thus we begin by connecting the cycle
structure of the permutation to the distance between the vertices.
Lemma 3.8. Let distinct ḟ , ġ ∈ V (Wm

n ) such that their graph maps f, g have the same range and
suppose that the permutation ϕ transforming f to g consists of a single non-trivial cycle of length j. Then
d(ḟ , ġ) = j + 1.

Proof. Per Definitions 2.16 and 2.13 we know that d(ḟ , ġ) will be equal to the number of spider moves
required to transform f into g. We know that vertices of Wm

n correspond to injective functions on
the vertices, and so if the ranges are identical we cannot immediately spider move any one vertex into
agreement with g. Instead, we first have to spider move a vertex outside of this common range to move
it out of the way. Once this is done, the vertex g takes to the newly open target can be spider moved
into agreement with g, opening up another target vertex, and continue from there. Thus we can spider
move f into agreement with g in exactly j + 1 spider moves.

Example 3.9. Consider again the spider web from example 2.14. In particular, observe that f1 and f4
have identical ranges in K3. A permutation consisting of a single two cycle swapping the two vertices
in this range would transform f1 into f4. Thus, by our lemma we would expect the distance between
them to be 2 + 1. Observe that, starting from f1, both the triangle and square are mutually blocking
each other from moving into agreement with f4. We have to spider move one ‘out of the way’ first, say
the square. We do so and end up at the map f6. Now the triangle can be spider moved into agreement
with f4. We do so and are now at the map f5. Finally, with the triangle out of the way we can spider
move the square into agreement with f4. That was three spider moves, and so we see that d(ḟ1, ḟ4) = 3
in accordance with our expectation.
Corollary 3.10. Let distinct ḟ , ġ ∈ V (Wm

n ) such that their graph maps f, g have the same range, and
let ϕ be the permutation transforming f to g. Then d(ḟ , ġ) is equal to the sum of the sizes of the cycles
in ϕ plus the number of cycles, with fixed-points excluded:

d(ḟ , ġ) = sum(Lϕ) + |Lϕ|
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Proof. Since the cycles of our permutation are disjoint, moves between them are never necessary and can
only add redundant steps to the spider-move transformation. Thus, we can adjust f via spider moves
cycle by cycle as per Theorem 3.8: each will take one more than the length of the cycle to spider move
into agreement.

The above result allows us to compute the distance between two vertices whose maps have the same
image if we know the cycle structure of the permutation linking them. Thus in order to calculate the
number of vertices with the same image of a given distance, we compute the number of cycle structures
that give that distance, and then the number of permutations with those cycle structures.

Definition 3.11. We define Aj(λ) to be the set of cycle structures of permutations on j elements (with
fixed points excluded) which result in a distance of exactly λ:

Aj(λ) = {L : sum(L) + |L| = λ and sum(L) ≤ j}
Standard group theory then allows us to count the number of permutations with a given cycle struc-

ture.

Lemma 3.12. ([11], page 3) Let L be a multi-set representing a possible cycle structure on j elements
with fixed-points excluded. For i ∈ L we denote the multiplicity of i in L with bi. Then the number of
permutations in Sj with cycle structure L is

N(L) =
j!

(fp)!
∏
i∈L(ibibi!)

where fp denotes the number of fixed points the cycle structure L gives rise to as a permutation on j
elements: explicitly, fp = j − sum(L).

Thus we can obtain a count of the number of vertices of Wm
n of a given distance with the same image.

Examining the cycle structure of the permutation between vertices also allows us to obtain the maximum
distance possible in Wm

n .

Theorem 3.13. Wm
n has diameter

⌊
3n
2

⌋
.

Proof. Let ḟ ∈ V (Wm
n ) be given. We begin by showing that dia(Wm

n ) ≥
⌊
3n
2

⌋
by producing vertices which

have that distance. If n is even, then we partition the vertices of Kn into n
2
2-cycles whose lengths sum

to n. Then lemma 3.10 says that the distance of the vertex ġ where g differs from f by this permutation
will have d(ḟ , ġ) = n + n

2
= 3n

2
. If n is odd, we partition n − 1 of the vertices of Kn into n−1

2
2-cycles,

whose lengths sum to n − 1, and map the remaining vertex outside of the range of f , adding an extra
spider move and increasing the distance from ḟ by 1. Then by Lemma 3.10 we have

d(ḟ , ġ) = (n− 1) +
n− 1

2
+ 1 =

⌊
3n

2

⌋
Next, we will show by induction that dia(Wm

n ) ≤
⌊
3n
2

⌋
. For our base case, let n = 2. If f 6= g and

f, g differ by a single vertex, then they form a spider pair and d(ḟ , ġ) = 1. If f and g disagree on both
vertices in their domain, then we have two cases: if the ranges are not the same, then at least one vertex
can be moved to where it needs to go, followed by the other, giving two spider moves. If the vertices
are swapped, it takes three spider moves to realign, as one vertex needs to be moved out of the way and
then the two vertices can be moved into agreement in two moves as in the previous case. In all cases,
d(ḟ , ġ) ≤ 3 =

⌊
3n
2

⌋
For our inductive step, consider n > 2 and let ġ ∈ Wm

n be given. If g does not have the same range
as f then there is some vertex v such that g(v) is not in the range of f . Thus in a single spider move,
we can shift f to f ′ which takes v to g(v) and in all other vertices agrees with f . This leaves us with
n− 1 remaining vertices that need to be considered, and we know by our inductive hypothesis that these
can be shifted with a maximum of

⌊
3(n−1)

2

⌋
spider moves, leaving us with a total distance between f

and g less than or equal to 1 +
⌊

3(n−1)
2

⌋
≤
⌊

3(n)
2

⌋
. If g has the same range as f but breaks down into

2-cycles, then we have seen in the first paragraph that d(ḟ , ġ) =
⌊
3n
2

⌋
. Lastly, if g has the same range as

f and g differs from f by a permutation that has at least one cycle of length c > 2, then if we remove
the vertices in this cycle we are left with n− c vertices. We know by induction that it takes ≤

⌊
3(n−c)

2

⌋
spider moves to move g to agree with f . It takes an additional c+ 1 moves to realign the vertices of the
additional cycle, so the distance d(ḟ , ġ) ≤ 3(n−c)

2
+ c + 1 = 3n−c+2

2
But c > 2 and so −c + 2 < 0 and

hence 3n−c+2
2

≤ 3n
2
.
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We now turn to considering vertices of Wm
n which have different images. In this case, we will not

obtain an explicit formula for the number, but rather develop a recursive formula connecting the number
of such vertices to the value of Dλ′(n′,m′) for smaller values of λ′, n′,m′.

Lemma 3.14. Let ḟ ∈ V (Wm
n ) be given. The number of ways to map exactly r vertices from Kn to

vertices which are NOT in the range of f is(
n

r

)
(m− n)!

(m− n− r)!

Proof. We first have
(
n
r

)
options for which vertices of the domain will be moved outside the range of f .

Next we have
(
m−n
r

)
options for which vertices outside the range of f we will be assigning these domain

vertices to. Finally we have r! options for how to place the r vertices within the new selected image. By
the product principle, our total is then(

n

r

)(
m− n
r

)
r! =

(
n

r

)
(m− n)!

(m− n− r)!r!r!

=

(
n

r

)
(m− n)!

(m− n− r)!

Lemma 3.15. Let ḟ ∈ V (Wm
n ) and let λ be a potential distance, so 1 ≤ λ ≤ dia(Wm

n ). Suppose we define
a function which takes r of the vertices in Kn to images chosen outside of the range of f . The number of
vertices ġ which are distance λ from ḟ and associated to maps g with those r vertices mapped as specified,
and with all other vertices sent into the range of f , is Dλ−r(n− r, n).

Proof. The r vertices already assigned out of the range of f are already set, leaving n − r vertices not
previously assigned. These vertices must be taken to vertices which are in the image of f , giving n choices.
Thus we are looking at injective vertex maps from n− r vertices to n vertices, or equivalently, maps from
Kn−r to Kn.

To ensure that we have distance λ, consider that it will take exactly r spider moves to shift the the
vertices taken outside of the range of f once all of the n− r other vertices are in their correct place. That
means that if our overall distance from ġ to ḟ is going to be λ then it must take exactly λ − r spider
moves to adjust the vertices within the range. Therefore, this question is equivalent to asking how many
vertices are distance λ− r away from any given vertex in W (Kn−r,Kn) which by definition is the value
of Dλ−r(n− r, n).

Putting all of these results together gives us the following formula for the values in the dds of Wm
n .

Theorem 3.16. For 1 ≤ λ ≤ dia(Wm
n ), the formula for Dλ(n,m) is

Dλ(n,m) =
∑

L∈An(λ)

N(L) +
∑̀
r=1

(
n

r

)
z!

(z − r)!Dλ−r(n− r, n)

where
N(L) =

n!

(fp)!
∏
i∈L(ibibi!)

and

` = min (n, λ,m− n) and z = m− n
in the second term.

Proof. To find the number of vertices in Wm
n that have distance λ away from ḟ , we consider two cases:

the vertices with the same range, and the vertices with a different range. In the first case where the
functions have the same range, then we know that the vertices differ by a permutation. Lemma 3.10
defines the possible cycle structures of these permutations, and Lemma 3.12 that each cycle structure
will correspond to N(L) actual permutations. Summing over these possible cases gives us

C1 =
∑

L∈An(λ)

N(L) =
∑

L∈An(λ)

n!

(fp)!
∏
i∈L(ibibi!)

.

In the case that the ranges of our functions differ, we consider the possible values for r, the number
of differing positions. We know the distance between vertices will be at least r, so r ≤ λ. We know that
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we only have m − n other places the vertices could possibly go, so r ≤ m − n. Finally, we only have n
vertices to disagree on, so r ≤ n. Thus we have r ≤ ` = min (n, λ,m− n).

Now suppose we have a value of r in the range 1 < r ≤ `. From 3.14 we know that there are(
n
r

) (m−n)!
(m−n−r)! ways to place these r vertices. At this point, if r = λ then we are done. If r < λ then we

need to count the number of maps which send these r vertices to their new assignments while sending
all other vertices into the range of f creating a distance of λ. By Lemma 3.15 we know that this value is
Dλ−r(n− r, n). Thus, by the product principle we have

C2 =

min (n,λ,m−n)∑
r=1

(
n

r

)
m− n!

(m− n− r)!Dλ−r(n− r, n).

The sum of the cases then yields the theorem formula.

When using this formula to make calculations, it is important that we take Dλ(n,m) = 0 when
b 3n

2
c < λ (which follows from Theorem 3.13) and D0(n,m) = 1 (which follows from Definition 2.16).

These conditions allow our recursive calculation to terminate.

3.3 Consequences
Observation 3.17. The distance degree sequence of Wm

n is given by

D1(n,m), D2(n,m), D3(n,m), . . . , Dk(n,m)

where k = dia(Wm
n ) =

⌊
3n
2

⌋
.

This observation forms the heart of our result, as we have completely characterized the distance degree
sequence of the spider webs between complete graphs.

The following demonstrates how our result can be used to directly calculate the dds of the spider web
W (K3,K5).

Example 3.18. W (K3,K5): n = 3,m = 5, λ = 3:
We have m− n = 2, min (n, λ,m− n) = m− n = 2 and A(λ) = {2}. Therefore

D3(3, 5) =
3!

21(1!)
+

(
3

1

)
2!

(2− 1)!
D3−1(3− 1, 3) +

(
3

2

)
2!

(2− 2)!
D3−2(3− 2, 3)

=
3!

2(1!)
+

(
3

1

)
2!

1!
D2(2, 3) +

(
3

2

)
2!

0!
D1(1, 3)

= 3 + 6D2(2, 3) + 6D1(1, 3)

It is easy to obtain that D1(1, 3) = D2(2, 3) = 2, Therefore

D3(3, 5) = 3 + 6(2 + 2) = 27

This can also be verified by directly checking the spider web itself.

Note that the spider web in this example is the one from the final row in the table from Example 2.15.
Despite the chaotic appearance of the object, we now know that every vertex has exactly 27 vertices a
distance of 3 away from it!

The next example demonstrates the utility of our result for larger values of n and m. Directly con-
structing this spider web and then manually finding its distance degree sequence would be computationally
prohibitive. However, an algorithm making use of our formula for Dλ(n,m) calculates these results in
less than a second.

Example 3.19. W (K7,K11) : then n = 7,m = 11, and we calculate:
order of Wm

n = 1663200.
diameter =

⌊
3(7)
2

⌋
= 10.

dds: 28, 420, 4221, 29890, 146650, 460089, 745752, 249850, 25669, 630.

The next example deserves special mention, both because of its clear and concise partial characteri-
zation of infinitely many spider webs, but also because it served as the jumping off point for the entire
paper. This result was discovered by the authors first, and used as a guide for the more general result
just demonstrated.

Example 3.20. The order of the graph W (K2,Km) is m2 −m and its dds is

2(m− 2), (m− 1)(m− 2), 1
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We end with the following consequence of our result.

Observation 3.21. If we sum the numbers in the distance degree sequence (including 1 for the original
vertex) we obtain the total number of vertices in the graph. Therefore

b 3n2 c∑
λ=0

Dλ(n,m) =

b 3n2 c∑
λ=1

 ∑
L∈An(λ)

n!

(fp)!
∏
i∈L(ibibi!)

+
∑̀
r=1

(
n

r

)
z!

(z − r)!Dλ−r(n− r, n)

+ 1 =

(
m

n

)
n!

This implication of our result is particularly interesting because of the nightmarish complexity of the
middle expression and the relative simplicity of the final expression. It seems hard to imagine that any
naive observer could see that the middle expression with its double nested triple summation including
recursion reduces to one of the most elementary combinatorial expressions.

4 Future Research: Questions Left Open

4.1 With Regard to Distance Degree Regularity
While ddr graphs of diameter 2 are trivially characterized and those of diameter 3 are partially charac-
terized in [8], larger examples are only poorly understood. Open questions include what conditions must
be placed on a dds for a ddr graph with that sequence to be constructable, what proportion of k-regular
graphs are ddr, and most crucially for our present purposes, what additional conditions need to be placed
on two ddr graphs with the same dds in order to ensure they are isomorphic. Plenty of examples of ddr
graphs with the same dds which are not isomorphic have been presented, so we know that the condi-
tion of sharing a dds alone is not sufficient for isomorphism. If the additional conditions necessary for
isomorphism could be identified, it may be possible to characterize our object Wm

n completely. Despite
attempts to find such conditions, the problem appears highly non-trivial [6, 10, 12].

4.2 With Regard to Spider Webs
With the conditions placed on G and H in Wm

n = W (G,H), we have explored only a tiny portion of
possible spider webs in the present work. Further characterization of other kinds of spider webs is a very
large project with much work remaining to be done. A promising route forward from the work presented
here is to allow either G or H to be more general than a complete graph and try to relate the resulting
spider web to those characterized here. Additional work has already been done on entirely different
spiderweb graphs, particularly those involving bipartite and and star graphs [7]. The possibility space
for the number of constructable spiderwebs is enormous, and the project of systematically characterizing
all of them has only just begun.
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