PAGE
i

Graphic Software Used in Game Design
By

Derek Nofsinger

Senior Seminar Tutorial

CSIS 496 / Professor Evans Adams

April 11th, 2006

Graphic Software Used in Game Design: Table of Contents

Section Page

1. Introduction

1

2. Background

1

3. Video Game Graphics Basics

2

3.1 Two-Dimensional Graphics

2

3.2 Three-Dimensional Modeling

3

3.2.1 Polygonal Modeling

3

3.2.2 NURBS Modeling

4

4. Cel-Shading

4

5. Texturing

6

6. Other Properties of a Graphic Object

7

7. Graphics in Game Engines

7

8. Maya

8

8.1 My Personal Experience with Maya

8

8.2 Maya’s MEL Scripting

9

8.3 Games That Were Created with Maya

10

9. Conclusion

10

10. References

11

11. Appendix

11

1. Introduction

What defines a video game? It simply states for itself. A video game is a game that uses a video screen to display virtual images of the objects that have significance to the game and the player’s interaction. A driving game needs images of automobiles. A fighting game must have images of characters and their fighting actions. A first person shooter must contain images for the guns and rifles available to the player along with the character’s remaining units of health and ammunition. Depending on what type of game is in creation, the developers need to know what game objects need to be created, how to create them.

Simplicity in graphic detail was only needed to create the first generation of video games. A game of tennis only had to be represented through two colors, two rectangular paddles, blocky numbers for the score of each player, and a small box to represent the tennis ball bouncing left and right. Games of hockey and soccer could be represented in a similar fashion. All the developers needed to do were to create two paddles for each player or team. As video games and arcade games grew popular, the game developers and their audiences began to think of new themes, besides sports, to play with on their home television screen.

Games of adventure, racing and shooting space creatures were new and challenging ideas. How were the graphics of the game objects going to look like? How can these objects be created so that the player knew that the object it was controlling was a missile firing solo and that the objects the player was shooting at were falling bombs? It was up to just a few computer programmers at the time to figure these questions out. (Today, teams in game development, for home consoles and personal computers, are enormous and even have smaller teams to create the game’s graphics.) Cut scenes and animations were placed in between levels to give the player a reward for passing objectives and beating bosses. As the ideas for games and the desire for better detail in displaying the game objects began to grow, just like they do today, video game graphic technology began to evolve.

The purpose of this document is to discover how game developers and artists are using today’s graphic technology to create game objects and how the objects are placed into interactive video game environments.

2. Background

The graphics of past video games and computer games have an interesting story. It is said that the concept of a video game actually dates back to 1951. Ralph Baer, a television engineer, was asked by a supervisor to build a television set that would shock the world. Ralph then came up with the idea of playing games on the television screen, but the supervisor disapproved of his idea. It wasn’t until 1966 that Ralph started working on the very first models of his video game idea. In 1958, one of the earliest computer games, Tennis for Two (a different version of tennis besides Pong), was displayed on an oscilloscope. The entire system was created by Wily Higinbotham, a Manhattan physicist, who was at the New Mexico site, Trinity, when the first atomic bomb was detonated. Three years later after Wily created his computer game; three students of MIT discovered vector graphics when they created the game Spacewar. Vector graphics would be seen later in the arcade game of Asteroids in 1979 [14].

In 1972, Ralph Baer, through a contract with Magnavox, created the first home console system, the Odyssey. Ralph’s original visions of the games stored in the early console would have colored backgrounds. Contradicting Ralph’s envisions, Magnavox’s desire was to cut down on the building cost by having the Odyssey only display black and white graphics (Magnavox did not even build the first console to produce sound) [15]. Coming after the Odyssey were many home consoles that could play simple sports games like Pong. Back around this period of video games, the games were already programmed into the console hardware and did not need cartridges. It is said that the first home console system to start the mass production of game software was the Atari Video Computer System (Atari 2600) released in 1977 [16]. Every moving object from the Atari VCS was delivered to the television screen in a blocky image. The reason for this would be that the Atari VCS only had 128 bytes of main memory and the cartridges themselves only contained 4 kilobytes of memory [5]. Left with just this amount of resources, the programmers of these games could only create the most simple of graphics such as sprites which are one of the basic components of a video game.

The popular home console of the Atari VCS along with other released game consoles would lose their popularity due to badly created games. This would be the start of the video game market crash in the early eighties. In 1986, the company of Nintendo would release their first home console, Famicom (a.k.a. the Nintendo Entertainment System), in the United States. The system would contain its own picture processing unit (PPU) and had a color palette four times larger than the previously released console, Atari VCS. Sega would then try to compete with Nintendo in the video game market by releasing the Sega Master System, which would be technically superior to Nintendo’s Famicom, but Nintendo was still taking a big piece of the market. Thus, the Sega Master System never had the chance to enjoy great profits and would suddenly be discontinued. The company of Sega would not give up though and release a much powerful system, Genesis, in the late eighties. With an enhanced range of colors in its palette, 64K video RAM, and a 16-bit processor, the Sega Genesis would be seen as a worthy opponent in the video game market competition.

Nintendo would match its rivaling company’s system with releasing the Super Nintendo Entertainment System (SNES) in 1991. The SNES would improve upon Nintendo’s Famicom (8-bit processor) by containing a 16-bit processor and could display over thirty-two thousand colors. Sega and Nintendo would be constant rivals for years to come. Sony would enter the competition too with its home console, the Playstation. The competition between these video game company giants would increase the power in their graphic technologies to where we are at today in game graphic hardware and software.

3. Video Game Graphics Basics

If you are familiar with playing video games, then you should know that there are two basic types of graphics seen in video games: two-dimensional and three-dimensional. Two-dimensional graphics were used to display the objects and backgrounds seen in the very beginning of video games. Most games are still displayed best in a two-dimensional environment just like Tetris and some platform genre games. The era of three dimensional games started in the mid nineties and would give enhancements and challenges to the design of today’s most popular home console and PC games. Some game series, such as Sonic the Hedgehog, have suffered from the transition from a two-dimensional platform to full three-dimensional movement.
With fully three-dimensional game play, the user must control an awkwardly situated camera. The camera, a commonly know term among gamers, is the perspective that a player sees through a monitor when the player is playing the game. In the majority of 3d platform genre games, the camera can be positioned anywhere the player wants to get better vision of his location and environment. However, the latest 3d Sonic the Hedgehog games have had sub-par reviews because the badly stationed, and sometimes not maneuverable, camera leads to unwanted actions such as running into enemies, falling off of edges and losing a life.
3.1 Two-Dimensional Graphics

The earliest of video game consoles and arcade games were heavily based on the simplicity of two dimensional graphics. If one has ever played games from an Atari 2600 or the original arcade game Pong, they will know exactly how simple these graphics were. The primitive technology for creating the graphics had tight constraints on the artist such as pixel size and pixel color. Most game objects could only be represented in colors less than ten. The size of the early game sprite could not exceed its width and height by a tiny number of pixels. Sprites are the most general type of two dimensional graphics found in a video game. To make a brief description of sprites, they are an animation or a graphic that can be placed into an overall two dimensional or three dimensional video game sprites are drawn by the developers and there are many software programs that can help developers do so. The Famicom, or NES had a maximum pixel size of eight by sixteen pixels. In an interesting fact, it is said that the reason for Mario’s appearance today has a connection to how early hardware constraints played a part in building Mario’s sprites pixels. “He was given a mustache to separate his nose from his face, overalls so arm movements were visible, and a hat because hair was hard to draw. [2]” This created the first Mario sprite that appeared in his first game, Donkey Kong. Earlier video game sprites were actually created by special hardware in video game consoles or personal computers such as the Atari 2600.

Sprites sheets are a place for storing the graphic data of two-dimensional game objects. Also, these sheets can contain the animation frames of the image if they are animated. Explosion sprites in most games are a great example of this because an animated explosion gives the game player more eye candy instead of just displaying one sprite that is “still”. Depending on what type of file the sprite sheets are saved as, there is a range of programming languages that can program the created sprites into the developed video game. For an example, Tile Studio, a tile sprite creating program can produce programmable sprites for games programmed in C++ or Java [3]. What seems to be the most popular form of creating two dimensional games though is OpenGL. The following is a basic example of how to place drawn graphics on a style sheet and program them into games through OpenGL.

First, and the suggested step, in the process of creating a sprite for a game is to actually sketch the sprite’s image on a piece of paper. This will help give the game developer a better sense of the requirements, such as size, that the sprite sheet will need to have. Sprite sheets should be measured in pixels and the pixel size number has to be in powers of two such as 64, 128 and 256 [9] to run in OpenGL. If there are multiple frames for one game object, then only one sprite sheet should contain all the animation frames for that one particular object. The frames contained within a sprite sheet do not necessarily have to be animation sequences for the game object but can also be bits, pieces, power-ups or helpful user interaction graphics that can be added to the image [9]. The article “Weird Worlds mod tutorial: Creating a Spaceship” then suggests that an “.ini” extension file can be used to save the information of where every individual game object frame is located in the sprite sheet. Now, .ini files may not be necessary in the overall creating process of the sprite sheet. But this is how some game’s engines can create the object to appear and through this example, the information saved in the .ini file will be information regarding every frame’s x and coordinates along with the width and height of the frame.

After all the defining of the frame boundaries in the style sheet has been done, then it is time to fill these frames with the object’s appearance, it’s animation sequences and other pieces. Now, this is where it’s up to the developer to decide how to draw these objects and there are many graphic software programs that can create 2d images. Adobe Photoshop is a very popular tool to create and edit pixilated images among game development teams.
Sprites can be seen as flat images through a process called “billboarding” in a three dimensional game [1]. The “billboarding” method applies a property to a sprite in a three-dimensional game to have it always face the camera. Sprites are two dimensional graphics and can be placed today in three dimensional games. They are very helpful to display things that are hard to model with polygons such as fire and smoke. For example, an animated fire image for a sprite will look much more realistic than using a polygonal model. They are also used to create game messages that would take up an unnecessary amount of memory if they were to be modeled with polygons. For instance, if you were to play a three dimensional RPG game, messages like “Level Up” will probably be drawn as a sprite. Drawing objects as sprites will also cut down on memory usage of the game, because polygonal modeling can sometimes create more unnecessary attributes that the game cartridge or disk will need to hold. Another good reason for not using polygonal modeling for some objects is that some of the object’s polygons, if it were created with polygons, will probably never be seen by the player.
3.2 Three-Dimensional Modeling
There are a few types of modeling that can create three dimensional graphics and models for video games: Subdivision, NURBS and polygonal modeling. But, three dimensional video games mostly use polygonal modeling to build their worlds and characters to place in the graphics engine, the program that makes the game run.
3.2.1 Polygonal Modeling
It is important to first mention ideas about polygonal modeling. Polygonal modeling is exactly what it sounds like modeling based on polygon shapes. Polygon shapes are closed geometrical figures that have sides that are straight and not curving. Examples of polygons would include your typical rectangle, triangle, pentagon and octagon. Polygons can also be called faces. If one were to take a look at some older video games that used three dimensional graphics, the individual can see that the levels and objects are entirely built on polygons. Also, it’s simple to observe how racing cars were constructed with polygons in early virtual driving games like Sega’s arcade game Virtual Racing. Structures seen in games such as these were very simple in shape and city buildings could be easily represented as a box of six polygons.

Creating simple or “primitive” 3D polygonal shapes through Maya or 3D Studio Max such as cubes, spheres, cylinders and planes is very simple to do. With these basic shapes, modelers can build more complex physical objects such as the human body. If you were to think about drawing 3d objects, professional artists will instruct you to think about the 3d object as a structure that is built from primitive shapes [4]. For example, an apple or orange could be represented as a sphere, a pine tree can be represented as a cone with a cylinder below it and basic city buildings can be represented as a cube. Even though these are really easy solutions to developing these objects, modelers can then use their three dimensional modeling software packages to give the object more realistic detail, which will be explained later.
The faces, or polygons, are simply constructed from two flat “triangles that share vertices” [4]. To make the three-dimensional model look a little better, today’s software technology will hide the line that separates the face into two triangles. There reason for this is that triangles are necessary to build a better running game. Game engines, which actually make the game run, find triangles easier to compute because all the engine needs are x, y and z coordinates of the triangle’s three points. [4].
More polygons in a model mean a lot more graphic detail in the game’s characters and environments and of course their detail gives the game some of its appeal. But just because the artists can build the coolest detailed polygonal models of a sci-fi spaceship doesn’t mean that the graphic engine in which they are working with will run the animations and modeling of this object very easily. Matthew Omernick, who is a lead artist at LucasArts Entertainment Company and author of the book, Creating the Art of the Game, believes that before the game is produced there needs to be pre-planning on how many polygons a game’s character or object will contain [4]. This idea in deciding graphic detail leads me to few examples.
THQ and Yukes, the co-producers of Nintendo Gamecube’s wrestling game WWE Day of Reckoning 2, decided to design the game’s characters to have more polygons included in their face than in any other parts of the wrestler’s body structure. This could be considered a very wise decision in graphic detail to enhance the game. Why? It was believed by THQ and Yukes that potential players of the game, whom would enjoy WWE or wrestling shows, would enjoy the realism of seeing the expressions of anger, pain and joy on the faces of their favorite wrestling characters. Namco also took the similar direction with polygon sharing with their game Soul Caliber 2. Instead of concentrating complex polygonal modeling on the fighting arenas, most of the polygons are concentrated on the fighting characters themselves. The player’s focus is going to be on the fighters and not too much on the castles, ships or trees in the background. It’s a great idea for why would you want to stare at the background of a game, when you should be concentrating on dominating your opponent?
Developers will probably even build their objects for the game, get as detailed as they can with their levels and characters, test their models on their game engines and observe how much time the game engine needs to process their movements. Thinking about the x, y, and z coordinates of every triangle embedded in every polygon takes time to compute in the game engine, so it is very important to decide how many polygons need to go into the game’s objects.
With the three dimensional modeling and animation programs such as Maya and 3d Studio Max, game developers can keep track of how many polygons are in selected objects.

There’s one important property to polygons that should be noted. When constructing with polygonal modeling, the face of the polygon should be kept in mind. A face, the visible part of the polygon, is not two sided; it is actually one-sided. What does this mean? Imagine looking at the face of a small white rectangular piece of paper. Now, turn this piece of paper around to see the other side only to find the piece of paper is invisible! This is called a face normal and saves the graphic engine from doing some computations. Face normal constructs a visible plane that is visible on only one side of the polygon that it is made from. This section has covered the basics of polygonal modeling. This is the preferred type of modeling when constructing game models that will be placed in the game engine.

3.2.2 NURBS Modeling

Non-Uniform Rational B-Spline (NURBS) modeling is “a modeling method that uses spline curves to represent objects. NURBS modeling is used to create smooth, flowing, organic-appearing models. [7]” Models that are constructed from NURBS are not exactly placed in the interactive parts of the game program. Instead, after modeling an object from NURBS, the model can be transformed into a polygonal object. NURBS are best for creating the 3d cut scenes of the game. Cut scenes are animations that usually take place at the very beginning of a video game, between chapters or at the very ending of the game. Video game cut scenes are the little cinematic pieces that can serve a few purposes in the game such as displaying the story through detailed animation. NURBS modeling are great for creating cut scenes because cut scenes normally do not normally used the game engine to play. The animations of the cut scenes are played directly from the game disc’s information media.
4. Cel-Shading

A new graphic trend that is appearing in video games today is cel-shading, which is also called cartoon rendering in the modeling terms. Cel-shading can be applied to both polygonal modeling and NURBS modeling. This type of graphic style has been seen in games such as: Jet Set Radio, Viewtiful Joe, Sly 2: Band of Theives, and a game that will be thoroughly mentioned later, The Legend of Zelda: the Wind Waker. Cel-shading is basically taking three dimensional models and giving them a “drawn” look as if they were created from a cartoon or a comic. This really hasn’t been the type of graphic style to attract the general type of gaming audience. It even has given some Zelda fans a skeptical attitude of where the game’s direction was going when game screenshots of The Legend of Zelda: The Wind Waker were first released to the public. The look was criticized for being “childish” and would only suit the younger market. But when the full game was released, reviews of the game turned out to rewarding for the game’s developers. Cel-Shading should be described in better detail to continue.

From Sami Hamlaoui’s article, “Cel-Shading”, from the website dedicated to game development, www.gamedev.net, Sami states that there are a few things that need to be known before working with cel-shading such as “1-D texture mapping, texture coordinates, software lighting” and “vector math” [8]. But, this is just how to program the effects of cel-shading into graphic languages such as OpenGL or DirectX. Developers, through using Maya or 3D Studio Max, can render objects into a cartoon-style very easily, yet knowing how code makes cel-shading work should be found of some importance to 3d modeling artists.

Hamlaoui begins with programming the data that contains the information about the “color” and “position of each vertex” [8]. The information about these two components is the basis for basic rendering. Hamlaoui also states that the graphic must be drawn after “lighting” and “shading” has been disabled. If these were to be enabled, then the cartoon image of cel-shading would already cease to exist. This makes sense because cel-shading figures only contain just a few shades that will be probably defined by the programmer’s algorithms to place shades to where they are appropriate. Lighting and shading should be disabled by assuming that Hamlaoui is working with code from a program that automatically generates shading and lighting.

The “Basic lighting” section then describes that more information needs to be added to every vertex that is contained within the model for cel-shading. Each vertex must contain information for a “vertex normal” and a “lighting value (a single floating point variable)” [8]. Lighting maps will also be applied, but not just any type of lighting map. This lighting map will be a “1-D Texture”. To understand 1-D Textures imagine ten blocks standing right beside each other in a single row. The leftmost block if filled in with a pure white color and the rightmost block is filled in with a pure black color. The eight blocks sandwiched in the end blocks contain a mixed color in between. The eight blocks from left to right would gradually darken as they change from white to black. If you can visually see this example, then block five and six would contain a grayish color. But with cel-shading there are only just a few number of shades instead of ten. Imagine the same range of ten blocks but two blocks contain solid black, four blocks contains a solid grey and the other four contain a pure white. On a side note, Hamaloui suggests that a full black color should never be included in a 1-D texture map, because the application of a dark color could look unattractive. With programming languages such as OpenGL, you can create your own type of 1D texture and load it into your OpenGL program.

Himlaoui, after discussing the basics of 1-D texturing, then delivers information about the importance of trigonometry equations of directional lighting. Calculating the directional lighting requires the equation of finding the “dot product”. With a top value of one, the “dot product” is the cosine of two vectors and this will help a program calculate the value of the lighting. After calculating the direction of the lighting through the “dot product”, it’s time to render the object that the cel-shading will be applied to. (Himlaoui assumes through his directions the modeling artist is modeling with polygons. Just to refresh the reader, modeling with polygons is the most preferred with method for developing objects for games.) So, after calculating the dot product, it’s time for the modeling artist to draw his object in polygons without having blending or lighting enabled and only texture enabled. The developed 1-D texture is going to be in charge of the lighting, virtual lighting if you will, and blending isn’t needed in cel-shading, since blending will take away the look of a cartoon. This method is only used for directional lighting.

Next, I will explain how the modeler can position the light wherever he desires. With some difference from the “directional lighting” method and some lengthier math equations, the flexibility of placing a light source wherever in a workspace containing the model can be found useful. “Directional lighting” instead of “positional lighting” casts a light in a single direction. Because “positional lighting” casts light in all directions, the vertices of the model are going to need to keep track of where the positional light source is coming from. In fact, every vertex will cast “it’s own ‘ray of light’ ” [8]. So, with knowing the position of the light source and the position of the vertex, a vector for part of the “positional lighting” can be created. The value calculated from this part is then formed into a number between zero and one, which will represent the direction in which the vector is pointing from the individual vertex to the varying position light source. The normal of the vertex along with the polygon’s normal must be converted into a dot product and must be calculated for every vertex in the model! This will slow down the speed of the frame rate or the modeling computer since there will be a tremendous amount of calculations for the computer to do with the light source constantly changing. There is a way to actually help the modeling computer from doing some unnecessary and tedious light calculations. To do this, the positional light sources should contain a radius attribute. If the vertex is with the light source’s radius then the normal will be lit, if not within the radius then the normal will be in darkness.

What has just been explained about cel-shading is just part of an example that describes in steps on how to program and apply these in a programming language’s API. There are a few other applications for the cel-shading technique and are actually ways to apply the technique to textures. For those who are not familiar with creating the code, Maya and 3D Studio Max have a quicker ability to apply cel style shading to an object or scene. One of the main points in working with the entire cel-shading process is that vectors are the sole calculation of what gives the object its coloring and shading properties. After that has been mentioned, applying the cel-shading effect through modeling programs should make some sense on how cel-shading actually works.
5. Texturing

Texturing is giving three dimensional geometrical shapes in a modeling tool a better look of realism instead of giving the object a basic color. To give it a better definition, texturing is giving the surface of the object characteristics that will make the gamer believe that the textured object is real. For instance, what should a red, brick wall look like when it is placed into a game? The wall itself should be a type of thin box, but that will not look like a brick wall unless the game developer actually applies a bitmap picture of a brick wall to each of the four sides of the box. This is where texturing comes becomes a major part in game object creation. Texture mapping has been known to be difficult and there is a whole universe to this concept.

Any type of image that is of the bitmap family like JPEG, BMP, and GIF can be used for textures [4]. One very interesting tool that I just picked up recently is Adobe Photoshop. If you are not familiar with the specifics in Photoshop, Photoshop is a program that can perform many methods with pixels of a digital picture. Photoshop can adjust the color, size and resolution of a picture. It is a powerful tool to use when developers want to set the scene in their levels by turning clean, polished green cones into many shades of green for the look of a pine tree forest. Vector graphics can be used to create vector images for use in applying textures to objects. As well as learning Photoshop, I have familiarized myself with Illustrator to help my chances with being employed in the video game industry. Illustrator can not provide as much detail for texture mapping but it can help produce simple images for Maya and 3D Studio Max to turn into three dimensional images such as text [4]. These are a few ways to create textures for texture mapping. How are these textures actually applied to three dimensional objects?

It is quite a complex process to actually place digital images on to a three-dimensional object. In order to explain how this can be done through Maya, an exercise from the book Inside: Maya 5 will be applied. The first step is to import the desired picture for the texture into Maya’s work area. After one has imported the image, adjusting the colors of the texture image should be done as soon as the image has entered the work area [6]. The exercise in the book instructs the user to import a shader as well. It is important to discuss shaders before continuing.
Shaders are materials that give a 3D model its shininess factor. If one notices real life objects around oneself, they all differ in types of reflection attributes. For example, a gold bar has more reflection than a dry brick wall. By using Maya, one can apply an Anisotropic or a Metal shader to a gold bar and a Phong material shader can be applied to the brick wall.

After the desired shader has been applied to the three dimensional object, it is time to finally apply the imported texture to the object. And just like there are so many types of shaders, one can apply just as many generic types of textures to an object. Cylindrical, Projected, Spherical, Planar and Faceted texture methods seem to define themselves on which objects they can be placed. Through Maya’s Attribute Editor, deciding which type of texturing is the best requires that the user click on the Texture Map button and select the texture type from the Projection type drop down list. However, using these generic methods of texturing may not give the object its best look. The image may look skewed and deformed and will have the three-dimensional object loses its realistic appeal. If the 3d game artist has a great idea of where the image’s location should be placed on the object, the artist can deliver that detail through using UV coordinates. In computer modeling terms, UV does not mean ultraviolet.
UV coordinates can place the texture image on a flat part of a three dimensional object by using U as “the horizontal distance from the left edge” and V as “the vertical distance from the bottom edge” [7]. By applying without the UV coordinates, texture images are automatically placed so that the lower-left pixel of “the image is matched to the lower-left corner of the polygon face” [7]. The advantages of using UV coordinates give the 3D artist the ability to scale and tile a texture with perfect alignment.
One concept that must be stressed in order to make a great game is that a game artist must always keep in mind the realism of how the graphics look to the observant gamer. There is a big danger when the graphic is just tiled; because applying the texture to an object simply will not convince the gaming audience. Tiled graphics show unrealistic repetition and shows laziness in the developers; this situation can be easily fixed. Any texture should have some type of blending and randomness where the border that connects tiled texture images is not as obvious to the game player. If the artist has Photoshop in his creative arsenal, he does not have an excuse for creating texture maps that are awful because Photoshop has so many tools that can blend, smooth and edit these tiles to perfection. One tricky part when dealing with making texture maps look realistic is matching opposite ends of tiles together. For example, if the textured tile of a zebra’s coat has stripe on the right side of the tile; it should correctly match by pixel the stripe on the left side of the tile.

Even applying a great texture to an object is one of the few modifications that a modeling artist can do. In the next section, there are some things to keep in mind when creating the perfect character and object in a video game.
6. Other Properties of a Graphic Object

A texture does not need to be applied to an object even though the texture will make it look more realistic, instead a simple color through modeling software can be applied to the overall object. In fact, there are some real-life objects one can create without applying a texture map. Take the egg from a chicken for example. Just as simple as its shape, the color of an egg could be simple as applying a light brown color or a pale white color. If just a simple color can be applied to the object while no significant detail is lost from it, then apply the color. Applying colors will probably save your game engine from lagging when one is testing the model in the game. There is common knowledge of some real-life objects that also contain levels of transparency, or opacity. A glass window is one of the best examples for applying transparency attributes. Texturing a picture of a glass window against a plane may help a video game glass window look like a real glass window. Why not apply some attribute of transparency to a plane-constructed object? It may save effort from finding and editing a picture of a real glass window. Reflectivity is another attribute that can be added depending on how the object is in real life. As an example of reflectivity, one should imagine a picture a clear lake surrounded by pine trees around noon. If one looks across to the surface of the water of the lake that is surrounded by pine trees, one will see that the pine trees above are reflected on the water. Just like the glass window example, an attribute of reflectivity can be applied to surface of water represented by a plane. Luminosity is the attribute that gives an object the ability to cast its own light. Lit torches and flashlights, when they are turned on or ignited, are examples of luminosity. Objects of light can be created through software, like Maya, that shine light on objects. There is another concept in modeling called bump mapping. Bump mapping is applying textures to the surface, not to the polygon normal, of an object. An example of bump mapping could be the rubbery skin of a basketball.

The reason for defining luminosity, reflection and color is to make acquaintance with the many properties that some modeling artists forget to consider when making a realistic 3D object. Although having better detail in the images looks prettier to the gamer, it is also important to keep in mind that the game engine will be processing and calculating just as much information. Much detail can slow down a game’s frame rate. Also, it depends on the artist and on the developers when considering how much should be required in order for the game’s audience to get the greatest experience.
7. Graphics in Game Engines
How can these created models be applied and tested? The created models are placed in the game engine. The game engines are used by programmers of the development team to give the models their programmable features [7]. Although game engines are usually used for rendering the picture, or giving the image its final look through programming, a game engine can give the imported 3D models collision detection and Artificial Intelligence. What type of programming one uses depends on the game engine that the development team is using. Some use Java, some use Python, but the main programming language used in game engine programming is C++.

There are many types of game engines to choose from, but some of the most often used engines include RenderWare - a game engine that has been used in Sonic Heroes and the famous series of Grand Theft Auto. The Quake engine has been used to create Quake, Doom and Medal of Honor: Allied Assault. The engine titled Unreal was made by the company that created Unreal Tournament and has helped produce games of the Harry Potter franchise and Tom Clancy’s series of Splinter Cell [7]. All game engines have their advantages and disadvantages. Purchasing a game engine may not be the only fee that is demanded by the development team that created the engine. License charges may also be issued by the game companies. By acquiring a license from the game engine development company, a percentage of the income from selling games goes to the game engine creators.
Some game engines will provide the user with options to edit the game levels and change the texture of objects even though this can be done with programs like Maya. But these options of design may only be found in a few 3D game engines and not all of them. Torque, a game engine created by GarageGames has a feature that can build the game’s GUI’s, “GUI Editor” and has a tool that builds the game level, the “Mission Editor” [7]. The GUI editor can build the introductory screen for the game that will contain options for starting a new game, loading a game, and transferring the player to a menu to change the difficulty. The GUI’s are usually graphically appealing to attract an audience, just like the art on a book cover. Torque’s GUI Editor can also create the Heads-Up Displays (HUD’s) for use inside the actual game. HUD’s display player information on the screen such as energy, points, ammunition, or messages like “Mission Accomplished”.

Game engines, like Torque, will have a mission editor that will allow the game development team to create levels and objects straight through the game engine. This eases the effort of importing an image from 3D modeling software. Torque’s mission editor can create or edit 3D objects such as “interiors”, “terrains”, and “DTS Shapes”. Saved as DIF files, interiors are large models that can be created by Torque with the “Quake Army Knife (QuArK) tool”. Creating terrains through Torque requires working with “height maps” through the Mission Editor; terrains can also be edited through Mission Editor [7]. It is suggested that building a level through a game engine should be reserved for prototyping level ideas. The best thing to use in a game engine is to import created 3D created objects from 3D packages like Maya.

Through Maya or 3D Studio Max, this can be done by transforming the object file into a “DTS” format [7]. There are people who have actually created MEL scripts to help with this process. Using an example from the book 3D Game Animation for Dummies, MEL code for a program called the “DTS Exporter Utility”, written by Danny Ngan, can be downloaded from a website. After the code has been downloaded, the user must import the MEL code into the Maya’s script folder. After the Maya program is reset, the user will need to type “dtsUtility” into Maya’s script editor. After this has been entered, a menu box labeled “DTS Utility” will appear in Maya’s GUI. To give a simple example of how the DTS Utility program, through Maya, can be used, a simple polygonal shape must be drawn inside a Maya scene. After the shape has been created and is still selected, or highlighted, the DTS Utility’s “Create Bounding Box” button must be clicked so an export selection box will surround the object. The user must then click “Export” in the DTS Utility Panel and the object will be sent to a user selected file for the game engine’s use. Textured objects can be exported as well. This can be done by copying the texture image into the DTS file that contains the object file of the textured object.
These are just some of the basic features of a game engine. One of the most important things to note is that some game engines can import 3D models from 3D software packages. Another fact about game engines is that the complexity of the imported object will affect the game engine’s processing power.
8. Maya

One of the most popular three-dimensional modeling tools today in game development and computer animation companies today is Alias’ Maya. Other 3D modeling software includes 3D Studio Max (3ds max), Softimage XSI, and Lightwave. The reason why I’ve incorporated Maya into my research is that some recent popular games like Resident Evil 4 and The Legend of Zelda: the Wind Waker were created, or partly created, from Maya. I will mention about the tools and features with which I have familiarized myself by working with the program in the past few months.

8.1 My Personal Experience with Maya

One of the greatest things about learning Maya for the first time is to know that there is a free download from Alias’ website, Maya Personal Learning Edition, for anyone who is curious about working with building models and generating computer animated clips. The basics for building and editing game models, polygon modeling and NURBS modeling can all be done with this version of Maya. When first experiencing Maya, it is easy to get lost and not know where to begin learning using the program. Thankfully, the program includes links to some rather helpful tutorials. The wide range of the online tutorials includes lessons on polygonal modeling and NURBS modeling through Maya. By practicing through these tutorials for just a few hours, one is to familiarize oneself with Maya’s features.

Some of the primary features will be discussed in the following paragraphs. The “scene” is basically the workspace that contains the 3D models which the user has created. Creating the models is done in one of Maya’s four main modes, the modeling mode. The other modes are animation, dynamics and rendering which can be selected from the Status Line at the top of Maya’s GUI. Switching between modes will give the user a different set of options according to which mode is selected. For instance, the modeling mode will display options of creating and manipulating polygonal and NURBS models. As its name applies, the animation mode contains options that deal with the movement of objects. The rendering mode takes care of light, shading and features such as applying cartoon effects or “cel-shading”.

Modeling is the main mode that I have worked with in Maya. Creating the objects through Maya is fascinatingly easy. Manipulating the object by scaling, moving and rotating them after creation takes hardly any effort. Changing views so that one can see what one is working on is simple through using the mouse features. By combining the alt button on the keyboard with three mouse buttons, one can change views in three different ways or can use one of Maya’s sidebars to change between four basic camera views: top, front, side and perspective (the users own defined view). The channel box is responsible for positioning the object manually, although the object can be moved quickly with the mouse by using the move tool. Through the attribute editor menu of Maya’s interface, individual objects contained in the scene can be given properties of basic color and shading material, previously mentioned as a shader.

Much knowledge and experience can be gained by working through Alias’ own website tutorials that can be found by clicking on Help > Maya Help from Maya’s menu bar. The tutorials that I’ve completed so far have taught me how to work with splitting polygon faces by using the Polygon Split Tool. This is useful when constructing the claw end of a hammer. The Universal Manipulator tool can skew the structure of the polygonal faces which is also helpful in building parts of a hammer. The NURBS tutorials from the Alias website introduced how to shape shift an object by working with the curves that make up the object.
The NURBS tutorial will describe, step by step, to the reader how to construct an egg holder from placing points on a graph. The aftermath of the placement of these nodes resembles half of an egg holder cup from the mathematically calculated lines. These lines are the result from the constellation like points. After the outside design was constructed, one can use the program’s revolve commands so that the former two dimensional shape would actually construct a three dimensional cup by copying and revolving the two dimensional draft 360 degrees. After the egg holder shape is created, one could change the placement of the nodes so that the curve will suit more to an individual’s tastes artistically. Constructing the egg may be like experiencing character development. The tutorial’s first step is to create a NURBS sphere and deform the sphere on one axis to give it an egg shaped appearance. The tutorial then instructs afterwards to assign the egg shape a whitish color and a material, or shader that will give the computer generated egg a realistic shininess of that of its real-life counterpart. The next step has the basics of “pulling” and “pushing” on the object’s surface so that indentations can be made. The pushing indentations will cover the pits for his eye sockets and mouth. The pulling of the egg’s surface will create the eyebrows, nose and lips. On a side note, the tutorial then describes, in detail, how one can transfer the human-faced egg object into the file that has stored one’s egg holder, so that one can create an artwork that has the egg rested nicely into the egg holder.
Recently, I’ve been working and learning the processes with texturing. Creating a cracker box was my first experience working with textures. By running through an Alias website tutorial, the first step is to create a Polygonal box with specific length, width and height values so that the texture images will fit without the hassle of scaling the images. Then, the images will be placed on all of the six sides of the box will be imported into the Maya scene. After the images are imported, they are then placed on to the box. The initial placement of the images on the cracker box may not suit it for selling on the market. This is where UV coordinates come in. By using, Maya’s UV texture modes and features, one can place and align the images correctly on the box so that it looks like a real box of crackers.
8.2 Maya’s MEL Scripting

Maya Embedded Language, MEL, is exactly what the name states. It is Maya’s own language that can create objects and animations without using the GUI that is already provided to help create the objects. “MEL’s strength is creating tools that help you build scenes; creating nodes, adding and setting attributes, making connections and adding expressions. [10]” Just like the programming languages Java and C++, MEL can create its own variables and methods. MEL variables can be given types such as integers (ints), floats and strings. They can also be declared as arrays. MEL scripts are great for calculating the placement of objects and animation features through complex mathematical algorithms. Where does the Maya user place the script? It is placed into the script editor which can be found by choosing in Maya’s GUI: Window > General Editors > Command Shell.

To the amateur programmer, or the beginning computer animator, basic MEL script should not seem difficult. To create a simple NURBS sphere, the user will need to type in the command field the word “sphere”, followed by a semicolon to declare this as a single statement. A small NURBS sphere will appear in the center of the Maya scene. This is just a statement for creating the basic type of sphere. With any other type of primitive object, the user can give the sphere object more detailed parameters when the command is being typed in.

One of the most helpful features of Maya, when dealing with multiple uses of a same script, is that the script can be embedded into a shelf button. When MEL script shelf buttons are completed or given script, the button can perform the actions that the given script specifies. For example, the modeler can create a shelf button to generate fifty small spheres, instead of manually going through Maya’s GUI tools or script editor and doing a procedure of creating spheres fifty times by hand. To apply this in game development terms, this may be useful for creating a dense forest of tree objects, in a world map, without having to sweat over tedious tasks in creating the tree. The shelf buttons are just like procedures in programming almost made easier to access and carry out. If the button can not provide of any use anymore, then the button can be thrown away by clicking the shelf button with the middle mouse button and dragging it into the trash can that is on the upper right side of Maya’s GUI.

There is quite the dictionary of MEL methods that can be used. The list of these procedures can be found from a link to the Alias website in Maya’s GUI: Help > MEL Command Reference. These methods cover a wide range of procedures some procedures deal with polygons; some MEL commands seem to deal with the human body anatomy right down to bones and muscles. The commands include getters and setters of object attributes, animation and camera attributes. There are even sources of MEL script available from websites such as www.melscripting.com. Here, experienced Maya animators share their expertise of the scripting language. Learning MEL would be wise for any 3D modeler using Maya.
8.3 Games That Were Created With Maya

It was mentioned earlier that recent games like The Legend of Zelda: the Wind Waker were created from Maya. In fact, this was Nintendo’s first game where three dimensional graphics were created totally from Maya’s GUI. It is said that by using Maya’s MEL, the Zelda’s development team was able to increase the game project’s “productivity”. “MEL, combined with the ability of Maya to run in batch mode, automated many of the repetitive tasks and significantly accelerated art production. The Maya API and MEL made it possible to deliver the functionality of the multiple tools that had been necessary in the old production pipeline. [11]”

The Legend of Zelda: the Wind Waker is a game with some of its objects based off of cel-shaded graphics. Because cel-shaded graphics have the simple comic book look, most game players will exempt these games from needing realistic shapes and detailed textures to produce the story, levels, and items of the game. All of the textures placed on the many islands’ environments, inside the numerous dungeons and caves throughout the game’s world can probably be produced through Adobe Illustrator. Texture files produced by Illustrator can be imported into Maya workspaces for the developer to apply to three-dimensional objects.

Besides games totally created with Maya such as The Legend of Zelda: the Wind Waker, Resident Evil 4 was partly created with Maya. From reading an article from a journal based on the video game industry, Game Developer, SoftImage XSI and Maya were both used to create the graphics of Resident Evil 4 [12]. SoftImage XSI was the main program that was used to create the graphics. Other games created from Maya include Doom III, Dead to Rights, Tomb Raider: the Angel of Darkness, Final Fantasy XI and Star Wars Bounty Hunter [13]. Unfortunately, after researching through the internet and trying to find sources of some information, the specifics on how Maya was used for these games are a little uncertain.

9. Conclusion
Like any other technology, graphic software that creates games today will enhance. The software will enhance through competition and artistic visions from game developers. Games today are not as simple as they used to be. Game artists of big competitive companies can not and should not settle for drawing game characters through a generic paint program that game development teams used in the seventies. Through today’s three dimensional graphic software programs, any imaginable object can be produced. Even producing the object should be a creative process in accordance with the style of the video game. With graphic programs like Maya, there is so much room for creativity and a great number of ways that creating can be achieved. Even for developers who are not part of the art team, knowing how these modeling programs work and how they can work in the game engine should interest all game developing teammates to some degree. The game’s designer should be able to express what he or she envisions of the game with the modeling artists to give the characters and levels the appropriate look. All of the modeling methods, texturing methods, and graphic designing methods that have been described are concepts that are common when developing a video game.
10. References
1. Wikipedia. “Sprite (computer graphics).” Wikipedia. 2006. 8 Mar 2006. http://en.wikipedia.org/wiki/Sprite_(computer_graphics)
2. Anonymous. “The Evolution of Mario.” NFG Games. 23 Mar 2006. http://nfg.2y.net/games/mariosprites/
3. Wiering, Mike. “Tile Studio.” 25 Mar 2006. http://tilestudio.sourceforge.net/
4. Omernick, Matthew. Creating the Art of the Game. Indianapolis, Ind.: New Riders, 2004.
5. Anonymous. “The Systems.” Halcyon Days. 25 Mar 2006. http://www.dadgum.com/halcyon/BOOK/MISC/SYSTEMS.HTM
6. Adams, Mark et al. Inside: Maya 5. Indianapolis: New Riders, 2003.

7. Murdock, Kelly L. 3D Game Animation for Dummies. Indianapolis: Wiley, 2005.
8. Hamlaoui, Sami. “Cel-Shading.” www.gamedev.net. 24 Mar 2006. http://www.gamedev.net/reference/programming/features/celshading/
9. “Weird Worlds mod tutorial: Creating a Starship.” 2005. Modmaker’s Guide to the Galaxy. 2 Apr 2006. http://www.digital-eel.com/modguide/ship_example.htm
10. Wilkens, Mark & Kazmier, Chris. MEL Scripting for Maya Animators. San Francisco: Elsevier, 2005.

11. “Maya used to create The Legend of Zelda.” 2002. www.pluginz.com. 5 Apr 2006. http://www.pluginz.com/news/303
12. Yoshiaki Hirabayashi. “The Graphical Styling of Resident Evil.” Game Developer. POSTMORTEM; pg. 26, October 1, 2005.
13. Partridge, Allen. “Extra plug-ins and scripts available for Maya game developers.” 2002. Director 3D. 2 Apr 2006. http://www.director-3d.com/article.php?story_id=57
14. Winter, David. www.pong-story.com. 24 Mar 2006.

15. “Player 1 Stage 1: Bits From the Primordial Ooze.” The Dot Eaters. 2 Apr 2006. http://www.emuunlim.com/doteaters/play1sta1.htm
16. “The Atari 2600 VCS.” The Atari Times. 24 Mar 2006. http://www.ataritimes.com/2600/index.html
11. Appendix
Review Questions:

Question 1: What is the most preferred type of modeling when creating interactive game objects? Why?
Polygonal modeling is the preferred type because the game engine can calculate the x, y and z coordinates of a polygonal face easier.

Question 2: Why are UV coordinates helpful in texturing?

They allow a user to place a texture file on to 3D object with precision, instead of the texture being applied automatically.

Question 3: What type of textures is used to give objects color in Cel-Shading?

1-D textures, a linear range of color values.

Question 4: What part of the game is NURBS modeling best used for?

NURBS modeling is best used for the video game’s cut scenes or movie sequences.

Question 5: What is the most general form of a two-dimensional graphic, besides texture images, in a video game?

The most general form of two-dimensional graphics in games is a sprite.
