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PURPOSE 

 

To determine the heat capacity ratio (Cp/Cv), !, of a gas using an acoustic Fourier 

transform analysis technique.   

 

 

INTRODUCTION 

 

The heat capacity ratio of a gas, ! " Cp/Cv , is an important thermodynamic quantity.  It 

appears in many thermodynamic developments and is most likely first encountered in the 

discussion of an adiabatic expansion of an ideal gas, where, 
            !                 ! 

      PiVi   = PfVf   = a constant   (1) 

 

(i=initial, f=final).   The heat capacity ratio can be determined with a reasonable accuracy 

by measuring the velocity of sound in a pure gas.  For a pure, ideal gas,  

 

     ! = 
Mc2

RT      ,    (2) 

 

where M is the molecular weight of the pure gas, c is the speed of sound in the gas, R is 

the gas constant, and T is the temperature in Kelvin.  Rearranging, 
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Note that this equation predicts that the speed of sound is independent of pressure and 

varies as M-1/2  and T1/2.  This M and T dependence is similar to that of the molecular 

velocities predicted in the Kinetic-Molecular Theory of Gases.  In fact, to an order of 

magnitude at ambient temperatures, the speed of sound and molecular velocities are 

comparable, roughly, 104 cm/s (102 m/s).  (Some good numbers to remember).   

 

To understand how our particular speed of sound measurement is made, remember that 

sound propagation represents the compressions and rarefactions of gas molecules along 

the direction of travel.  If we limit our discussion to one dimension (direction) then the 

distribution of gas molecules along the direction of travel might look something like that 

shown below. 

 

 
 

If the above figure represented a real tube, closed at both ends with length L, standing 

sound waves would be formed in the tube when the tube's length was equal to an integral 

number of half wavelengths, i.e.,  

 

     L =  n#/2  , n=1,2,3,...   (4) 

 

This is analogous to the standing wave patterns set up in the one dimensional particle-in-

the-box problem due to the imposition of the boundary conditions of the walls.   

 

Remembering that for any wave-like motion of frequency f, the velocity c, is given by c = 

#f.  It follows that the maximum intensity of sound detected at the opposite end of the 

tube from the source will occur for those frequencies, f,  

 

     f = 
nc
2L     .   n=1,2,3,...   (5) 

 

 

Thus measuring the length of the tube cavity, L, and measuring the frequencies forming 

standing waves, the speed of sound can be determined for the particular gas.  A plot of 

the those frequencies versus the arbitrarily determined integer n (starting at low 

frequencies) is predicted from Equation 5 to produce a straight line plot of slope c/(2L).  

With a known cavity length L, the speed of sound is then determined from the slope.  The 

heat capacity ratio can then be evaluated directly through the application of Equation 2.   

The first application of this "tube" method by Kundt in the 1860s to determine the speed 



of sound has resulted in the naming of this device Kundt's tube.  Kundt used light, fine 

powders to locate the compression minima and maxima of the gas as sound propagated 

down the tube (and thus the wavelengths). 

 

The key to the experiment is therefore to accurately determine those frequencies 

propagating down the tube.  Traditionally this is accomplished by connecting an audio 

signal source to a speaker attached to one end of the Kundt's tube while "listening" at the 

other end with a microphone.   The frequencies of high amplitude (loud) signals are 

recorded as the frequency is systematically and slowly scanned through the audio region 

(20-20,000 Hz).  Done correctly, this process can be time consuming and many would 

claim, tedious. 

 

An alternative approach to determine these frequencies involves using the power of 

Fourier Transforms to collect data in the amplitude/time domain and to transform it into 

the amplitude/frequency domain.  This is essentially what your ear/brain combination 

accomplishes.  Your eardrum (and associated additional anatomical parts) records 

pressure amplitude variations in the air as a function of time.  Your brain transforms the 

resulting time dependent nerve impulses as the sensation of hearing a tone of a given 

frequency (or mixture of different tones depending on the source).   

 

The experimental advantage of Fourier Transforms is one of multiplexing - recording all 

the pertinent frequency data simultaneously rather than observing only one frequency for 

a given duration before moving on to the next frequency.  In our experiment, all audio 

frequencies are sent down the tube at once by connecting the speaker to a source of 

"white noise" (all frequencies present at approximately the same amplitude).  The 

resulting amplitude/time data will be captured by a computer.   The frequency spectrum 

(amplitude vs. frequency) is computed by the computer via the Fast Fourier Transform 

algorithm (FFT).  The resonant frequencies (frequencies of large amplitudes) are then 

used as outlined above to determine the heat capacity ratio.  The power of this technique 

becomes apparent when you realize that the data required can be recorded in a few 

seconds for a single spectrum, just several minutes for an averaged spectrum with good a 

signal-to-noise ratio. 

 

 

THEORY 

 

Shoemaker, et al. (1) and Halpern and Reeves (2) develop the thermodynamic theory 

connecting the heat capacity ratio and the speed of sound within a particular gaseous 

medium.   Steel, et al. (3) provide a good introduction into the process of Fourier 

Transforms for this experiment while Marshall and Comisarow provide a general 

introduction to Fourier Transform methods in spectroscopy (4).  

 

 

 

EXPERIMENTAL & CALCULATIONS 

 



Experiment Summary:  Our heat capacity ratio determination will be a two-step 

procedure.  We will use argon gas (Ar) as a standard.  The heat capacity ratio of Ar can 

be taken to be equal to 5/3. (Why?)  Using this ratio, the temperature of the gas during the 

experiment and the Ar molecular weight, the speed of sound in argon can be accurately 

calculated.  After determining the resonant frequencies of argon using the data 

acquisition and transformation procedures given below, use argon's sound velocity to 

accurately determine the exact length of our particular Kundt's tube.  Following this 

length determination, determine the heat capacity ratio for an "unknown" gas of those 

suggested.  

 

 

Part A: Cavity Length Determination 

 

1.  Record the amplitude/time spectrum of the white noise generator for argon following 

the procedures given below.  Be sure to purge the tube with gas for several minutes 

before performing the experiment.  Record the temperature of the tube. 

 

2.  Using the LabView software provided, record the Fourier transform of the 

amplitude/time spectrum into an amplitude/frequency spectrum for several minutes until 

you are satisfied with the quality of the signal.  Transfer the data to a spreadsheet file to 

your analysis.  The instructor will give you the necessary information about this file’s 

structure.  Your expanded data will look something like that below. 

 

 



 

3.  Tabulate (in your notebook) the resonant frequencies (i.e., the major, equally-spaced 

peaks) along with a corresponding integer n, starting with n=1 at low frequencies and 

numbering sequentially to higher frequencies. 

 

4.  In your spreadsheet program, generate a plot of the resonant frequencies vs. the 

integer n. 

 

5.  From the plot's slope, determine the Kundt's tube length using the calculated speed of 

sound for argon from its "standard" heat capacity ratio and the temperature recorded. 

 

 

Part B: Heat Capacity Ratio Determination of an "Unknown" Gas 

 

1.  Repeat Part A, steps 1-4 for your gas, but this time use the cavity length determined in 

Part A, step 5, to determine the heat capacity ratio for your sample gas. 

 

2.  Compare your result of Part B, step1 to that determined by using the Cp found in the 

TAPP database for your gas at the experimental temperature and the corresponding 

calculated Cv (remember, Cp - R). 


