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PREFACE

This thesis models a two-stage supply chain where the upstream stage (stage 2)

always meets demand from the downstream stage (stage 1). We assume that demand

is stochastic, and hence shortages will occasionally occur at stage 2. Stage 2 must

fill these shortages by expediting, using overtime production and/or shipping parts

quickly by air, which we refer to as premium freight shipments. We derive optimal

inventory control policies for this supply chain under decentralized, centralized, and

coordinated control and perform numerical analysis to compare the results.

In Chapter II, we study the supply chain under decentralized control, where each

stage independently minimizes its own costs. Stage 1 ignores stage 2 and follows

a simple base-stock policy. Stage 2 also follows a simple base-stock policy, under

the assumption that there is no setup cost for regular production at stage 2. When

we include a setup cost for regular production at stage 2, two decisions must be

made: how much to produce during regular production, and how much to produce

during overtime production. We show that the optimal regular production policy is

an (s, S) policy and that the optimal overtime production policy depends on the cost

parameters.

In Chapter III, we study the supply chain under centralized control, where the two

stages work together to minimize system costs. By substituting system variables for

stage 2 variables and relaxing some constraints, we show that the optimal inventory

control policy at stage 1 has two (or three) order-up-to levels and depends on the
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available system inventory. We also show that the optimal inventory control policy

for the system is a base-stock policy; hence, the optimal inventory control policy for

stage 2 is to ensure the system base-stock level is achieved.

We attempt to coordinate the two stages in Chapter IV, by developing two con-

tracts that achieve system optimal (or near-optimal) results. Both contracts de-

pend on a two-tiered (or three-tiered) wholesale cost and a linear transfer payment.

Contract A achieves system optimality, but requires the two stages to share cost

information. Contract B achieves near-optimality for the system without sharing

cost information, and achieves optimality for the average cost case. Under both

contracts, an appropriate transfer payment may be negotiated so that both stages

improve upon their respective decentralized costs.

In Chapter V, we perform a numerical analysis to compare the supply chain un-

der different forms of control. We show that centralized control can affect significant

savings over decentralized control, particularly if the demand variation is high, hold-

ing costs are high, or if the fixed cost of expediting is large. We also show that

Contract B yields near-optimal results for the system, particularly if the discount

factor is close to one.
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CHAPTER I

INTRODUCTION

In 1999, a helicopter crashed near Ann Arbor, Michigan. The helicopter was being

used to ship automobile parts across the state. Fortunately, no one was seriously

injured, but this accident begs the following question: Does it ever make sense to

ship automobile parts by helicopter? Clearly, shipping parts by air is more expensive

than shipping by ground transportation, but on the other hand, the shipment will

arrive at its destination very quickly. Finding an answer to this question was the

original motivation for the research that follows. In this thesis, we study a two-stage

supply chain where the upstream facility always meets demand from the downstream

facility. We assume that demand is stochastic, and hence, shortages will occasionally

occur at the upstream facility. In order to fill these shortages, the upstream facility

must employ either overtime production or air shipments, which we refer to ‘premium

freight.’ We study this supply chain under decentralized control, where the two

facilities operate independently; under centralized control, where a single controller

makes all decisions for both facilities; and, under coordinated control, where two

independent facilities follow a contract which leads to system optimal performance.
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1.1 Overview

In traditional supply chain situations, downstream facilities make decisions about

their order quantities without regard to the actual inventory available upstream. If

the upstream facilities do not have enough inventory on hand to fill the orders, it is of-

ten assumed that the downstream facility will take what it can get and backorder the

rest. In order to avoid these shortages, the upstream facilities have traditionally set

their inventory levels high enough so that the likelihood of not meeting downstream

demand is low. However, the shift towards lean inventory has caused a reduction

in inventories, possibly increasing the likelihood of these shortages. Moreover, the

cost of backorders (already high, though hard to estimate) is certainly not decreas-

ing in today’s competitive markets. Therefore, many facilities use various forms of

expediting to meet supply requests when shortages occur.

We consider a problem with stochastic demand where the downstream facility’s

supply requests are always met by the upstream facility, and the upstream facility

has at least one of two methods of expediting available: overtime production and pre-

mium freight. Overtime production occurs at the end of a period (typically a day)

after demand has been realized. The parts produced during overtime production

cost more to build, but do not incur additional shipping expenses. Premium freight

consists of building parts at the beginning of the same period they are required down-

stream and shipping them in an expedited fashion (e.g., by airplane or helicopter).

We assume that these parts arrive downstream in time to be used during the same

period in which they are shipped. Parts shipped by premium freight cost more to
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ship, but do not incur additional production costs. In our work, both methods of

expediting may be expensive, incurring fixed and per unit costs. The two methods

of expediting are mathematically equivalent, and our analysis will often consider the

case where just one method is available; however, we extend all of our results to the

case where both overtime production and premium freight may be used.

We have modelled our problem after the actual supply chain issues faced by the

Ford Motor Corporation and Visteon Automotive Systems, specifically the Visteon

plant in Ypsilanti, Michigan. Visteon produces mostly engine parts used in vehicle

assembly at Ford. Inventory levels are relatively low, about “half a day’s worth”

according to our contacts at the Ypsilanti plant, and the company is trying to “be

lean.” According to Vasilash [60], at Visteon “there is a codified set of ‘Lean Design

Rules’, there are ‘Lean Assessment Tools’ for benchmarking, and all manufacturing

engineers have been trained in lean methods.” However, they follow a policy of

meeting all supply requests, frequently using overtime production and/or premium

freight when shortages occur. Backordering is not considered an option because the

parts they send downstream are essential in keeping the assembly lines moving, and

the cost of shutting down the assembly lines at Ford is extremely high. We have

heard a wide range of estimates for this cost, but all have been in tens of thousands

of dollars per hour! Therefore, overtime production and premium freight shipments

are commonly used in order keep the assembly lines moving. Again, according to

[60], “Expediting . . . is commonly created as a result of a schedule change made by

the customer . . . and it necessitates such things as overtime and having to pay for
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faster shipping.”

In our three models, we have attempted to capture the essence of the interaction

between Visteon and Ford. Originally, Visteon was a wholly owned subsidiary of

Ford. The decisions made and the costs incurred at Visteon were simply a part of

the larger process at Ford. This situation is represented by our centralized model in

Chapter III. In the past few years, Visteon has begun the process of breaking off

from Ford and becoming an independent firm. This situation is represented by our

decentralized model in Chapter II. Lastly, as Visteon becomes an independent firm,

it may be worthwhile to consider possible contracts that will benefit both firms. This

situation is represented by the coordinated models in Chapter IV.

We feel that our model and results may apply elsewhere in the automobile in-

dustry and in other industries, and that our results show that supply requests can

always be met, but at a cost. For example, shipping automobile parts by air is not

uncommon. According to an article in The Detroit News [53], Willow Run Airport

outside of Detroit has recently become the nation’s third largest cargo airport due to

shipment of automobile parts. The article states that “hardly a car or truck is made

anywhere in the United States that doesn’t include parts that have traveled through

Willow Run Airport” and that “increasingly, Detroit’s automakers are flying parts

from city to city and from continent to continent.” We feel that our model may apply

to the computer and electronics industries as well, where many manufacturers have

reduced or even eliminated their requirements for warehousing and receive parts in

just-in-time fashion. Finally, we feel that our results yield new insight into a common
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assumption made in the inventory literature. In most single location inventory mod-

els, it is assumed that supply requests upstream are always met, without considering

how and at what cost. Our results show that supply requests can always be met

upstream using some form of expediting, but that it may be much less expensive for

the system if the downstream facility is sensitive to the inventory situation upstream

and adjusts supply requests accordingly.

The rest of this chapter consists of a literature review and a description of our

basic model and assumptions. The literature review in Section 1.2 covers three major

areas that correspond to our three supply chain models. The first part reviews single

location inventory problems, since our decentralized model in Chapter II breaks down

into two, separate, single location problems. First we discuss the seminal papers in

the field and then we discuss papers that consider either expediting or fixed costs for

shortages, which relate specifically to our decentralized model. The second part of

our literature review covers centrally controlled supply chain models, corresponding

to our centralized model in Chapter III. Again, we discuss the seminal work in the

field and then discuss papers that are closely related to our model. This discussion

has significant overlap with the third part of the literature review, which focuses on

supply chain coordination issues, as we do in Chapter IV. Finally, we conclude the

literature review with a brief discussion on logconcavity, an assumption we impose

on our demand distribution.

In Section 1.3, we outline the two-stage supply chain model that we use through-

out this thesis. We define the various inventory and decision variables for both stages
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and the associated costs. We list the assumptions that will hold throughout the the-

sis, although additional assumptions are made in later sections. We describe a time

line that indicates when shipments occur, when decisions are made, when costs are

charged, etc. We also discuss some general notation about one period costs and total

objective function costs that will be standard throughout this document. Finally,

our model as defined in this section contains options for both overtime production

and premium freight; however, throughout this thesis, our initial analysis in each

chapter will consider overtime production as the only method of expediting. (Simi-

larly, we could have chosen only premium freight, as both methods of expediting are

mathematically equivalent.) This assumption clarifies the exposition for the reader.

At the end of each chapter, we consider the original problem with both methods of

expediting, and show that similar, although more complicated, results hold.

In Chapter II, we consider the situation where the two stages in the supply chain

are completely independent firms and seek to minimize their own respective costs.

The decisions made at each firm depend only on the costs and information available

at that particular firm. In Section 2.1, we show that the optimal inventory control

policy at stage 1 is a simple base-stock policy. Importantly, we also show that stage

1 passes the exact demand it experiences back to stage 2. In Section 2.2, we show

that the optimal inventory control policy at stage 2 is also a base-stock policy. This

proof requires additional work to show that the expected one period costs at stage 2

are quasiconvex, under the assumption that our demand distribution is logconcave.

In Section 2.3, we again consider stage 2, but we include the premium freight option
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and we include a setup cost for regular production at stage 2. Under these conditions,

we show that the optimal overtime production policy depends on the problem data,

and that the optimal regular production policy is an (s, S) policy. The proof involves

first defining a relationship between overtime and regular production, then deriving

the overtime results, and lastly deriving the regular production results.

In Chapter III, we consider the situation where the two stages are actually part

of a single firm and are controlled by a single manager. That manager has complete

information from both stages, makes all decisions, and attempts to minimize the

total system costs. In Section 3.1, we develop the relaxed version of the centralized

problem. In Section 3.2, we show that under relaxed conditions, the optimal inven-

tory control policy at stage 1 is an interesting, three-tiered policy that depends on

the system inventory. The proof involves relaxing two constraints and substituting

system inventory variables for stage 2 variables. In Section 3.3, again under relaxed

conditions, we show that the optimal inventory control policy for the entire system

is a base-stock policy, and hence the optimal policy for stage 2 depends on the base-

stock level for the system and the inventory position chosen for stage 1. In Section

3.4, we prove that the optimal policies found for the relaxed problem are also optimal

for the original, fully constrained problem. At the end of the chapter, we show that

similar results hold when we include the premium freight option. In this case, the

stage 1 policy becomes four-tiered and the system policy remains base-stock, but the

proof requires additional steps concerning when to employ overtime production and

when to employ premium freight.
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In Chapter IV, we consider the situation where the two stages are independent

firms, but are willing to work together under contract to achieve system optimal per-

formance, assuming both firms benefit from the contract. We consider two different

contracts. In Section 4.1, we describe the wholesale cost and linear transfer payment

that we use in both contracts. In Section 4.2, we show that Contract A achieves

system optimality, but requires the firms to share cost and inventory information in

order to be implemented. In Section 4.3, we show that under Contract B, stage 1

follows the optimal centralized policy, a base-stock policy is optimal for the system,

but that the base-stock level may be too high. However, numerical analysis provided

in the next chapter shows that Contract B performs near-optimally from a system

perspective, and under Contract B the two firms do not have to share cost infor-

mation. In Section 4.4, we discuss appropriate values of the linear transfer payment

and in Section 4.5, we consider the average cost case of some of our previous models

and show that under the average cost criterion, Contract B performs optimally. In

Section 4.6, we reconsider the wholesale cost when both methods of expediting are

available.

In Chapter V, we compare costs and determine managerial insights using nu-

merical analyses. In Section 5.1, we compare the costs and inventories under the

centralized and decentralized models. We show that the centralized model can affect

significant savings, particularly when the demand variance is high, holding costs are

high, or the setup cost for overtime production is large. In Section 5.2, we compare

the system costs under Contract B to those under centralized control. We show that
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in general, Contract B will produce near-optimal system performance. Lastly, in

Section 5.3, we study two example problems to gain insight as to how centralized

control saves costs over decentralized control.

We conclude the thesis in Chapter VI. We discuss our main results from each

preceding chapter and comment on the techniques used to prove them. We also

discuss extensions to our problem worthy of further study.

1.2 Literature Review

In this thesis, we study an inventory control problem with expediting between

two firms. The literature in the area of inventory control/supply chain management

is vast, beginning with articles in the late 1950’s and continuing to flourish through

today. It is a very safe bet that the current copy of Management Science has at

least one article on some supply chain issue, and it is likely that the copy of Manage-

ment Science ten years from now will also contain some article discussing inventory

control/supply chain management, although the inventory related catch-phrase may

have changed by then. The year 1958 may be considered the inception of stochastic

inventory control, with the publication of Studies in the Mathematical Theory of

Inventory and Production [5]. Nearly all current articles in the field can trace their

ideas back to this excellent text. A more current update on the status of stochastic

inventory theory by Porteus [49] may be found in Chapter 12 of the text edited by

Heyman and Sobel [29].
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Single Location Inventory Control

The seminal journal articles in the field of optimal control of single location

inventory problems are due to Scarf [52] and Veinott [62]. Scarf proved that in

general, (s, S) policies are optimal for inventory control problems with setup costs for

production. Scarf assumes that the expected costs per period are convex and proves

his results using the notion of “K-convexity.” Under the more general assumption

that the expected costs per period are quasiconvex, Veinott proved the same result.

Both authors considered inventory problems over a finite horizon. In this thesis, we

consider problems over an infinite horizon, and thus we rely heavily on the results

from Zheng [66]. In Zheng’s paper, he generalizes the results of Scarf and Veinott

over the infinite horizon in a novel way. He shows that, given that the expected one

period costs are quasiconvex, (s, S) policies are optimal for both the discounted and

average cost cases. One area where our assumptions differ from Zheng’s are that he

assumes that backorders are allowed; we have to modify this assumption in Section

2.3.

In Chapter II, we study single location problems with expediting. In Section 2.1,

we study stage 1 of the supply chain as a single location problem. In this case, stage 1

benefits from expediting, but does not pay for it, and the analysis is straightforward.

In Section 2.2, we study stage 2 of the supply chain as a single location problem under

the assumption that only one method of expediting is available. We assume that the

expedited shipment has lead time 0, and again, the analysis is straightforward. In

Section 2.3, we include both methods of expediting and a setup cost for regular
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production at stage 2, and the analysis gets interesting. In this section, we basically

cover the material presented in our first paper [30]. In that paper, we study a single

location inventory control problem where demand must always be met, two methods

of expediting are available (both with 0 lead time), and both methods of expediting

incur fixed plus linear costs.

The literature on single location problems with expediting began with studies by

Daniel [19] and Fukuda [24]. Daniel derives optimal policies where there are two

supply modes, expedited and regular, with lead times of 0 or 1 periods, respectively.

Fukuda extends these results to the case where the lead times are k or k +1 periods.

Whittmore and Saunders [64] discuss conditions where only one supply mode is

optimal when the difference in lead times is more than one period. A more recent

study where lead times differ by one period over an infinite horizon may be found

in Zhang [65]. When the lead times differ by more than one period, the analysis

of the problem becomes complicated, if not intractable. Authors have tried various

approaches to handle this complexity.

In two different papers ([16] and [17]), Chiang and Gutierrez consider a situation

where the supply lead times are shorter than the review periods. In the first paper,

they include a fixed cost for emergency orders and assume a base-stock policy is

optimal; they then show that for a particular base-stock level, either only regular

shipments are used or there exists an inventory threshold under which expedited

shipments are used. In the second paper, they do not include fixed costs for emer-

gency orders and they derive how to calculate the optimal base-stock level. In three
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recent papers by Tagaras and Vlachos [55], Vlachos and Tagaras [63], and Teunter

and Vlachos [57], an inventory system with regular and emergency shipments is con-

sidered. Due to the complexity of the analysis, all three papers consider approximate

cost functions and near-optimal policies for both kinds of shipments are discussed.

The first paper discusses at heuristic that quickly calculates near-optimal policies.

The second paper takes capacity restriction into account. The third paper considers

two sets of approximate optimality conditions, one which has a complicated form

but is quite accurate, another which has a simple form but may be far from optimal.

Another approach to this problem is under the continuous review setting. Moin-

zadeh has been prolific in this area. In two papers with Nahmias ([45] and [46]),

the authors first consider (Q,R) policies for both regular and expedited orders; they

discuss procedures for calculating these parameters and use simulation to check their

results. In the second paper, the authors consider a fixed contract with emergency de-

livery adjustments; they prove that finding the optimal policy is intractable, but dis-

cuss procedures for finding approximate solutions. In [43], Moinzadeh and Schmidt

assume a “one-for-one” (S−1, S) inventory policy and consider an expediting policy

that depends on the age of the inventory. Mohebbi and Posner [41] consider a con-

tinuous review system with emergency orders and lost sales. Arslan et al. [4] study

a make-to-order system under both continuous review and periodic review. They as-

sign a fixed and linear cost for expediting, and show that expediting should be used

when the number of backorders surpasses a threshold. Duenyas et al. [20] consider

a supplier that faces a quota where overtime production may be employed to meet
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the quota if necessary, incurring both fixed and linear costs. Under the assump-

tion that the supplier uses an order-up-to policy for regular production, they show

that the overtime production policy will be an (s, S) policy. Other recent papers

related to inventory control with some form of expediting are Hill [27], Johansen and

Thorstenson [35], and Lovejoy and Sethuraman [40].

Other papers that relate to our model in Chapter II are those where either back-

orders are not allowed or where shortages incur fixed costs. Smith [54] considers

an (S − 1, S) system without backorders where a per unit penalty L is assessed for

each unit of unmet demand. The results of this paper basically mirror the results

of an inventory problem with lost sales. Moinzadeh considers an (S − 1, S) inven-

tory system with partial backorders in his 1989 paper [42] and describes how the

system operates under steady state. In the model of Çentinkaya and Parlar [10],

backorders are allowed which incur fixed and per unit costs, but there is no setup

cost for production. The authors show that a myopic base-stock policy is optimal

over the infinite horizon under certain conditions. Aneja and Noori [3] consider a

problem where unmet demand is met by “some external arrangement” with both

per unit and fixed costs. They assume that if a shortage occurs, the inventory level

will be brought up to 0 and they show that (s, S) policies are optimal over the finite

horizon. Ishigaki and Sawaki [34] give a condition based on the problem parameters

for (s, S) policies to be optimal for a finite horizon model with both fixed and per

unit holding and lost sales costs.
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Centralized Supply Chain Management

The seminal paper in the area of optimal control of multi-echelon inventory mod-

els is by Clark and Scarf in 1960 [18]. In this paper, the authors show that the

multi-echelon problem can be decomposed into separate, single location problems.

Here, setup costs are not allowed except at the location furthest upstream, and

base-stock policies are shown to be optimal at all echelons except the location fur-

thest upstream, where an (s, S) policy is optimal. Except for the location furthest

downstream, all locations face an induced penalty for potentially causing shortages

downstream which effectively increases their inventories. In Federgruen and Zipkin

[21], the authors extend the results from Clark and Scarf to the infinite horizon, for

both the discounted and average cost cases. They also show that calculating the

various order-up-to levels is much easier in the infinite horizon case. In Chapter III,

we study our problem over the infinite horizon and compare our results with those

of Federgruen and Zipkin.

We cover the material from our second paper [31] in our chapter on the centralized

model. In the first three sections, we assume that only one method of expediting

is available. We show that the optimal policies at both stage 1 and stage 2 depend

on the system inventory and the optimal policy for the entire system is a base-stock

policy. We repeat the analysis in the fourth section, including both methods of

expediting. In our analysis, we assume that the costs of expediting (both fixed and

linear) are shared by the two stages, as the costs charged depend on the inventory

available at both stages. This assumption prevents us from decomposing the problem
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into two separate, single location problems as is frequently done in the literature.

However, by a novel substitution of system variables for stage 2 variables, we are

able to solve for the optimal policies. Our solution shows that since stage 1 shares

the expediting costs with stage 2, it is often optimal for stage 1 to order everything

that stage 2 has available, but no more, in order to avoid excessive expediting costs.

The literature on centralized supply chains (and the comparison to decentralized

and coordinated supply chains) is extensive. A recent, thorough overview of this

literature may be found in the text edited by Tayur, Ganeshan and Magazine [56].

Of particular interest to us are papers that model two-stage supply chains where

either the demand from stage 1 is always met by stage 2, or some form of expediting

is used. The papers by Gavirneni et al. [26] and Lee et al. [37] are examples of

the former, and the paper by Lawson and Porteus [36] is an example of the latter.

In Gavirneni et al., the authors study a capacitated two-stage supply chain under

different levels of information and show that order-up-to policies are optimal, then

discuss the value of the information to the supplier (stage 2). In their model, they

assume that if the supplier faces a shortage, the retailer (stage 1) “acquires the

missing part of the order elsewhere.” In Lee et al., the authors attempt to quantify

the value of information in a two-stage supply chain with correlated demand. They

assume that when the manufacturer (stage 2) faces a shortage, the manufacturer

“obtains units from an alternative source” which they resupply later. Although the

manufacturer always meets demand from the retailer (stage 1), they effectively pay

a backorder penalty. In both models, stage 1 does not suffer the consequences of
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expediting, unlike in our centralized model. In fact, in a footnote to [37], the authors

point out that:

In the current paper, we make the assumption that the expedite cost is

borne solely by the manufacturer so as to isolate the benefits of infor-

mation sharing to the manufacturer. A similar assumption was made by

most other researchers . . . If this assumption is relaxed, then information

sharing could bring benefits to both the manufacturer and the retailer,

but this requires much more complex modeling of the contractual rela-

tionship between the manufacturer and the retailer.

We model the shared costs in Chapter III and discuss the contractual relationship in

Chapter IV. Examples of other papers that discuss the value of information in the

supply chain are Bourland et al. [8], Chen [11] and [12], and Cachon and Fisher [9].

The literature on multi-echelon inventory problems that directly addresses expe-

diting is limited, with the paper by Lawson and Porteus being one notable exception.

In this paper, the authors model an m + 1-stage supply chain without setup costs

where at each stage the option exists to ship by regular means, expedite, or hold

inventory. The authors show that a “top-down base stock” policy is optimal, where

the modified order-up-to decisions are made, in order, from the upstream stage to the

downstream stage, and the regular shipment decisions are made before the expedited

shipment decisions at each stage. Again, the expediting costs at each stage are not

shared with other stages, and the authors use decomposition to solve the problem.

Other papers that address a multi-echelon setting with expediting are due to Aggar-
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wal and Moinzadeh [1], [44]. In both papers, the authors consider continuous review

systems with a warehouse that follows an (S − 1, S) policy and several retailers.

In the first paper, they describe methods for approximating the optimal ordering

policies for the system; in the second paper, they discuss more accurate method for

approximating the optimal ordering policies that depend on the inventory levels and

the remaining lead times of outstanding orders.

In Chapter III, we show that the optimal policy at stage 1 has two distinct order-

up-to levels, as well as a range of values where stage 1 uses up the available system

inventory, but no more. Two-tiered policies have appeared in previous literature.

Federgruen and Zipkin [22] study a capacitated inventory model which results in the

following policy: order up to a base-stock level if capacity is sufficient, otherwise

use up all the capacity. Here, the two order-up-to levels are the base-stock level

and the production capacity. Henig et al. [28] model a supply and transportation

contract and obtain an optimal policy where if the inventory is low, the order-up-

to level is high; if the inventory is high, the order-up-to level is low; otherwise, it is

optimal to order the amount specified in the contract. Hwang and Singh [32] model a

production flow system with uncertain capacity. They derive a policy where below a

low threshold, it is optimal not to produce, and above the low threshold, it is optimal

to produce as much as possible up to a high threshold. Lastly, Fry et al. [23] study a

vendor managed inventory system where the supplier can only produce once every T

periods. They show that a “replenish-up-to” policy is optimal, where the replenish

levels are constant at the beginning of the production cycle, but the replenish levels
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decrease as the end of the production cycle approaches and outsourcing is required.

As noted before, the literature on centralized supply chain management is vast

and growing. Some researchers are interested in very general results whereas oth-

ers investigate the traditional multi-echelon inventory problem under more specific

conditions. An example of the former is Gallego and Zipkin [25]. In this paper, the

authors address common questions to most supply chains, such as how do different

holding costs at different stages affect inventory, and they define the “fundamental

equation of supply chain theory,” which is the recursion used to determine optimal

base-stock policies. An example of a more specific paper is by Chen [14]. He consid-

ers the traditional multi-echelon inventory control problem, but with batch ordering,

and shows that an (R, nQ) policy is optimal.

Coordinated Supply Chain Management

Research on coordinating supply chains is currently very popular. An excellent

review of supply chain contract coordination may be found in Tsay et al. [58]. This

review, published in 1998, lists eighty-eight different references to articles in the

field. This area of research is important because it enables decentralized stages of the

supply chain to work together to achieve the cost savings of the centrally controlled

supply chain. In Chapter IV, we discuss two contracts that attempt to coordinate

our decentralized model. The first contract does achieve system optimality, but may

only be practical if the two stages are in the same firm. The second contract achieves

near-optimal results for the system, but is more realistic for two, independent firms.

Tsay et al. list eight different types of contract clauses; our contracts in Chapter
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IV contain two of these types: specification of decision rights and pricing. In our

contracts, stage 1 is given some control over the inventory decisions at stage 2, but

shares the cost of expediting with stage 2 through a two-tiered wholesale cost plus a

linear transfer payment. In other supply chain models, various other contracts have

been shown to induce system optimality, such as quantity flexibility contracts and

buyback policies (e. g., see [59] and [47]).

In our coordinated model, we try to follow the “good” contract properties of Lee

and Whang [38], with partial success. We discuss these properties in Chapter IV. In

our model, we assume that stage 2 has a 100% fill rate, and so stage 1 always receives

its supply requests. In traditional coordinated supply chains, upstream stages face

an induced penalty that increases their inventory levels, which in turn increases

their fill rate. Recent articles have discusses novel ways to achieve this induced

penalty function. Chen and Zheng [15] study a supply chain with fixed costs at

each stage. They establish lower bounds on system costs by using a “cost-allocation

scheme” where they assign echelon costs at each stage and then consider each stage

individually. Porteus [50] uses “responsibility tokens”, where if an upstream stage can

not meet downstream demand, they pass responsibility tokens downstream instead

of actual parts and the shortage is accounted for using these tokens. Under this

framework, each stage can be “brilliantly self-serving” while together the stages

achieve system optimality.

Logconcavity

Finally, in all our models we assume that the demand distribution is logconcave,
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which we define in the next section. For a discussion of the mathematical properties

of logconcave functions, see Ibragrimov [33]. Porteus [48] uses the assumption of

logconcavity (which he refers to as Polya Frequency 2) to show the optimality of

(s, S) policies for inventory problems with concave costs. Rosling [51] provides a

broad overview of logconcavity which he discusses in the context of quasiconvex

cost functions. The paper by An [2] covers logconcavity for discrete probability

distributions.

1.3 Supply Chain Model

We consider a periodic review, two-stage supply chain where an upstream sup-

plier (stage 2) must meet supply requests from the downstream assembler (stage 1).

Assume for convenience that each period is a day. During the current day, stage 1

and stage 2 each produce up to chosen inventory levels. At the end of the day, stage

1 experiences exogenous demand and then a decision is made about how much to

produce at stage 1 for the next day; stage 2 experiences demand from stage 1 which is

equal to the desired production quantity at stage 1 for the next day. If stage 2 cannot

meet this demand from its current inventory, then there exists a shortage which must

be filled using either overtime production or premium freight. Overtime production

occurs at the end of the current day, is shipped overnight by regular shipment, and is

available at stage 1 at the beginning of the next day. Products shipped by premium

freight are actually built at stage 2 early the day they are required downstream and

shipped very quickly, arriving in time for same day production at stage 1. Define the
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following variables:

Dt = the exogenous demand during period t

x1,t = the stage 1 inventory position at the start of period t

z1,t = the stage 1 production quantity during period t

y1,t = the stage 1 inventory level after production during period t

x2,t = the stage 2 inventory position at the start of period t

z2,t = the stage 2 regular production quantity during period t

y2,t = the stage 2 inventory level after regular production during period t

x̃2,t = the stage 2 inventory position at the start of overtime,

after receiving demand from stage 1 during period t

z̃2,t = the stage 2 overtime production quantity during period t

ỹ2,t = the stage 2 inventory level after overtime production during period t

During the production processes at each stage, various costs are incurred. At

stage 1, linear costs are assessed for production (c1), holding (h1) and backordering

(b1). Note that we allow backordering at stage 1, but not at stage 2. At stage 2, linear

costs are assessed for production (c2) and holding (h2), overtime production incurs

linear (co) plus fixed (Ko) costs, and premium freight shipments incur linear (cp) plus

fixed (Kp) costs as well. These costs are assumed to be discounted every period by a

factor of α, with 0 < α < 1, although we consider α = 1 in Section 4.5. Throughout

this thesis, we utilize the following notation: x+ = x if x > 0, and 0 otherwise;

x− = |x| if x < 0, and 0 otherwise; and, δ(x) = 1 if x > 0, and 0 otherwise. To

better understand the sequence of actions at both stages (and the associated costs
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in parentheses), consider the time line in Table 1.1. Note that, in the time line,

the decisions are made separately by the two stages, as in our decentralized and

coordinated models. Under the assumptions of the centralized model, all decisions

about y1,t+1, ỹ2,t and y2,t+1 are made at the same time, where stage 1 makes its

decision in the time line.

In all three of our models, we make the following assumptions. First, as men-

tioned above, we assume a discount factor α, with 0 < α < 1. Second, we assume

that demand is discrete, non-negative, stationary, and from a logconcave probability

distribution. We define pd as the probability that demand equals d and F (d) as the

probability that demand is less than or equal to d, and we assume that the expected

value of demand, µ, is positive and finite. Third, we assume that the per unit cost of

overtime production at stage 2 is greater than the per unit cost of regular production

at stage 2. Fourth, we assume that the cost of backordering at stage 1 is not so small

that it is cheaper to always backorder than to produce. All of these assumptions are

fairly standard, except for the assumption of logconcavity (also referred to as Polya

Frequency 2 or strongly unimodal), which merits some discussion.

A function F (x) is said to be logconcave in x if log(F (x)) is concave in x. This

assumption means that we require our demand distribution to have a smooth shape

with at most one mode; however, the assumption is not as restrictive as it may

sound, as most commonly used distribution are in fact logconcave. The Exponential,

Normal, Uniform, Beta and Gamma distributions are all continuous logconcave dis-

tributions; the Poisson, Discrete Uniform, and Binomial distributions are all discrete
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Stage 1 Timing Stage 2 Timing

Starts period with inventory x1,t. Starts period with inventory x2,t.

If x2,t < 0, produce |x2,t| units,

and ship by premium freight.

(Kpδ(x−2,t) + (cp + c2)x−2,t)

Receives supply request from stage 2.

Produces up to y1,t = x1,t + z1,t. Produces up to y2,t = x2,t + z2,t.

(c1(y1,t − x1,t)) (c2(y2,t − x+
2,t))

Experiences demand Dt.

Inventory next period: x1,t+1 = y1,t −Dt

Pays holding and backorder costs.

(h1(y1,t −Dt)+ + b1(y1,t −Dt)−)

Decides y1,t+1 = x1,t+1 + z1,t+1.

Places order of z1,t+1 to stage 2. Experiences demand z1,t+1 from stage 1.

Overtime inventory is x̃2,t = y2,t − z1,t+1.

Decides x2,t+1 = ỹ2,t = x̃2,t + z̃2,t.

Produces z̃2,t with overtime production.

(Koδ(z̃2,t) + coz̃2,t)

Ships min{z1,t+1, y2,t + z̃2,t} units

to stage 1.

Pays holding costs. (h2ỹ
+
2,t)

Decides y2,t+1 = x2,t+1 + z2,t+1 ≥ 0

Table 1.1: Decision Time Line for Both Stages
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logconcave distributions. For the discrete distributions that we consider, we use two

nice properties of logconcave functions: the fraction F (x+1)−F (x)
F (x)

is nonincreasing in x

and the convolution of a quasiconvex function with a logconcave demand distribution

remains quasiconvex. For later reference, we label our assumptions as follows:

(A1) 0 < α < 1.

(A2) Demand is discrete, stationary, non-negative, and logconcave.

(A3) For all t, 0 < µ < ∞.

(A4) c2 < co.

(A5) b1 > (1− α)c1.

Finally, throughout this thesis, we assume that the ultimate goal is to minimize

expected, total, discounted costs over an infinite horizon, except in Section 4.5 where

we consider the average cost case. We originally considered our problem under a finite

horizon, but found that due to end-of-horizon effects, finite horizon results were more

difficult to prove. For all of our models, we follow the notational conventions of

Bertsekas [7]; here is a brief review. For each minimization problem, we start with

a cost per period g(period “k” variables), which consists of all the costs incurred

during period “k”. Note that the period “k” may not start and end at the same

points in time as listed in the time line and that some of the variables and costs may

occur in different time periods. We then may make changes to the cost per period,

moving terms and possibly relaxing constraints. To represent the expected cost per

period, we use the notation G(period “k” variables) = ED[g(period “k” variables)].

For a given policy π, the expected total discounted cost over the infinite horizon is
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fπ(x0), where x0 is the initial inventory information:

fπ(x0) ≡ lim
N→∞

E

[
N−1∑

k=0

αkg(period “k” variables)

]
.

We are interested in finding the optimal policy π out of all possible admissible policies

Π and hence the optimal expected total discounted cost over the infinite horizon,

f ∗(x0). This function will exist according to Proposition 1.1 on page 137 of Bertsekas

[7] if g(period “k” variables)≥ 0. We seek to solve the optimal cost function f ∗(x0) ≡

minπ∈Π fπ(x0) in order to determine the optimal inventory control policies.



CHAPTER II

DECENTRALIZED MODEL

In this chapter, we study the decentralized model. We assume that the two stages

of the supply chain are independent firms that each seek to minimize their own costs.

In Section 2.1, we prove the optimal inventory control policy for stage 1 is a base-

stock policy. In Section 2.2, we justify that the optimal inventory control policy for

stage 2 is a base-stock policy under the assumption that overtime production is the

only method of expediting available. The stage 2 proof is slightly more complicated

than the stage 1 proof because we must show that the stage 2 expected one period

costs are quasiconvex. In Section 2.3, we again consider stage 2 but include premium

freight as an option and we include an additional setup cost for regular production at

stage 2. We proceed to show that the optimal inventory control policy for overtime

production depends on stage 2 costs and we show that the optimal inventory control

policy for regular production is an (s, S) policy.

Note that in Section 2.1, we are not proving anything new. (Actually, most of

Section 2.1 is a homework problem in [7] taken from [29]!) However, we derive the

optimal policy for stage 1 step-by-step for two reasons. First, the more complicated

26
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derivations later in the thesis tend to follow the same steps, and we feel that the

proof in Section 2.1 is a good introduction to this methodology. Second, one of the

steps we will frequently use is to “move” a term back to the previous period; we

justify this step rigorously in Section 2.1 and then refer to it later in the thesis when

necessary.

2.1 Stage 1 Optimal Policy Under Decentralized Control

Under decentralized control, stage 1 is an independent firm. The manager at

stage 1 makes decisions based on the initial inventory available, x1, and the potential

costs incurred including the production cost c1, and the holding and backordering

costs, h1 and b1, respectively. The manager’s decision is particularly straightforward

because stage 2 always meets its supply requests, ensuring that stage 1 can reach its

production goals. All the variables discussed in this section occur during the same

period t, so we drop the subscript t for notational convenience. The one period costs

experienced by stage 1 are

g1,dec(x1, y1, D) = c1(y1 − x1) + h1(y1 −D)+ + b1(y1 −D)−

with y1 ≥ x1. Clearly, g1,dec(·) ≥ 0 and hence by [7], the optimal cost function

f ∗1,dec(x1) satisfies

f ∗1,dec(x1) = min
y1≥x1

ED[g1,dec(x1, y1, D) + αf ∗1,dec(y1 −D)].

The argument that minimizes this equation is the optimal inventory control policy

which we seek. In order to determine this policy, we now move the −c1x1 term back
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to the previous period as −αc1(y1 − D) (using a technique similar to Veinott [61]

which we justify below) and define our moved one period costs as

g1,dec,m(x1, y1, D) = c1y1 + h1(y1 −D)+ + b1(y1 −D)− − αc1(y1 −D)

= (1− α)c1y1 + αc1D + h1(y1 −D)+ + b1(y1 −D)−

with y1 ≥ x1.

Lemma 1 The optimal policy which solves f ∗1,dec(x1,0) also solves f ∗1,dec,m(x1,0) and

f ∗1,dec(x1,0) = −c1x1,0 + f ∗1,dec,m(x1,0).

Proof:

f ∗1,dec(x1,0)

= min
π∈Π

f1,dec,π(x1,0)

= min
π∈Π

lim
N→∞

ED

[
N−1∑

k=0

αkg1,dec(x1,k, y1,k, Dk)

]

= min
π∈Π

lim
N→∞

ED

[
N−1∑

k=0

αk(c1(y1,k − x1,k) + h1(y1,k −Dk)
+ + b1(y1,k −Dk)

−)

]

= −c1x1,0 +

min
π∈Π

lim
N→∞

ED




∑N−2
k=0 αk




c1y1,k + h1(y1,k −Dk)
+ + b1(y1,k −Dk)

−

−αc1(y1,k −Dk)


 +

αN−1(c1y1,N−1 + h1(y1,N−1 −DN−1)+ + b1(y1,N−1 −DN−1)−)




= −c1x1,0 + min
π∈Π





limN→∞ ED

[∑N−2
k=0 αk(g1,dec,m(x1,k, y1,k, Dk))

]
+

limN→∞ ED




αN−1(c1y1,N−1 + h1(y1,N−1 −DN−1)
+

+b1(y1,N−1 −DN−1)
−)







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= −c1x1,0 + min
π∈Π

lim
N→∞

ED

[
N−1∑

k=0

αk(g1,dec,m(x1,k, y1,k, Dk))

]
+ 0

= −c1x1,0 + f ∗1,dec,m(x1,0)

The first, second, third, and seventh equalities are by definition. The fourth equality

holds since x1,0 is constant and y1,k − Dk = x1,k+1 for k = 0 . . . N − 2. The fifth

equality holds since the last term is positive and the sixth equality holds since the

last term is finite. 2

Now consider the optimal cost function f ∗1,dec,m(x1):

f ∗1,dec,m(x1) = min
y1≥x1

ED[g1,dec,m(x1, y1, D) + αf ∗1,dec,m(y1 −D)]

= min
y1≥x1

{
G1,dec,m(y1) + αED[f ∗1,dec,m(y1 −D)]

}

where G1,dec,m(y1) = ED[g1,dec,m(x1, y1, D)]. Clearly, G1,dec,m(y1) is convex and so

−G1,dec,m(y1) is unimodal. To apply the results from Zheng’s paper [66], we need

that −G1,dec,m(y1) is unimodal and that G1,dec,m(y1) →∞ as |y1| → ∞. For y1 < 0,

the slope (in the discrete sense) of G1,dec,m(y1) is −b1 + (1−α)c1 < 0 by assumption

(A5); thus, as y1 → −∞, G1,dec,m(y1) → ∞. As y1 → +∞, the slope of G1,dec,m(y1)

becomes (1 − α)c1 + h1 > 0, and thus G1,dec,m(y1) → ∞. Hence, we have from [66]

that the optimal inventory control policy at stage 1 is a base-stock policy. Define the

optimal base-stock level as S∗1,dec. Under the assumption that the initial inventory is

not more than this value, x1 ≤ S∗1,dec, we can calculate f ∗1,dec(x1).

f ∗1,dec(x1)

= −c1x1 + f ∗1,dec,m(x1)

= −c1x1 + min
y1≥x1

{
G1,dec,m(y1) + αED[f ∗1,dec,m(y1 −D)]

}
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= −c1x1 + G1,dec,m(S∗1,dec) + αED[f ∗1,dec,m(S∗1,dec −D)]

= −c1x1 + G1,dec,m(S∗1,dec) + αG1,dec,m(S∗1,dec) + α2ED[f ∗1,dec,m(S∗1,dec −D)]

= −c1x1 + G1,dec,m(S∗1,dec)(1 + α + α2 + . . .)

= −c1x1 +
G1,dec,m(S∗1,dec)

1− α

We will use this relationship to compare costs in Chapter IV.

Hence, under decentralized control, the optimal policy at stage 1 is to order up

to S∗1,dec every period. It is important to note for the next section that, due to the

base-stock policy, stage 1 will pass the exact demand it experiences back to stage 2.

So, stage 2 will face the same, logconcave demand that stage 1 faces.

2.2 Stage 2 Optimal Policy Under Decentralized Control

Under decentralized control, stage 2 is also an independent firm. The manager at

stage 2 makes decisions based on the initial inventory available, x2, and the potential

costs incurred including the production cost c2, holding cost h2, and the overtime

production costs co and K0. Stage 2 faces the same demand distribution as stage

1. In this section, we assume that overtime production is the only method of filling

shortages. Thus, the overtime decision is straightforward: if there is a shortage, run

overtime production to fill it. Since the per unit cost of overtime production is more

than that of regular production, it will never be cost-effective to produce more than

the shortage with overtime production.

Mathematically, during period t, stage 1 will order z1,t+1 = Dt from stage 2.

At the beginning of overtime, the overtime inventory level is x̃2,t = y2,t − Dt. If
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this quantity is negative, overtime production must be employed. The overtime

production quantity is (y2,t − Dt)
−. Again, all the variables that follow in this

section occur during the same time period t, so we drop the subscript. Given that

stage 2 starts with initial inventory x2, the one period costs experienced by stage 2

are

g2,dec(x2, y2, D) = c2(y2 − x+
2 ) + Koδ((y2 −D)−) + co(y2 −D)− + h2(y2 −D)+

with y2 ≥ x+
2 . Clearly, g2,dec(·) ≥ 0 and hence by [7], the optimal cost function

f ∗2,dec(x2) satisfies

f ∗2,dec(x2) = min
y2≥x+

2

ED[g2,dec(x2, y2, D) + αf ∗2,dec(y2 −D)].

The argument that minimizes this equation is the optimal inventory control policy

which we seek. In order to determine this policy, we now move the −c2x
+
2 term back

to the previous period as −αc2(y2 − D)+ as we did in the previous section. Define

our moved one period costs as

g2,dec,m(x2, y2, D) = c2y2 + Koδ((y2 −D)−) + co(y2 −D)− + (h2 − αc2)(y2 −D)+

with y2 ≥ x+
2 . Note that the optimal policy which solves f ∗2,dec(x2) also solves

f ∗2,dec,m(x2) and

f ∗2,dec(x2) = −c2x
+
2 + f ∗2,dec,m(x2).

Consider the optimal cost function f ∗2,dec,m(x1):

f ∗2,dec,m(x1) = min
y2≥x+

2

ED[g2,dec,m(x2, y2, D) + αf ∗2,dec,m(y2 −D)]

= min
y2≥x+

2

{
G2,dec,m(y2) + αED[f ∗2,dec,m(y2 −D)]

}
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where G2,dec,m(y2) = ED[g2,dec,m(x2, y2, D)]. To apply the result from Zheng [66] as

we did before, we need to show G2,dec,m(y2) →∞ as |y2| → ∞ and that −G2,dec,m(y2)

is unimodal or that G2,dec,m(y2) is quasiconvex. For y2 < 0, the slope of G2,dec,m(y2) is

c2−co < 0 by assumption (A4); thus, as y2 → −∞, G2,dec,m(y2) →∞. As y2 → +∞,

the slope of G2,dec,m(y2) becomes h2 +(1−α)c2 > 0, and thus G2,dec,m(y2) →∞. We

now show that G2,dec,m(y2) is quasiconvex in the following lemma. In fact, we prove

the lemma two different ways: the first proof is brief, using results from Porteus

([49]) and An ([2]) and the assumption that demand is logconcave; the second proof

is longer, but more instructive, showing exactly where the logconcavity assumption

is required.

Lemma 2 The expected one period cost G2,dec,m(y2) is quasiconvex.

Proof 1: Consider the one period cost function

g2,dec,m(x2, y2, d) = c2y2 + Koδ((y2 − d)−) + co(y2 − d)− + (h2 − αc2)(y2 − d)+

=





Ko − (co − c2)y2 + cod if y2 < d

(h2 + (1− α)c2)y2 − (h2 − αc2)d if y2 ≥ d

for a given value of d. This function is quasiconvex in y2. To the left of d, it decreases

with slope c2 − co < 0 by (A4). From point d to the right, it increases with slope

(h2 + (1 − α)c2) > 0. Now, G2,dec,m(y2) = ED[g2,dec,m(x2, y2, D)], so G2,dec,m(y2)

is the convolution of a quasiconvex function and a logconcave demand distribution.

According to Porteus ([49], page 619) and An ([2], Proposition 10), the convolution of

a quasiconvex function with a logconcave demand distribution remains quasiconvex;

therefore, G2,dec,m(y2) is also quasiconvex.
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Proof 2: We calculate the differential of G2,dec,m(y2) and show that it goes from

negative to positive, changing signs exactly once. Define

∆G2,dec,m(y2) ≡ G2,dec,m(y2 + 1)−G2,dec,m(y2)

= c2(y2 + 1) + Ko

∞∑

d=y2+2

pd + co

∞∑

d=y2+2

(d− (y2 + 1))pd +

(h2 − αc2)

y2+1∑

d=0

((y2 + 1)− d)pd − c2y2 −Ko

∞∑

d=y2+1

pd

−co

∞∑

d=y2+1

(d− y2)pd − (h2 − αc2)

y2∑

d=0

(y2 − d)pd

= c2 −Kopy2+1 − co(1− F (y2)) + (h2 − αc2)F (y2)

= c2 − co −Kopy2+1 + (h2 + co − αc2)F (y2)

= F (y2)

[
(c2 − co)

1

F (y2)
−Ko

py2+1

F (y2)
+ (h2 + co − αc2)

]

for F (y2) > 0. Assume d0 ≥ 0 is the smallest d such that pd > 0. For y2 < d0 − 1,

∆G2,dec,m(y2) = c2 − c0 < 0. At y2 = d0 − 1, ∆G2,dec,m(y2) = c2 − c0 −Kopd0 < 0.

So, the differential is negative from the left up to d0. From d0 to the right, the

differential is the product of F (y2), a positive, nondecreasing function, and the term

in the brackets. The terms in the brackets are also nondecreasing, which we will

explain below, and hence the product of the two terms can change signs at most

once. And, as y2 → +∞, ∆G2,dec,m(y2) → h2 + (1− α)c2 > 0. Thus, the differential

changes from negative to positive exactly once, and hence G2,dec,m(y2) is quasiconvex.

To understand why the terms in the brackets nondecreasing, note that the first

term is the product of a negative value and a nonincreasing function, and is hence

nondecreasing. The third term is constant, and hence nondecreasing. The second
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term is the product of a negative value and
py2+1

F (y2)
. According to Rosling [51], discrete

logconcave distributions have the property that the fraction pd+1

F (d)
is nonincreasing.

Hence, the second term in nondecreasing and so the sum of all three terms is non-

decreasing. Without this property, it is possible that the second term could vary

enough to cause more than one minimum for G2,dec,m(y2) and a base-stock policy

may not be optimal for stage 2. 2

Using the result from [66], we have that the optimal inventory control policy at

stage 2 is a base-stock policy. Define the optimal base-stock level as S∗2,dec. Under

the assumption that the initial inventory is not more than this value, x2 ≤ S∗2,dec, we

can further calculate f ∗2,dec(x2).

f ∗2,dec(x2)

= −c2x
+
2 + f ∗2,dec,m(x2)

= −c2x
+
2 + min

y2≥x+
2

{
G2,dec,m(y2) + αED[f ∗2,dec,m(y2 −D)]

}

= −c2x
+
2 + G2,dec,m(S∗2,dec) + αED[f ∗2,dec,m(S∗2,dec −D)]

= −c2x
+
2 + G2,dec,m(S∗2,dec) + αG2,dec,m(S∗2,dec) + α2ED[f ∗2,dec,m(S∗2,dec −D)]

= −c2x
+
2 + G2,dec,m(S∗2,dec)(1 + α + α2 + . . .)

= −c2x
+
2 +

G2,dec,m(S∗2,dec)

1− α

Again, we will use this relationship to compare costs in Chapter IV. Under decen-

tralized control with overtime production as the only expediting option, the optimal

policy at stage 2 is to order up to S∗2,dec every period.
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2.3 Stage 2 Optimal Policy with Premium Freight and a

Setup Cost for Regular Production

In this section, we reconsider stage 2 under decentralized control. First, we in-

clude premium freight as an option for expediting. Now, the manager has a choice

of how to fill shortages, either using overtime production, premium freight, or some

combination of the two. Unlike the previous section, the overtime production quan-

tity is now a more challenging decision. Second, we include an additional setup cost,

K2, for regular production. This inclusion adds realism to the problem, but also adds

additional mathematical challenges. In this section only, we have three distinct fixed

costs: for regular production at stage 2, for overtime production at stage 2, and for

premium freight shipments. We originally tried to include a setup cost K1 at stage

1 as well, but this assumption caused stage 2 to experience non-logconcave demand

by creating a bullwhip effect (see [39]), and the problem became intractable. For a

discussion of a two-stage supply chain with setup costs at both stages, see the paper

by Chen [13].

Our goal in this section is to determine the optimal overtime production strategy

and the optimal regular production strategy. In that order, we first show that the

overtime production policy depends on the problem data. For example, if overtime

production costs are relatively inexpensive and premium freight shipments are costly,

it will be always be optimal to fill shortages with overtime production. However, if the

two expediting costs are similar, whether or not to use overtime production depends

on the actual shortage. Second, we show that the optimal regular production policy
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is an (s, S) policy, which is a typical result for a single location inventory problems

with a setup cost for production.

To prove our results in this section, we require two additional assumptions about

the costs involved. First, we assume that the setup cost for regular production is not

more than the setup cost for overtime production, K2 ≤ Ko. Second, we assume that

the per unit cost of regular production is less than the discounted per unit cost of

premium freight and regular production, c2 < α(c2 + cp). This assumption is similar

to the assumption that c2 < co. We label these assumptions as follows:

(A6) K2 ≤ Ko

(A7) c2 < α(c2 + cp)

2.3.1 Relationship Between Overtime and Regular Production

In this section, we will consider two types of time periods which we refer to as

the regular-period and the overtime-period. We consider these two periods so that

we may analyze various costs starting at different instances in the production cycle.

Referring to the time line in Table 1.1, the regular-period begins where stage 2 decides

its regular production quantity for the upcoming period. During a regular-period, all

actions and costs occur during the same time period t. The overtime-period begins

where stage 2 decides its overtime production quantity for the current period. During

an overtime-period, some actions and costs occur during the current time period t,

while others actually occur during the following time period t + 1. To keep track of

what is happening when, we do not drop the time subscripts at the beginning of this

section as we did in the previous two sections. However, to prevent subscripts from
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overwhelming us, we point out here that all discussion for the rest of this section

focuses on the stage 2, decentralized problem; hence, we drop the subscript 2 and

the subscript dec from our functions and variables. For both regular- and overtime-

periods, this problem has functions representing the cost per stage, the expected,

total, discounted cost, and the optimal, expected, total, discounted cost, using the

same notation as before. For the regular-period, we will let g represent the cost per

period, fπ represent the total cost, and f ∗ represent the optimal cost. We distinguish

the overtime-period functions with a t̃ilde; we will let g̃ represent the one period cost,

f̃π represent the total cost, and f̃ ∗ represent the optimal cost of an overtime-period.

We now formally define these functions.

The one period costs experienced during regular production are

g(xt, yt, x̃t, ỹt) = Kpδ(x
−
t ) + cpx

−
t + K2δ(yt − xt) + c2(yt − xt)

+Koδ(ỹt − x̃t) + co(ỹt − x̃t) + h2ỹ
+
t

with yt ≥ x+
t and ỹt ≥ x̃t. The first two costs are for premium freight, the next two

costs are for regular production, the next two costs are for overtime production, and

the last cost is the holding cost. Note that three of these costs, Kpδ(x
−
t ), cpx

−
t , and

−c2xt are predetermined from overtime decision of the previous period. We move

these three costs back to the previous regular-period and define:

gm(xt, yt, x̃t, ỹt) ≡ K2δ(yt − xt) + c2yt + Koδ(ỹt − x̃t)

+co(ỹt − x̃t) + h2ỹ
+
t + α[Kpδ(ỹ

−
t ) + cpỹ

−
t − c2ỹt]

with yt ≥ x+
t and ỹt ≥ x̃t. Note that x̃t = yt − Dt. Ideally, we would like to show

that gm(xt, yt, x̃t, ỹt) ≥ 0 in order to apply the result from Bertsekas [7] as before,
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but it may be negative when 0 < x̃t < ỹt; however, we will show this case is never

optimal in the overtime section.

We now define our overtime-period cost per stage as

g̃(x̃t, ỹt, yt+1) = Koδ(ỹt − x̃t) + co(ỹt − x̃t) + h2ỹ
+
t

+α[Kpδ(ỹ
−
t ) + cpỹ

−
t + K2δ(yt+1 − ỹt) + c2(yt+1 − ỹt)]

with ỹt ≥ x̃t and yt+1 ≥ ỹ+
t . Note that ỹt = xt+1 and

g̃(x̃t, ỹt, yt+1) ≥ co(ỹt − x̃t) + h2ỹ
+
t + αcpỹ

−
t − αc2ỹt + αc2yt+1

≥ −αc2ỹt + αc2yt+1 = αc2(yt+1 − ỹt) = αc2(yt+1 − xt+1)

≥ 0

where the first inequality is true because all setup costs are non-negative, the second

inequality is true because the three terms dropped are non-negative, and the third

inequality is true because yt+1 ≥ xt+1.

Before defining our total cost functions, consider that π is an admissible policy

if yt ≥ x+
t and ỹt ≥ x̃t for all t and both yt and ỹt are chosen in a non-anticipatory

fashion. In other words, yt may only depend on xt and (xi, yi, Di, x̃i, ỹi) where i < t;

ỹt may only depend on x̃t and (x̃i−1, ỹi−1, xi, yi, Di) where i ≤ t. Let Π be the set of

all such policies. For the regular-period, let

fm,π(x0) ≡ lim sup
N→∞

ED0

[
N−1∑
t=0

αtgm(xt, yt, x̃t, ỹt)

]
(2.1)

where D0 = {D0, D1, D2, . . .}. Note that fπ(x0) = Kpδ(x
−
0 )+ cpx

−
0 − c2x0 + fm,π(x0).

For the overtime-period, let

f̃π(x̃0) ≡ lim
N→∞

ED1

[
N−1∑
t=0

αtg̃(x̃t, ỹt, yt+1)

]
(2.2)
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where D1 = {D1, D2, D3, . . .}. Note that the limit is known to exist in this case since

g̃(x̃t, ỹt, yt+1) ≥ 0. There is a strong relationship between these two functions.

fm,π(x0) = lim sup
N→∞

ED0

[
N−1∑
t=0

αtgm(xt, yt, x̃t, ỹt)

]

= lim sup
N→∞

ED0

[
K2δ(y0 − x0) + c2y0 +

[
N−1∑
t=0

αtg̃(x̃t, ỹt, yt+1)

]]

= K2δ(y0 − x0) + c2y0 + lim sup
N→∞

ED0

[
N−1∑
t=0

αtg̃(x̃t, ỹt, yt+1)

]

= K2δ(y0 − x0) + c2y0 + lim
N→∞

ED0

[
N−1∑
t=0

αtg̃(x̃t, ỹt, yt+1)

]

= K2δ(y0 − x0) + c2y0 + lim
N→∞

ED0

[
ED1

[
N−1∑
t=0

αtg̃(x̃t, ỹt, yt+1)|D0

]]

= K2δ(y0 − x0) + c2y0 + ED0

[
lim

N→∞
ED1

[
N−1∑
t=0

αtg̃(x̃t, ỹt, yt+1)|D0

]]

= K2δ(y0 − x0) + c2y0 + ED0

[
f̃π(x̃0)

]

= K2δ(y0 − x0) + c2y0 + ED0

[
f̃π(y0 −D0)

]

where y0 ≥ x+
0 . The first equality is true by definition of fm,π, the second equality is

true by the definitions of gm and g̃, the fourth equality is true since g̃ ≥ 0, the sixth

equality is true by the Monotone Convergence Theorem since g̃ ≥ 0, and the seventh

equality is true by the definition of f̃π and because the system is Markovian. Thus,

under the restriction that y0 ≥ x+
0 , we have

fm,π(x0) = K2δ(y0 − x0) + c2y0 + ED0

[
f̃π(y0 −D0)

]
. (2.3)

Recall that in equation (2.1), we used lim sup to define fm,π(x0) rather than the

limit. Now, by equations (2.2) and (2.3) and since y0 ≥ x+
0 , we see that the limit for

fm,π(x0) exists. Similarly, we can write f̃ in terms of fm and under the restriction
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that ỹ0 ≥ x̃0, we have

f̃π(x̃0) = Koδ(ỹ0−x̃0)+co(ỹ0−x̃0)+h2ỹ
+
0 +α[Kpδ(ỹ

−
0 )+cpỹ

−
0 −c2ỹ0]+αfm,π(ỹ0). (2.4)

Finally, we define the optimal expected, total, discounted cost functions starting in

regular time and overtime, respectively, as

f ∗m(x) ≡ min
π∈Π

fm,π(x)

and

f̃ ∗(x̃) = min
π∈Π

f̃π(x̃)

where x ∈ I, x̃ ∈ I, and I is the set of all integers. From equations (2.3) and (2.4)

we can write our optimal cost functions as combinations of each other and we get

f ∗m(x) ≡ min
y≥x+

{
K2δ(y − x) + c2y + ED[f̃ ∗(y −D)]

}
(2.5)

and

f̃ ∗(x̃) ≡ min
ỹ≥x̃

{
Koδ(ỹ − x̃) + co(ỹ − x̃) + h2ỹ

+ + α[Kpδ(ỹ
−) + cpỹ

− − c2ỹ] + αf ∗m(ỹ)
}

.

(2.6)

Given the definitions above, the following lemma shows that the optimal cost func-

tions are finite.

Lemma 3 The optimal cost functions f̃ ∗(x̃) and f ∗m(x) are finite for all x̃, x ∈ I.

Proof: Observe that f̃π(x̃) and fm,π(x) are non-negative for all policies π ∈ Π

and for all x̃, x ∈ I. (Note: f̃π is non-negative since it is the sum of non-negative

g̃’s and fm,π is non-negative by equation (2.3)). It suffices to show that there exists
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a policy γ such that f̃γ(x̃) < ∞ and fm,γ(x) < ∞ for all x̃, x ∈ I. Let this γ be

such that whenever the inventory level is negative produce up to 0; otherwise, do

nothing. Note that this policy applies to both overtime and regular production and

that this policy is stationary. Consider the cost per stage during an overtime-period

under this policy:

g̃γ(x̃, ỹ, y) = Koδ(ỹ − x̃) + co(ỹ − x̃) + h2ỹ
+ =





h2x̃ if x̃ ≥ 0

Ko − cox̃ if x̃ < 0

since ỹ = x̃+. Thus, since γ is stationary and g̃γ(x̃, ỹ, y) ≥ 0, by Corollary 1.1.1 of

Bertsekas ([7], page 139) we have that

f̃γ(x̃) =





h2x̃ + αED[f̃γ(x̃−D)] if x̃ ≥ 0

Ko − cox̃ + αED[f̃γ(0−D)] if x̃ < 0.

Now note that

ED[f̃γ(0−D)] =
∞∑

d=0

(
Ko + cod + αED[f̃γ(0−D)]

)
pd −Kop0

= Ko(1− p0) + coµ + αED[f̃γ(0−D)]

which implies that ED[f̃γ(0−D)] = Ko(1−p0)+coµ
1−α

< ∞ by assumption (A3). Thus,

f̃γ(x̃) =





h2x̃ + αED[f̃γ(x̃−D)] if x̃ ≥ 0

Ko − cox̃ + αKo(1−p0)+coµ
1−α

if x̃ < 0

and f̃γ(x̃) < ∞ for −∞ < x̃ < 0. Now, when x̃ ≥ 0, the inventory level will remain

non-negative for some time T and will then eventually become negative at time

T + 1. Note, T < ∞ almost surely (a.s.) since µ > 0 by assumption (A3). While

the inventory level is non-negative, there will be a holding cost of at most hx̃ for T
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discounted periods. When the inventory goes negative, to some value N say, there

will be an αT+1 discounted cost of Ko − coN + αKo(1−p0)+coµ
1−α

where −∞ < N < 0

a.s. and −ED[N ] ≤ µ. So, for x̃ ≥ 0,

f̃γ(x̃) ≤ ED

[
T∑

t=0

αth2x̃ + αT+1

(
Ko − coN + α

Ko(1− p0)− coµ

1− α

)]

≤ h2x̃

1− α
+ Ko + coµ + α

Ko(1− p0) + coµ

1− α
< ∞.

Thus f̃γ(x̃) < ∞ for 0 ≤ x̃ < ∞. So, f̃ ∗(x̃) ≤ f̃γ(x̃) < ∞ for all x̃ ∈ I. Now,

f ∗m(x) is also finite since

fm,γ(x) =





K2 + ED[f̃γ(0−D)] if x < 0

ED[f̃γ(x−D)] if x ≥ 0





< ∞.

Thus, f ∗m(x) ≤ fm,γ(x) < ∞ for all x ∈ I. The optimal cost functions are both finite.

2

To review what we have covered in this subsection, we have shown that optimal,

expected, total, discounted costs exist and are finite for both regular- and overtime-

periods. The argument that minimizes f ∗m(x) is the optimal inventory control policy

which we seek, and it is the same solution as that of f ∗(x). Also, the solution to

f̃ ∗(x̃) is nearly the same inventory control policy as the solution to f ∗m(x), but the

optimal inventory control policy for the overtime-period is simply lacking the first

decision y0.

2.3.2 Optimal Overtime Production Policies

In this subsection, we characterize the structure of the optimal overtime policies.

At the beginning of overtime, the inventory level is known and we must choose how
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much to produce during overtime, or in effect, what the inventory level will be at the

start of regular time during the next regular-period. We show that if the inventory

level is non-negative during overtime, it is best not to run overtime production. If

the inventory is negative, we show that there are three choices: (a) produce and

ship the entire shortage as premium freight at the beginning of the next period, (b)

produce enough during overtime to fill the shortage (bringing the inventory level up

to 0), or (c) produce more than enough to fill the shortage during overtime (bringing

the inventory level up to some positive quantity), in order to avoid the fixed cost for

regular production. Next, we show that four different optimal policies are possible,

depending on the problem parameters when the overtime inventory level is negative.

These policies are to do premium freight when the shortage is small and overtime

when the shortage is large, to only do overtime, to only use premium freight, and do

overtime when the shortage is small and premium freight when the shortage is large.

The first three policies are (s̃, S̃) policies for overtime production, but the fourth is

not. (The tildes indicate we are considering overtime production.)

At this point, we drop the time subscripts for notational convenience, keeping in

mind that some of the overtime-period variables actually occur during the next time

period. Consider the cost per stage for an overtime-period

g̃(x̃, ỹ, y) = Koδ(ỹ− x̃)+co(ỹ− x̃)+h2ỹ
+ +α[Kpδ(ỹ

−)+cpỹ
−+K2δ(y− ỹ)+c2(y− ỹ)]

where ỹ ≥ x̃ and y ≥ ỹ+. Since g̃(x̃, ỹ, y) ≥ 0, we refer to [7] and the optimal cost

function f̃ ∗ satisfies

f̃ ∗(x̃) = min
ỹ≥x̃,y≥ỹ+

ED

[
g̃(x̃, ỹ, y) + αf̃ ∗(y −D)

]
. (2.7)
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Note that f̃ ∗(x̃) is finite for all x̃ ∈ I by Lemma 3. Now, g̃(x̃, ỹ, y) is piecewise linear

in ỹ and g̃(x̃, ỹ, y) →∞ as |ỹ| → ∞. So, the minimum over ỹ occurs at either ỹ = x̃,

ỹ = 0, or ỹ = y. We now consider what happens for different values of x̃. When

x̃ ≥ 0, then, as we show below, we do not run overtime production, the optimal

ỹ = x̃, and

g̃(x̃, x̃, y) = (h2 − αc2)x̃ + αK2δ(y − x̃) + αc2y.

The intuition behind this result is that it is cheaper to produce next period with

regular production than to produce now with overtime production. Overtime pro-

duction has higher setup and per unit costs plus a holding cost, while the costs next

period are discounted by α. Mathematically, (since g(x̃, 0, y) is inadmissable),

g̃(x̃, x̃, y)− g̃(x̃, y, y) = (h2 − αc2)x̃ + αK2δ(y − x̃) + αc2y

− (Koδ(y − x̃) + (h2 + co)y − cox̃)

≤ (h2 − αc2)x̃ + αc2y − ((h2 + co)y − cox̃)

= (h2 + co − αc2)(x̃− y)

≤ 0

since y ≥ x̃. Thus, for x̃ ≥ 0, equation (2.7) becomes

f̃ ∗(x̃) = min
y≥x̃

ED

[
g̃(x̃, x̃, y) + αf̃ ∗(y −D)

]

= min
y≥x̃

ED

[
(h2 − αc2)x̃ + αK2δ(y − x̃) + αc2y + αf̃ ∗(y −D)

]

= (h2 − αc2)x̃ + min
y≥x̃

{
αK2δ(y − x̃) + αc2y + αED[f̃ ∗(y −D)]

}

= (h2 − αc2)x̃ + αK2δ(y
∗
x̃ − x̃) + αc2y

∗
x̃ + αED[f̃ ∗(y∗x̃ −D)] (2.8)
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where

y∗x̃ = arg min
y≥x̃

{
αK2δ(y) + αc2y + αED[f̃ ∗(y −D)]

}
.

Note that y∗x̃ exists because we consider only integer values of y, the linear term goes

to infinity as y goes to infinity, and the expectation term is non-negative.

Now when x̃ < 0, we must decide whether to utilize overtime production and/or

premium freight. Given the three options above (ỹ = x̃, ỹ = 0, or ỹ = y), we get the

following costs per stage where the first case is the premium freight case, the second

case is where we produce up to 0 in overtime, and the third case is where we produce

up to a positive quantity in overtime:

g̃(x̃, ỹ, y) =





αKp − α(cp + c2)x̃ + αK2 + αc2y if ỹ = x̃

Ko − cox̃ + αK2δ(y) + αc2y if ỹ = 0

Ko + co(y − x̃) + h2y if ỹ = y.

So, when x̃ < 0,

f̃ ∗(x̃) = min
y≥0,ỹ=x̃,0,y

ED

{
g̃(x̃, ỹ, y) + αf̃ ∗(y −D)

}

= min





miny≥0 ED

{
g̃(x̃, x̃, y) + αf̃ ∗(y −D)

}

miny≥0 ED

{
g̃(x̃, 0, y) + αf̃ ∗(y −D)

}

miny≥0 ED

{
g̃(x̃, y, y) + αf̃ ∗(y −D)

}





= min





αKp − α(cp + c2)x̃ + αK2 + miny≥0

{
αc2y + αED[f̃ ∗(y −D)]

}

Ko − cox̃ + miny≥0

{
αK2δ(y) + αc2y + αED[f̃ ∗(y −D)]

}

Ko − cox̃ + miny≥0

{
(co + h2)y + αED[f̃ ∗(y −D)]

}




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= min





αKp − α(cp + c2)x̃ + αK2 + αc2y
∗
p + αED[f̃ ∗(y∗p −D)]

Ko − cox̃ + αK2δ(y
∗
0) + αc2y

∗
0 + αED[f̃ ∗(y∗0 −D)]

Ko − cox̃ + (co + h2)ỹ
∗
+ + αED[f̃ ∗(ỹ∗+ −D)]





(2.9)

where

y∗p = arg min
y≥0

{
αc2y + αED[f̃ ∗(y −D)]

}
,

y∗0 = arg min
y≥0

{
αK2δ(y) + αc2y + αED[f̃ ∗(y −D)]

}
, and

ỹ∗+ = arg min
y≥0

{
(co + h2)y + αED[f̃ ∗(y −D)]

}
.

As before, y∗p, y∗0, and ỹ∗+ exist because we consider only integer values of y, the linear

term goes to infinity as y goes to infinity, and the expectation term is non-negative.

So, when the overtime inventory is negative (x̃ < 0), we have three choices. The

first choice is to produce nothing during overtime (ỹ = x̃), fill the shortage with

regular production next period and ship by premium freight, and continue regular

production up to y∗p ≥ 0. The second choice is to produce up to 0 with overtime

production (ỹ = 0) and then produce up to y∗0 ≥ 0 next period during regular

production. Note that when y∗0 > 0, y∗p = y∗0; when y∗0 = 0, the two values may

be different. Finally, the third choice is to produce up to ỹ∗+ > 0 during overtime

(ỹ = ỹ∗+) and to do no regular production next period (y = ỹ∗+).

Now, for x̃ < 0, we can rewrite

f̃ ∗(x̃) = min
{
C∗

PF − α(cp + c2)x̃, C∗
0 − cox̃, C∗

+ − cox̃
}

where

C∗
PF = αKp + αK2 + αc2y

∗
p + αED[f̃ ∗(y∗p −D)],
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C∗
0 = Ko + αK2δ(y

∗
0) + αc2y

∗
0 + αED[f̃ ∗(y∗0 −D)], and

C∗
+ = Ko + (co + h2)ỹ

∗
+ + αED[f̃ ∗(ỹ∗+ −D)].

At this point it should be noted that the three constants above are, in fact, just

constants. The y∗ terms are numbers found by minimization and the ED[f̃ ∗(y∗−D)]

are just numbers found by taking the expectation over D. Also note that for all

values of x̃, either overtime up to 0 or overtime up to ỹ∗+ is better depending on the

values of C∗
0 and C∗

+. Define C+
OT = min{C∗

0 , C
∗
+}, define

S̃ ≡





0 if C∗
0 < C∗

+

ỹ∗+ otherwise

and if co 6= α(cp + c2), define

s̃ ≡
⌊

C∗
OT − C∗

PF

co − α(cp + c2)

⌋
.

Here, we have that for x̃ < 0, f̃ ∗(x̃) = min {C∗
PF − α(cp + c2)x̃, C∗

OT − cox̃} and

we must determine when the premium freight option is better than the overtime

option. Premium freight is cheaper than overtime when C∗
PF −α(cp + c2)x̃ < C∗

OT −

cox̃, or when (co−α(cp+c2))x̃ < C∗
OT−C∗

PF . This inequality depends on the relative

values of C∗
OT and C∗

PF and the relative values of co and α(cp + c2). For example,

if C∗
OT > C∗

PF and co < α(cp + c2), premium freight is better for s̃ < x̃ < 0 and

overtime is better for x̃ ≤ s̃. If C∗
OT > C∗

PF and co > α(cp + c2), premium freight is

better for all x̃ < 0 and overtime is never used. The results are listed in Table 2.1

Now we have four interesting cases to study. Let case 1 be where premium freight

is better for s̃ < x̃ < 0 and overtime is better for x̃ ≤ s̃. Let case 2 be where overtime
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C∗
OT > C∗

PF C∗
OT = C∗

PF C∗
OT < C∗

PF

co < α(cp + c2) PF for s̃ < x̃ < 0 OT for all x̃ < 0 OT for all x̃ < 0

OT for x̃ ≤ s̃

co = α(cp + c2) PF for all x̃ < 0 Any OT for all x̃ < 0

co > α(cp + c2) PF for all x̃ < 0 PF for all x̃ < 0 OT for s̃ < x̃ < 0

PF for x̃ ≤ s̃

Table 2.1: Premium Freight Versus Overtime

is always better than premium freight and case 3 where premium freight is always

better than overtime when x̃ < 0. Finally, let case 4 be where overtime is better

for s̃ < x̃ < 0 and premium freight is better for x̃ ≤ s̃. We discuss case 1 here in

detail; the analyses for the other three cases are very similar, and are included in the

appendix at the end of this thesis.

Case 1

In this case, we have the following stationary policy µ1, which happens to be an

(s̃, S̃) policy for overtime production:

µ1 =





x̃ ≥ 0 → ỹ = x̃, y = y∗x̃

s̃ < x̃ < 0 → ỹ = x̃, y = y∗p

x̃ < s̃ → ỹ = S̃, y =





y∗0 if S̃ = 0

ỹ∗+ if S̃ = ỹ∗+.
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From equations (2.8) and (2.9), we have also that f̃ ∗(x̃) =





(h2 − αc2)x̃ + αK2δ(y
∗
x̃ − x̃) + αc2y

∗
x̃ + αED[f̃ ∗(y∗x̃ −D)] if x̃ ≥ 0

αKp − α(cp + c2)x̃ + αK2 + αc2y
∗
p + αED[f̃ ∗(y∗p −D)] if s̃ < x̃ < 0




Ko − cox̃ + αK2δ(y
∗
0) + αc2y

∗
0 + αED[f̃ ∗(y∗0 −D)] if S̃ = 0

Ko − cox̃ + (co + h2)ỹ
∗
+ + αED[f̃ ∗(ỹ∗+ −D)] if S̃ = ỹ∗+

if x̃ ≤ s̃.

(2.10)

Also, plugging µ1 into equation (2.6) we get:

f̃ ∗(x̃) =





(h2 − αc2)x̃ + αf ∗(x̃) if x̃ ≥ 0

αKp − α(cp + c2)x̃ + αf ∗(x̃) if s̃ < x̃ < 0

Ko − cox̃ + (co + h2 − αc)S̃ + αf ∗(S̃) if x̃ ≤ s̃.

(2.11)

It turns out that in any case, we have:

Theorem 1 An optimal, stationary overtime production policy exists and has struc-

ture as in Table 2.1.

Proof: Since g̃(x̃, ỹ, y) ≥ 0, then according to Proposition 1.3 of Bertsekas ([7],

page 143), a stationary policy µ is optimal if and only if

min
ỹ≥x̃,y≥ỹ+

ED

[
g̃(x̃, ỹ, y) + αf̃ ∗(y −D)

]
= ED

[
g̃(x̃, ỹµ, yµ) + αf̃ ∗(yµ −D)

]

where ỹµ and yµ are overtime inventory position and regular inventory position,

respectively, under policy µ. This is exactly what we have just shown for case 1

using policy µ1 in equation (2.10). The same result holds for cases 2, 3, and 4 (as

can be found in the appendix) and the proof is complete. 2
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2.3.3 Optimal Regular Production Policy

In this section, we will show that the optimal regular production policy at stage

2 is an (s, S) policy. To do so, we will show that for each case from the previous the-

orem, f ∗m(x) = miny≥x+ {K2δ(y − x) + G(y) + αED[f ∗m(y −D)]} has an appropriate

G(y) function that fits the model (or a slight modification thereof) from Zheng [66].

Before we begin the proof, we first prove several lemmas. In Lemma 4, we derive

logconcavity results required in our proof of quasiconvexity. In Lemma 5, we derive

relationships for the regular- and overtime-period optimal cost functions. In Lemma

6, we calculate the total cost of doing overtime production. In Lemma 7, we derive

results required since our problem is discrete and in Lemma 8, we show that our

problem generally meets the requirements of Zheng. We also modify Lemma 1 from

Zheng by eliminating the possibility of backorders.

Lemma 4 Given F (x) is logconcave, m ≥ 0 and n > 0,

(i) px+n

F (x)
is a non-increasing function that tends down to 0 as x →∞ and

(ii) F (x+m)
F (x)

is a non-increasing function that tends down to 1 as x →∞.

Proof: Given F (x) is logconcave, Rosling ([51], page 4) yields that both px+1

px
and

px+1

F (x)
are non-increasing in x. Note that for any n > 0 with px+n−1 > 0, px+n−2 > 0,

. . ., px+1 > 0,

px+n

F (x)
=

px+n

px+n−1

px+n−1

px+n−2

· · · px+2

px+1

px+1

F (x)
.

This is the product of non-negative, non-increasing functions and hence is non-

increasing. Also, px+n → 0 as n → ∞. Note that if px+n = 0, then px+n+1 = 0,
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px+n+2 = 0, . . . by logconcavity. Thus, (i) is true. To prove (ii), consider that

F (x + m)

F (x)
=

F (x)

F (x)
+

px+1

F (x)
+ · · ·+ px+m−1

F (x)
+

px+m

F (x)

is the sum of 1 and m non-negative, non-increasing functions that tend down to 0 as

x →∞. Clearly, this is a non-increasing function which tends to 1 as x →∞. 2

Lemma 5 Define f ∗m(−) ≡ f ∗m(x) for any x < 0. Then,

f ∗m(−) = K2 + c2y
∗
p + ED[f̃ ∗(y∗p −D)] (2.12)

f ∗m(0) = K2δ(y
∗
0) + c2y

∗
0 + ED[f̃ ∗(y∗0 −D)] (2.13)

f ∗m(ỹ∗+) = c2ỹ
∗
+ + ED[f̃ ∗(ỹ∗+ −D)] (2.14)

Proof: Recall from equation (2.5) that f ∗m(x) = miny≥x+{K2δ(y − x) + c2y +

ED[f̃ ∗(y − D)]}. To prove the first equation, note that the definition of f ∗m(−) is

consistent as we are minimizing for y ≥ x+ and the only x in the minimization

occurs in the form of δ(y− x). Then f ∗m(−) = miny≥0{K2 + c2y + ED[f̃ ∗(y−D)]} =

K2+c2y
∗
p+ED[f̃ ∗(y∗p−D)], by definition of y∗p. To prove the second equation, consider

f ∗m(0) = miny≥0{K2δ(y) + c2y + ED[f̃ ∗(y−D)]} = K2δ(y
∗
0) + c2y

∗
0 + ED[f̃ ∗(y∗0 −D)],

by definition of y∗0. Finally, to prove the last equation, consider that when S̃ = ỹ∗+,

then C∗
OT = C∗

+ < C∗
0 . So,

C∗
+ = Ko + (co + h2)ỹ

∗
+ + αED[f̃ ∗(ỹ∗+ −D)] (2.15)

< C∗
0

= Ko + αK2δ(y
∗
0) + αc2y

∗
0 + αED[f̃ ∗(y∗0 −D)]

= Ko + min
y≥0

{αK2δ(y) + αc2y + αED[f̃ ∗(y −D)]}
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≤ Ko + min
y≥0

{αK2 + αc2y + αED[f̃ ∗(y −D)]}

≤ Ko + min
y≥ỹ∗+

{αK2 + αc2y + αED[f̃ ∗(y −D)]}. (2.16)

Hence from the first and last equalities above, (co + h2)ỹ
∗
+ + αED[f̃ ∗(ỹ∗+ − D)] <

miny≥ỹ∗+{αK2 + αc2y + αED[f̃ ∗(y−D)]}. Since c2 < co+h2

α
by assumptions (A1) and

(A4),

c2ỹ
∗
++ED[f̃ ∗(ỹ∗+−D)] <

co + h2

α
ỹ∗++ED[f̃ ∗(ỹ∗+−D)] < min

y≥ỹ∗+
{K2+c2y+ED[f̃ ∗(y−D)]}.

(2.17)

Thus,

f ∗(ỹ∗+) = min
y≥ỹ∗+

{
K2δ(y − x) + c2y + ED[f̃ ∗(y −D)]

}

= min





c2ỹ
∗
+ + ED[f̃ ∗(ỹ∗+ −D)]

miny>ỹ∗+{K2 + c2y + ED[f̃ ∗(y −D)]}





= c2ỹ
∗
+ + ED[f̃ ∗(ỹ∗+ −D)].

2

Before we prove the next lemma, note that we can rewrite C∗
PF = αKp +αf ∗m(−),

C∗
0 = Ko + αf ∗m(0), and C∗

+ = Ko + (co + h2 − αc2)ỹ
∗
+ + αf ∗m(ỹ∗+) when S̃ = ỹ∗+.

Lemma 6 Define Kall ≡ Ko + (co + h2 − αc2)S̃ + αf ∗m(S̃)− αf ∗m(−). Then,

Kall = C∗
OT − C∗

PF + αKp ≥ 0

Proof: The proof depends on whether S̃ = 0 or S̃ = ỹ∗+. If S̃ = 0, then C∗
OT =

C∗
0 ≤ C∗

+. From the definition above, Kall = Ko + αf ∗m(0)− αf ∗m(−) = C∗
0 − C∗

PF +
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αKp = C∗
OT − C∗

PF + αKp, proving the necessary equality. To prove the necessary

inequality,

Kall = Ko + αf ∗m(0)− αf ∗m(−)

= Ko + α
(
K2δ(y

∗
0) + c2y

∗
0 + ED[f̃ ∗(y∗0 −D)]

)
−

α
(
K2 + c2y

∗
p + ED[f̃ ∗(y∗p −D)]

)

≥ α

(
min
y≥0

{
K2δ(y) + c2y + ED[f̃ ∗(y −D)]

}
−min

y≥0

{
c2y + ED[f̃ ∗(y −D)]

})

≥ 0

where the first inequality is true since Ko > αK2 by assumptions (A1) and (A6) and

the second inequality is true since K2δ(y) ≥ 0.

Now, if S̃ = ỹ∗+, then C∗
OT = C∗

+ < C∗
0 . From the definition above, Kall = Ko +

(co+h2−αc2)ỹ
∗
++αf ∗m(ỹ∗+)−αf ∗m(−) = Ko+(co+h2)ỹ

∗
++α(f ∗m(ỹ∗+)−c2ỹ

∗
+)−αf ∗m(−) =

Ko+(co+h2)ỹ
∗
++αED[f̃ ∗(ỹ∗+−D)]−αf ∗m(−) = C∗

+−C∗
PF +αKp = C∗

OT−C∗
PF +αKp by

equation (2.12), proving the necessary equality for the lemma. To prove the necessary

inequality,

Kall = Ko + (co + h2 − αc2)ỹ
∗
+ + αf ∗m(ỹ∗+)− αf ∗m(−)

= Ko + (co + h2 − αc2)ỹ
∗
+ + α

(
c2ỹ

∗
+ + ED[f̃ ∗(ỹ∗+ −D)]

)

−α
(
K2 + c2y

∗
p + ED[f̃ ∗(y∗p −D)]

)

≥
(
(co + h2)ỹ

∗
+ + αED[f̃ ∗(ỹ∗+ −D)]

)
− α

(
c2y

∗
p + ED[f̃ ∗(y∗p −D)]

)

= min
y≥0

{
(co + h2)y + αED[f̃ ∗(y −D)]

}
−min

y≥0

{
αc2y + αED[f̃ ∗(y −D)]

}

≥ 0
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where the first inequality follows from Ko > αK2 and the second inequality is true

since co > αc2. 2

Lemma 7 For cases 1 and 4, there exists β with 0 ≤ β < 1 such that

C∗
OT − C∗

PF − (co − α(cp + c2))s̃ = β(co − α(cp + c2))

Proof: In cases 1 and 4, s̃ is the floor of the following negative fraction so

s̃ + 1 >
C∗

OT − C∗
PF

co − α(cp + c2)
≥ s̃.

For case 1, the denominator of the fraction is negative so we get that

(co − α(cp + c2))(s̃ + 1) < C∗
OT − C∗

PF ≤ (co − α(cp + c2))s̃

which implies that

0 ≥ C∗
OT − C∗

PF − (co − α(cp + c2))s̃ > (co − α(cp + c2)).

Hence, for case 1,

C∗
OT − C∗

PF − (co − α(cp + c2))s̃ = β(co − α(cp + c2))

for some 0 ≤ β < 1. For case 4, the denominator of the fraction is positive so we get

that

(co − α(cp + c2))(s̃ + 1) > C∗
OT − C∗

PF ≥ (co − α(cp + c2))s̃

which implies that

0 ≤ C∗
OT − C∗

PF − (co − α(cp + c2))s̃ < (co − α(cp + c2)).
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Hence, for case 4,

C∗
OT − C∗

PF − (co − α(cp + c2))s̃ = β(co − α(cp + c2))

for some 0 ≤ β < 1. 2

We now proceed to prove for case 1 that an (s, S) policy is optimal for regular

production; the proofs for cases 2, 3, and 4 are very similar and are in the appendix.

From Lemma 3, we know that f ∗m and f̃ ∗ are finite. Thus, from equation (2.5) and

then equation (2.11),

f ∗m(x) = min
y≥x+

{
K2δ(y − x) + c2y + ED[f̃ ∗(y −D)]

}

= min
y≥x+





K2δ(y − x) + c2y+

ED




{(h2 − αc2)(y −D) + αf ∗m(y −D)}1(y −D ≥ 0)+

{αKp − α(cp + c2)(y −D)

+αf ∗m(y −D)}1(s̃ < y −D < 0)+

{Ko − co(y −D)+

(co + h2 − αc2)S̃ + αf ∗m(S̃)}1(y −D ≤ s̃)








where 1 is the indicator function with 1(true) = 1 and 1(false) = 0. We now have

that

f ∗m(x) = min
y≥x+





K2δ(y − x) + c2y+

ED




{(h2 − αc2)(y −D) + αf ∗m(y −D)}1(y −D ≥ 0)+

{αKp − α(cp + c2)(y −D)

+αf ∗m(y −D)}1(s̃ < y −D < 0)+

{Ko − co(y −D) + (co + h2 − αc2)S̃

+αf ∗m(S̃)− αf ∗m(−) + αf ∗m(y −D)}1(y −D ≤ s̃)







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= min
y≥x+





K2δ(y − x) + c2y + αED[f ∗m(y −D)]+

ED




(h2 − αc2)(y −D)1(y −D ≥ 0)+

{αKp − α(cp + c2)(y −D)}1(s̃ < y −D < 0)+

{Ko − co(y −D) + (co + h2 − αc2)S̃

+αf ∗m(S̃)− αf ∗m(−)}1(y −D ≤ s̃)








= min
y≥x+

{K2δ(y − x) + G1(y) + αED[f ∗m(y −D)]}

where

G1(y) ≡ c2y +

y∑

d=0

(h2 − αc2)(y − d)pd +

y−s̃−1∑

d=y+1

(αKp − α(cp + c2)(y − d)) pd

+
∞∑

d=y−s̃

(Kall − co(y − d)) pd.

Lemma 8 Under the conditions of case 1 (co < α(cp+c2) and C∗
OT > C∗

PF ), −G1(y)

is unimodal, G1(y) →∞ as |y| → ∞, and the minimum point y0 ≥ 0.

Proof: We may prove this lemma using the results from [49] and [2], but we

choose to actually calculate the differential to again show where the logconcavity

assumption is used. Define ∆G1(y) ≡ G1(y + 1)−G1(y). This represents the rate of

change as y increases by 1.

∆G1(y) = c2(y + 1)− c2y +

y+1∑

d=0

(h2 − αc2)(y + 1− d)pd −
y∑

d=0

(h2 − αc2)(y − d)pd

+

y−s̃∑

d=y+2

(αKp − α(cp + c2)(y + 1− d)) pd −

y−s̃−1∑

d=y+1

(αKp − α(cp + c2)(y − d)) pd +

∞∑

d=y−s̃+1

(Kall − co(y + 1− d)) pd −
∞∑

d=y−s̃

(Kall − co(y − d)) pd
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= c2 + (h2 − αc2)

y∑

d=0

pd − (αKp + α(cp + c2))py+1

+(αKp − α(cp + c2)(s̃ + 1))py−s̃

−α(cp + c2)

y−s̃−1∑

d=y+2

pd − (Kall − cos̃)py−s̃ − co

∞∑

d=y−s̃+1

pd

= c2 + (h2 − αc2)F (y)− α(cp + c2)(F (y − s̃)− F (y))− co(1− F (y − s̃))

−αKppy+1 + ((co − α(cp + c2))s̃− (Kall − αKp)) py−s̃

By Lemma 6,

∆G1(y) = c2 − co + (h2 + αcp)F (y) + (co − α(cp + c2))F (y − s̃)−

(C∗
OT − C∗

PF − (co − α(cp + c2))s̃) py−s̃ − αKppy+1

= c2 − co + (h2 + αcp)F (y) + (co − α(cp + c2))F (y − s̃− 1) +

(1− β)(co − α(cp + c2))py−s̃ − αKppy+1

by Lemma 7 where 0 ≤ β < 1. At this point, note that as y → −∞, ∆G1(y) →

c2−co < 0 by assumption (A4) and as y →∞, ∆G1(y) → c2−co +(h2 +αcp)+(co−

α(cp + c2)) = h2 + (1 − α)c2 > 0. Thus, as y → −∞, G1(y) → ∞ and as y → ∞,

G1(y) →∞. Also note that for y < 0,

∆G1(y) = c2 − co + (co − α(cp + c2))F (y − s̃− 1)

+(1− β)(co − α(cp + c2))py−s̃ − αKppy+1 ≤ c2 − co < 0

and so any minimum point of G1(y), y0, will be non-negative. Finally, it remains

to show that −G1(y) is unimodal. We will do so by showing that ∆G1(y) changes

sign exactly once. Let d0 be the smallest demand such that pd0 > 0 (d0 exists by
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assumption (A3)); note that for y < d0, ∆G1(y) < 0. For y ≥ d0, rewrite ∆G1(y) as

∆G1(y) = c2 − co + F (y)F1(y)

where

F1(y) = (h2 + αcp) + (co − α(cp + c2))
F (y − s̃− 1)

F (y)

+(1− β)(co − α(cp + c2))
py−s̃

F (y)
− αKp

py+1

F (y)
.

Observe that F (y) is increasing up to 1 and by Lemma , (i) F (y−s̃−1)
F (y)

is non-increasing

down to 1 and (ii)
py−s̃

F (y)
and py+1

F (y)
are nonincreasing down to 0. Also observe that

F1(y) is nondecreasing. The first term is a constant, the second term is product of

a negative term (since this is case 1) and a nonincreasing function (by (i)), and the

third and fourth terms are products of negative terms and nonincreasing functions

(by (ii)). Thus, F (y)F1(y) is the product of two nondecreasing functions. Since

F (y) > 0, the product can only change signs at most once. Since ∆G1(y) is negative

on the left and eventually positive on the right, the product must change signs exactly

once. Thus, −G1(y) is unimodal. 2

Zheng [66] shows that an (s, S) policy is optimal for a “standard discrete-time

inventory model” where the one period cost function Gα(y) has the properties we

have just shown exist for our G1(y). So, we see that our constrained optimal cost

functionf ∗m(x) = miny≥x+ {K2δ(y − x) + G1(y) + αED[f ∗m(y −D)]} matches the un-

constrained optimal cost function fα defined by Zheng on page 807 except that we

are minimizing over y ≥ x+, rather than y ≥ x. Zheng shows that an (s∗, S∗) policy
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is optimal for his unconstrained problem. So, consider our problem with the relaxed

restriction that y ≥ x rather than y ≥ x+. According to Zheng, an (s∗, S∗) policy is

optimal for this problem. Now, if s∗ ≥ −1, it is always better to order during regular

time when inventory is negative and there will be no backorders. In this case, the

(s∗, S∗) policy defined by Zheng is also optimal for our constrained problem and we

have shown that the optimal regular time policy is an (s, S) policy with −1 ≤ s < S.

Now, if s∗ < −1, this policy is not admissible for our problem. So, reconsider

Zheng’s Lemma 1 ([66], page 806) with the restriction that the reorder point must

be at least -1. Call this Lemma 1+.

Lemma 1+. For given α(0 < α ≤ 1), let y0 be a minimum point of G1(y). There

exist s+ and S+ that satisfy

(I) c+
α ≡ cα(s+, S+) = min−1≤s<S cα(s, S);

(II) s+ < y0 ≤ S+;

(III) G1(s
+) < c+

α

(IV) c+
α ≤ G1(S

+).

Proof Part (I) is true by the same argument as Zheng for part (i) with an extra

bound. Part (II) is true by the same argument as Zheng for part (ii), noting that

y0 ≥ 0 by Lemma 8 so that s+ is always feasible. Part (IV) is true by the same

argument for Zheng’s part (iv). Finally, since s∗ < −1, (iii) from Zheng yields that

G1(s
∗) ≥ c∗α > G1(s

∗ + 1) ≥ G1(s
+) and clearly c+

α ≥ c∗α. Combining these two

inequalities gives the inequality of part (III). 2

Theorem 2 The optimal regular production policy at stage 2 is an (s, S) policy with
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−1 ≤ s < S.

Proof: If s∗ ≥ −1, Zheng’s result holds and we are done. If s∗ < −1, we must

show that s+ = −1. Using (11) from Zheng (dropping the subscript α’s for notational

convenience):

c(−1, S+) =
K2 +

∑S+

j=0 G1(S
+ − j)m(j)

∑S+

j=0 m(j)

⇒ c(−1, S+) =
K2+

PS+−s+−1
j=0 G1(S+−j)m(j)+

PS+

j=S+−s+
G1(S+−j)m(j)PS+−s+−1

j=0 m(j)+
PS+

j=S+−s+
m(j)

⇒ c(−1, S+)
(∑S+−s+−1

j=0 m(j) +
∑S+

j=S+−s+ m(j)
)
−∑S+

j=S+−s+ G1(S
+ − j)m(j)

= K2 +
∑S+−s+−1

j=0 G1(S
+ − j)m(j)

⇒ c(−1, S+)
∑S+−s+−1

j=0 m(j) +
∑S+

j=S+−s+ m(j) (c(−1, S+)−G1(S
+ − j))

= K2 +
∑S+−s+−1

j=0 G1(S
+ − j)m(j).

At this point, notice that the G1(S
+− j) in the second sum ranges from G(0) to

G1(s
+). By (III) and the unimodality of G1(y), each of these terms is less than c+.

Thus,

c(−1, S+)
S+−s+−1∑

j=0

m(j)+
S+∑

j=S+−s+

m(j)
(
c(−1, S+)− c+

) ≤ K2 +
S+−s+−1∑

j=0

G1(S+− j)m(j)

⇒ c(−1, S+)
S+−s+−1∑

j=0

m(j) ≤ K2 +
S+−s+−1∑

j=0

G1(S
+ − j)m(j)

⇒ c(−1, S+) ≤ K2 +
∑S+−s+−1

j=0 G1(S
+ − j)m(j)

∑S+−s+−1
j=0 m(j)

= c+.

The second inequality follows from c(−1, S+) ≥ c+ and the third inequality follows

from the definition of c+. Since c(−1, S+) ≤ c+, we can choose to let s+ = −1. Now
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we must prove that a (−1, S+) policy is optimal. Following the proof from Zheng in

Section 3, we see that (13) on page 807 may not be true. However, it doesn’t matter

because for all i ≤ −1, we must order to avoid backorders. So, we order for every

inventory level less than or equal to s+. The proof of Zheng’s (14) is exactly the

same with a superscript + replacing every ∗. Hence, if s∗ < −1, an (s, S) policy is

optimal for our constrained problem with −1 = s < S.

Thus, the optimal regular production policy at stage 2 is an (s, S) policy with

−1 ≤ s < S. 2

Given the results of Theorems 1 and 2, we can now relate several of our parameters

to each other. We have an (s, S) policy with s ≥ −1. If s ≥ 0, then it is optimal

to order regular production up to S when our inventory level is 0. In this case,

y∗p = y∗0 = S; the first equality holds by the definitions y∗p and y∗0 and the second

equality holds by the definition of an (s, S) policy. If s = −1, then y∗p = S ≥ y∗0 = 0.

Another relationship between our parameters is that S̃ ≤ S. We know that S̃ = 0

or S̃ = ỹ∗+ > 0. The first case is trivial since S ≥ 0. In the second case, compare the

definitions of y∗p and ỹ∗+ in Section 2.3.2. Since αc2 < co + h2, we have that y∗p ≥ ỹ∗+.

Hence, S̃ = ỹ∗+ ≤ y∗p = S.

2.4 Conclusion and Insights

In this chapter, we have considered our two-stage supply chain under decentral-

ized control. Each stage of the supply chain behaves independently and determines

its optimal inventory control policy based only on its own costs and inventory avail-
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able. In Section 2.1, we showed by a straightforward argument that a base-stock

policy is optimal at stage 1. In Section 2.2, we showed that a base-stock policy is

optimal at stage 2 given that only one method of expediting is available. In Section

2.3, we considered stage 2 under the more interesting scenario that both methods of

expediting are available and there exists a setup cost for regular production. Under

these conditions, we showed that two production decisions must be made: how much

to produce during regular production and how much to produce during overtime

production. We first showed that these two decisions are related and then proved

that the optimal overtime decision depends on the various costs involved. Lastly, we

proved that whatever the optimal overtime policy is, an (s, S) policy is optimal for

regular production.

We believe that our theoretical results yield important managerial insights for

firms that operate in a decentralized fashion. First, our results from the first section

show that stage 1 clearly ignores the inventory situation at stage 2. Despite the

fact that a large order from stage 1 may force stage 2 to incur possibly high setup

costs for expediting, stage 1 will request large orders whenever the demand is large,

due to the base-stock policy. In the next chapter, we will show that when the two

stages share these setup costs, stage 1 is not so quick to make large orders. Our

results in the second section show that stage 2 basically reacts to the same demand

distribution as stage 1. Because stage 1 does not temper the demand process, stage

2 must account for the cost of overtime production with additional inventory.

Our results from the third section yield several managerial insights. First, al-
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though it may be obvious, the production decision during overtime directly affects

the regular production decision the next day. Clearly, if there is no shortage during

overtime, overtime production is not appropriate since it costs more. If there is a

shortage, the manager must decide how to fill it. We show that it is never optimal to

use both methods of expediting, since such a decision would incur both setup costs.

In fact, there exists a threshold such that for some shortages, overtime production is

optimal, and for other shortages, premium freight is the way to go. This threshold

depends on how much the two methods of expediting cost, and it may turn out that

one method is always better. By comparing relative costs, a manager should be able

to get a sense of whether one option is always better, or whether the shortage will

determine which option is cost-effective.

Another interesting result is that in some situations when a shortage is faced, it

is optimal to run overtime production not only to fill the shortage, but to bring the

inventory level up to a positive quantity and to avoid regular production the next

day. This result may seem counter-intuitive at first since we assume that overtime

production costs are greater than regular production costs. However, assume that

the per unit costs are relatively close and a manager faces a shortage; if the manager

must run overtime production to at least fill the shortage, the overtime setup cost

becomes a sunk cost and it makes sense to continue production beyond filling the

shortage to avoid paying the setup cost for regular production the next day. Whether

or not this policy is practical considering labor relations is not clear, but we feel that

managers should be aware that this policy may be optimal if the per unit cost of
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overtime production is not too expensive.

Lastly, the best policy for regular production is what most inventory managers

would expect for a production problem with a setup cost. An (s, S) policy for regular

production is optimal for all four of the possible overtime production policies. One

final observation for managers is that the overtime production level will never be

greater than the regular production level; that is, S̃ ≤ S. This result makes intuitive

sense given the relative costs of the two types of production.



CHAPTER III

CENTRALIZED MODEL

In this chapter, we study the centralized model. We assume that the two stages

of the supply chain are part of a single firm and are controlled by a manager whose

goal is to minimize system costs. This manager knows the inventory levels at both

stages and makes three different decisions concerning production at stage 1, regular

production at stage 2, and overtime production at stage 2. In the first four sections,

we assume as before that overtime production is the only method of expediting. In

the first section, we develop the relaxed version of our problem. In Section 3.2, we

derive the optimal inventory control policy for stage 1 under the relaxed conditions;

we show that stage 1 will occasionally “underorder” to avoid expediting at stage 2,

but will force expediting at stage 2 if the system inventory is very low. In Section

3.3, again under the relaxed conditions, we show that the optimal inventory control

policy for the entire system is base-stock. We prove that the optimal relaxed policies

are actually the optimal policies for the original, fully-constrained problem in Section

3.4 and we list the optimal policies for both stages and the system. In Section 3.5,

we include premium freight as an expediting option and in a more complicated proof,

65
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show that similar results hold. Finally, in Section 3.6, we conclude the chapter and

discuss managerial insights for the centralized model.

To prove the results of this chapter, we require two further assumptions about

the holding costs at both stages and the backordering cost at stage 1. Basically,

we assume that the holding cost at stage 2 is less than the holding cost at stage

1 and we strengthen (A5) that the backordering cost at stage 1 is not too small.

These assumptions ensure that the stage 1 policy is “reasonable” (discussed more

formally later in the chapter) and are fairly standard. We also require that the initial

inventory at stage 1 is less than or equal to the optimal base-stock level at stage 1

under decentralized control. We feel that this is a reasonable assumption if we are

considering switching from a decentralized system to a centralized system. We list

these assumptions as

(A8) b1 ≥ (1− α)c1 + ( co

α
− c2)

(A9) h2 ≤ α(h1 + (1− α)c1)

(A10) x1 ≤ S∗1,dec

3.1 Relaxed Problem

The timing of the centralized problem is somewhat different than that of the

previous chapter. In this problem, the centralized manager makes three decisions

at once about production at the the two stages. The manager first decides the

production level for stage 1 for the next period; this decision directly affects the

overtime decision for the current period at stage 2, and hence affects the regular
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production decision for the next period at stage 2 as well. Referring to the time line

in Table 1.1, all decisions occur where the stage 1 decision occurs on the time line,

after stage 1 experiences demand. Assume we are in the middle of time period t.

The centralized manager currently knows the inventory position for next period at

stage 1, x1,t+1, and the current stage 2 inventory level, y2,t. The manager must now

decide y1,t+1, ỹ2,t, and y2,t+1. Note that for the first four sections of this chapter, we

assume overtime production is the only expediting option. Under these conditions,

the overtime decision is straightforward. If stage 1 orders more than stage 2 has

on hand, stage 2 must fill the shortage with overtime production. In other words,

if z1,t+1 = y1,t+1 − x1,t+1 > y2,t, stage 2 must produce (y1,t+1 − x1,t+1 − y2,t)
+ parts

during overtime.

The decision period we will consider for the centralized model occurs over two

time periods. The overtime production variables and costs and the stage 2 holding

costs occur during one time period, and the rest of the variables and costs occur

during the next time period. For example, during time period t, we determine the

overtime production, (y1,t+1 − x1,t+1 − y2,t)
+, and potentially pay overtime costs Ko

and co or holding costs h2. During time period t + 1, we use the variables y1,t+1 and

y2,t+1, demand Dt+1 occurs and all costs incurred are discounted by α. At this point,

we will drop the time subscripts for notational convenience, keeping in mind that the

variables occur in different time periods. This creates one problem in that we have

two terms for the inventory level at stage 2, which were originally y2,t and y2,t+1. To

alleviate this problem, we define
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x̄2,t ≡ y2,t = the stage 2 inventory level after regular production during period t

and after dropping the time subscript, x̄2 represents the stage 2 inventory level

when the centralized manager makes inventory decisions. So, the one period costs

experienced by the entire system are

gcen(x1, y1, x̄2, y2, D) ≡

Koδ((y1 − x1)− x̄2) + co((y1 − x1)− x̄2)
+ + h2(x̄2 − (y1 − x1))

+ +

α
(
c1(y1 − x1) + c2(y2 − (x̄2 − (y1 − x1))

+) + h1(y1 −D)+ + b1(y1 −D)−
)

with y1 ≥ x1 and y2 ≥ (x̄2− (y1−x1))
+. The first two terms are overtime production

costs, the third term is the holding cost at stage 2, the fourth term is the production

cost at stage 1, the fifth term is the production cost at stage 2, and the last two

terms are holding and backordering costs at stage 1. Note that we assume there is

no fixed cost for regular production at either stage for the remainder of the thesis.

Clearly, gcen(·) ≥ 0 and hence by [7], the optimal cost function f ∗cen(x1, x̄2) satisfies

f ∗cen(x1, x̄2) = min
y1≥x1

y2≥(x̄2−(y1−x1))+

ED[gcen(x1, y1, x̄2, y2, D) + αf ∗cen(y1 −D, y2)].

The argument that minimizes this equation is the optimal inventory control policy

which we seek. Moving the −αc1x1 back to the previous period as −α2c1(y1 − D)

(as in the previous chapter) and rearranging terms, we get:

gcen,m(x1, y1, x̄2, y2, D) ≡

α(1− α)c1y1 + α2c1D + Koδ((y1 − x1)− x̄2) + co((y1 − x1)− x̄2)
+ +

(h2 − αc2)(x̄2 − (y1 − x1))
+ + αc2y2 + α(h1(y1 −D)+ + b1(y1 −D)−)
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under the same restrictions. Note that f ∗cen(x1, x̄2) = −αc1x1 + f ∗cen,m(x1, x̄2). We

originally tried to solve this problem in terms of stage 1 and stage 2 variables, but

found that the solution lent itself more easily to stage 1 and system variables.

Define the system inventory position as xs ≡ x1 + x̄2 and the system inventory level

as ys ≡ y1+y2. Note that we may occasionally interchange the inventory information

(x1, x̄2) and (x1, xs). We substitute these variables and rewrite gcen,m(·) as

gcen,m(x1, xs, y1, ys, D)

= α(1− α)c1y1 + α2c1D + Koδ(y1 − xs) + co(y1 − xs)
+ +

(h2 − αc2)(xs − y1)
+ + αc2(ys − y1) + α(h1(y1 −D)+ + b1(y1 −D)−)

= α(1− α)c1y1 + α2c1D + α(h1(y1 −D)+ + b1(y1 −D)−) +

Koδ(y1 − xs) + co(y1 − xs)
+ + (h2 − αc2)(xs − y1)

+ +

αc2(ys − y1) + αc2(xs − y1)− αc2(xs − y1)

= α(1− α)c1y1 + α2c1D + α(h1(y1 −D)+ + b1(y1 −D)−) + (3.1)

Koδ(y1 − xs) + (co − αc2)(y1 − xs)
+ + h2(xs − y1)

+ + (3.2)

αc2(ys − xs)

with y1 ≥ x1 and ys ≥ y1 + (xs− y1)
+. Note that the second restriction is equivalent

to ys ≥ max{y1, xs}. Also, we can rewrite gcen,m(·) as

gcen,m(x1, y1, xs, ys, D) = L1(y1, D) + L2(y1, xs) + αc2(ys − xs)

where L1(y1, D) represents the terms on line (3.1) and L2(y1, xs) represents the terms

on line (3.2). Note that L1(y1, D) = αg1,dec,m(·, y1, D) from Section 2.1. We can now

rewrite the fully constrained optimal cost function which we would like to solve,
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namely,

f ∗cen,m(x1, xs) = min
y1≥x1

ys≥max{xs,y1}
ED

[
gcen,m(x1, y1, xs, ys, D) + αf ∗cen,m(y1 −D, ys −D)

]
.

Again, we originally tried to solve this problem, but could not separate the vari-

ables as in typical two-stage problems (e.g. see [21]). So, in order to solve this

equation, we relax some of the constraints; later we show that these constraints are

always met by the optimal solution to the relaxed problem, and thus solve the orig-

inal, fully constrained problem. First, we drop the constraint that y1 ≥ x1. Second,

we drop the constraint that ys ≥ y1 in the case when y1 > xs. For later reference,

we label the relaxed assumptions:

(R1) y1 ≥ x1 and

(R2) ys ≥ y1 when y1 > xs.

After relaxing the constraints, our relaxed cost per period has the same costs as

gcen,m(·) but with only one constraint;

gcen,r(y1, xs, ys, D) ≡ L1(y1, D) + L2(y1, xs) + αc2(ys − xs)

with ys ≥ xs. Now, we show that gcen,r(·) ≥ 0 and then apply the result from [7] to

obtain our relaxed optimal cost function.

Lemma 9 gcen,r(y1, xs, ys, D) ≥ 0

Proof: Every term of gcen,r(y1, xs, ys, D) is non-negative, except possibly the first

term if y1 < 0 (which may occur since backorders are allowed at stage 1). When

y1 < 0,

gcen,r(y1, xs, ys, D) ≥ α(1− α)c1y1 − αb1y1 + αb1ED[D]
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= α((1− α)c1 − b1)y1 + αb1µ ≥ 0

The first inequality holds because we drop non-negative terms from gcen,r(y1, xs, ys, D)

and the second inequality holds by assumptions (A3) and (A8). 2

Because gcen,r(y1, xs, ys, D) ≥ 0, Proposition 1.1 of Bertsekas [7] holds and the

relaxed optimal cost function f ∗cen,r satisfies

f ∗cen,r(xs)

= min
y1,ys≥xs

ED

[
gcen,r(y1, xs, ys, D) + αf ∗cen,r(ys −D)

]
(3.3)

= min
y1,ys≥xs

{
ED[L1(y1, D)] + L2(y1, xs) + αc2(ys − xs) + αED[f ∗cen,r(ys −D)].

}

Here it is important to notice that under the relaxed conditions, y1 has no effect on

either ys or the costs to go, αED[f ∗cen,r(ys −D)]. Thus,

f ∗cen,r(xs)

= min
ys≥xs

{
min

y1

{ED[L1(y1, D)] + L2(y1, xs)}+ αc2(ys − xs) + αED[f ∗cen,r(ys −D)]

}

= min
ys≥xs

{
m(xs) + αc2(ys − xs) + αED[f ∗cen,r(ys −D)]

}
(3.4)

where m(xs) ≡ miny1 {ED[L1(y1, D)] + L2(y1, xs)}. Finding the optimal inventory

policy for stage 1 has become a myopic problem which we solve in the next section.

For later reference, we also define the related function m′(xs) ≡ m(xs) − α2c1µ,

where m′(xs) represents all of the system costs that are not due to production. For

convenience we study m(xs) below, but list our final results in terms of m′(xs).
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3.2 Stage 1 Relaxed Optimal Policies

In this section, we determine the optimal inventory policy for stage 1 for the

relaxed problem. We study the function m(xs) and show that the stage 1 policy

depends only on the system inventory level xs. Define NH(y1) and NL(y1) as

NH(y1) ≡ (α(1− α)c1 − h2)y1 + αED[αc1D + h1(y1 −D)+ + b1(y1 −D)−]

and

NL(y1) ≡ (α(1− α)c1 + co − αc2)y1 + αED[αc1D + h1(y1 −D)+ + b1(y1 −D)−].

The function NH(y1) corresponds to the stage 1 costs when y1 ≤ xs and the function

NL(y1) corresponds to the stage 1 costs when y1 > xs. We now have that

m(xs) = min
y1

{ED[L1(y1, D)] + L2(y1, xs)}

= min
y1





ED[L1(y1, D)] + h2(xs − y1) if y1 ≤ xs

ED[L1(y1, D)] + Ko + (co − αc2)(y1 − xs) if y1 > xs

= min
y1









h2xs + (α(1− α)c1 − h2)y1+

αED[αc1D + h1(y1 −D)+ + b1(y1 −D)−]





if y1 ≤ xs





Ko − (co − αc2)xs + (α(1− α)c1 + co − αc2)y1

+αED[αc1D + h1(y1 −D)+ + b1(y1 −D)−]





if y1 > xs

= min
y1





h2xs + NH(y1) if y1 ≤ xs

Ko − (co − αc2)xs + NL(y1) if y1 > xs

= min





h2xs + miny1≤xs{NH(y1)}

Ko − (co − αc2)xs + miny1>xs{NL(y1)}
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Before continuing our study of m(xs), we derive properties for NL(y1) and NH(y1)

in the following lemma.

Lemma 10 Define yH = arg miny1{NH(y1)} and yL = arg miny1{NL(y1)}.

(1) NL(y1) and NH(y1) are convex in y1,

(2) 0 ≤ yL ≤ yH ≤ ∞, and

(3) yH ≥ S∗1,dec.

Proof: The proof of (1) is straightforward. To prove (2), note that the middle

inequality is satisfied because −h2 < 0 < co−αc2. To prove the other inequalities, we

define the differential of each function as ∆Ni(y1) = Ni(y1 +1)−Ni(y1) for i = L,H.

To calculate yL, we must solve ∆NL(y1) = 0. If the solution to this equation is not

integer, yL will be either the ceiling or the floor of the solution to this equation.

Consider

∆NL(y1) = NL(y1 + 1)−NL(y1)

= (α(1− α)c1 + co − αc2)(y1 + 1) +

αED[αc1D + h1(y1 + 1−D)+ + b1(y1 + 1−D)−]−

(α(1− α)c1 + co − αc2)y1 − αED[αc1D + h1(y1 −D)+ + b1(y1 −D)−]

= (α(1− α)c1 + co − αc2) +

αED[h1(y1 + 1−D)+ − h1(y1 −D)+ + b1(y1 + 1−D)− − b1(y1 −D)−]

= (α(1− α)c1 + co − αc2) + αh1F (y1)− αb1(1− F (y1))

= α(1− α)c1 + co − αc2 − αb1 + α(h1 + b1)F (y1)
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Similarly,

∆NH(y1) = α(1− α)c1 − h2 − αb1 + α(h1 + b1)F (y1).

Thus, at each respective minimum, ∆NL(yL) = α(1 − α)c1 + co − αc2 − αb1 +

α(h1 + b1)F (yL) ≈ 0 and ∆NH(yH) = α(1− α)c1 − h2 − αb1 + α(h1 + b1)F (yH) ≈ 0.

Or, yL ≈ F−1(αb1−(α(1−α)c1+co−αc2)
α(h1+b1)

) and yH ≈ F−1(αb1+h2−α(1−α)c1
α(h1+b1)

). For yL and yH to

exist, we require that the first fraction is non-negative and that the second fraction

is less than or equal to one. So, we require that αb1 − (α(1 − α)c1 + co − αc2) ≥ 0

and αb1 + h2 − α(1 − α)c1 ≤ α(h1 + b1) which both hold by assumptions (A8) and

(A9). Under these conditions, we have that 0 ≤ yL ≤ yH ≤ ∞.

Finally, to prove (3), consider that yH = arg miny1{NH(y1)} and S∗1,dec =

arg miny1{G1,dec,m(y1)}. There are two differences between NH(y1) and G1,dec,m(y1).

The first difference is that most of the costs in NH(y1) are multiplied by an additional

factor of α. This is due to the decision timing in the centralized model, but does

not affect the value of yH . Dividing NH(y1) through by α, we see that the second,

important, difference is the coefficient in front of y1, respectively (1− α)c1 − h2

α
and

(1− α)c1. Since (1− α)c1 − h2

α
≤ (1− α)c1, yH ≥ S∗1,dec. 2

Returning to our study of m(xs) and defining N(xs) ≡ ED[L1(xs, D)], we have

that

m(xs) = min





h2xs + miny1≤xs{NH(y1)}

Ko − (co − αc2)xs + miny1>xs{NL(y1)}
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= min





h2xs + NH(yH) if xs ≥ yH

h2xs + NH(xs) if xs < yH

Ko − (co − αc2)xs + NL(xs) if xs > yL

Ko − (co − αc2)xs + NL(yL) if xs ≤ yL

= min





h2xs + NH(yH) if xs ≥ yH

N(xs) if xs < yH

Ko + N(xs) if xs > yL

Ko − (co − αc2)xs + NL(yL) if xs ≤ yL

= min





h2xs + NH(yH) if xs ≥ yH

N(xs) if xs < yH

Ko − (co − αc2)xs + NL(yL) if xs ≤ yL

Define tL as the smallest w such that N(w) ≤ Ko − (co − αc2)w + NL(yL). We get

that

m(xs) =





h2xs + NH(yH) if xs ≥ yH

N(xs) if tL ≤ xs < yH

Ko − (co − αc2)xs + NL(yL) if xs < tL.

(3.5)

So, we have defined m(xs) explicitly and in the process we have determined the

relaxed optimal inventory control policy at stage 1. If the system inventory is large,

xs ≥ yH , stage 1 orders up to yH . If the system inventory is medium, tL ≤ xs < yH ,

stage 1 uses up the system inventory, xs. Finally, if system inventory is small, xs < tL,

stage 1 orders up to yL.

Theorem 3 Let y∗cen,1 be the optimal inventory position at stage 1 for the relaxed
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problem. Then

y∗cen,1 =





yH if xs ≥ yH

xs if tL ≤ xs < yH

yL if xs < tL.

(3.6)

Proof: By definition of m(xs). 2

Note that what has happened here, compared to the results of the previous chap-

ter, is that stage 1 has become sensitive to the inventory available in the system

(and hence to the inventory available at stage 2, as xs = x1 + x̄2). If there is plenty

of inventory available in the system, stage 1 orders up to a high quantity. If there

is a moderate amount of inventory available in the system, stage 1 basically “un-

derorders” in order to avoid forcing overtime production at stage 2. However if the

inventory available in the system is too low, stage 1 forces overtime production at

stage 2 and orders up to specified quantity.

3.3 System Relaxed Optimal Policy

In this section, we determine the relaxed optimal policy for the system. Given

m(xs), we now have the optimal relaxed cost function in terms of system variables

only. From equation (3.4), we have

f ∗cen,r(xs) = min
ys≥xs

{
m(xs) + αc2(ys − xs) + αED[f ∗cen,r(ys −D)]

}
.

We move the m(xs) and −αc2xs terms back to the previous period as αm(ys − D)

and −α2c2(ys −D), respectively, and get

f ∗cen,s(xs)
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= min
ys≥xs

{
α(1− α)c2ys + αED[m(ys −D)] + α2c2µ + αED[f ∗cen,s(ys −D)]

}
(3.7)

= min
ys≥xs

{
Gcen,s(ys) + α2c2µ + αED[f ∗cen,s(ys −D)]

}
.

where Gcen,s(ys) = α(1 − α)c2ys + αED[m(ys − D)]. We need to justify two steps

here. First, we can move the two terms back a period and f ∗cen,r(·) will have the same

optimal policy as f ∗cen,s(·) using a similar argument as in Section 2.1. We have that

f ∗cen,r(xs) = m(xs)− αc2xs + f ∗cen,s(xs).

Second, to prove the existence of f ∗cen,s(·), we must show that gcen,s(ys) ≡ α((1 −

α)c2ys + m(ys −D)) ≥ 0. To prove gcen,s(ys) is non-negative and to later prove that

Gcen,s(ys) is quasiconvex, let us examine the function g+(w) ≡ (1 − α)c2w + m(w).

Graphically, the function looks as in Figure 3.1.

Starting from the left, g+(·) decreases at rate −(co − c2) until point tL − 1. (The

big dot on the left is tL − 1, the big dot in the middle is yL, and yH is the big dot

on the right). From tL to yH − 1, it follows (1 − α)c2w + N(w), decreasing at first,

then increasing. From yH on, it increases at rate h2 + (1− α)c2.

Lemma 11 The function g+(·) has exactly one minimum which occurs between tL

and yH − 1 and is positive.

Proof: To the left of tL, the slope of g+(·) is −(co − c2) < 0 and to the right of

yH − 1, the slope of g+(·) is h2 + (1− α)c2 > 0. Also note that g+(tL) ≤ g+(tL − 1)

by definition of tL. Thus, any minima of the function occur between tL and yH − 1.

Between these values, g+(·) follows (1− α)c2w + N(w), a convex function, and thus
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Figure 3.1: Graph of g+(w)

there is exactly one minimum. The minimum value is positive by assumptions (A3)

and (A8), following a similar argument as in Lemma 9. 2

Theorem 4 For the relaxed problem, the optimal inventory control policy for the

system inventory is a base-stock policy.

Proof: Consider gcen,s(ys):

gcen,s(ys) = α((1− α)c2ys + m(ys −D))

= α((1− α)(c2ys − c2D + c2D) + m(ys −D))

= α((1− α)c2D + g+(ys −D)) ≥ 0
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where the inequality holds because the g+(·) ≥ 0. Note from Figure 3.1 or Lemma 11

that g+(·) is a quasiconvex function with a minimum point. Now consider Gcen,s(ys):

Gcen,s(ys) = αED[(1− α)c2ys + m(ys −D)]

= α((1− α)c2ED[D] + ED[g+(ys −D)]).

The first term is a constant, and the second term is a convolution of a quasiconvex

function (g+(ys−D)) and a logconcave probability distribution by assumption (A2).

Thus, according to [49] and [2], Gcen,s(·) is a quasiconvex function. Also, for ys < tL,

the slope of Gcen,s(ys) is α(c2 − co) < 0, so as ys → −∞, Gcen,s(ys) → ∞. As ys →

+∞, the slope of Gcen,s(ys) becomes α(h2 + (1− α)c2) > 0, and so Gcen,s(ys) →∞.

Hence, the desired result follows from Zheng [66]. 2

3.4 Fully Constrained Optimal Policies

In this section, we show that the optimal inventory control policy that solves the

relaxed problem also solves the original, fully constrained problem. From Section

3.1, we have that

f ∗cen(x1, x̄2) = −αc1x1 + f ∗cen,m(x1, xs).

From the previous section, we have that

f ∗cen,r(xs) = m(xs)− αc2xs + f ∗cen,s(xs).

The missing piece of the puzzle is to show that

f ∗cen,m(x1, xs) = f ∗cen,r(xs).
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By doing so, we verify that the optimal policies listed in Sections 3.2 and 3.3 are truly

optimal. We must show that the optimal policies for f ∗cen,r(xs) minimize f ∗cen,m(x1, xs)

and that both (R1) and (R2) are met.

Theorem 5

f ∗cen,m(x1, xs) = f ∗cen,r(xs).

Proof: The optimal policies for f ∗cen,r(xs) minimize the costs for f ∗cen,m(x1, xs)

because both relaxed constraints are met and y1 does not affect ys or the costs-to-go.

If xs < tL, y∗1 = yL ≥ tL ≥ xs ≥ x1. If tL ≤ xs < tH , y∗1 = xs ≥ x1. Finally, if

xs ≥ tH , y∗1 = yH ≥ S∗1,dec ≥ x1 by assumption (A10) and (3) of Lemma 10. Thus,

the first relaxation (R1) is satisfied. To show that (R2) is satisfied, define y∗cen,s to

be the optimal system inventory position, S∗cen to be the optimal system base-stock

level, and y∗cen,2 to be the optimal inventory position for stage 2. We must show that

ys ≥ y1 when y1 > xs. The only time when y1 > xs is when xs < tL (otherwise,

y1 = xs or y1 = yH ≤ xs). In this case, y∗cen,1 = yL ≤ S∗cen = y∗cen,s. The inequality

holds because 0 ≤ y∗cen,2 = y∗cen,s − y∗cen,1 = S∗cen − yL. 2

For the original, fully constrained problem, we now know the optimal policies for

stage 1, stage 2, and for the system.

y∗cen,1 =





yH if xs ≥ yH

xs if tL ≤ xs < yH

yL if xs < tL,
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y∗cen,s =





xs if xs > S∗cen

S∗cen if xs ≤ S∗cen, and

y∗cen,2 = y∗cen,s − y∗cen,1

Now, under the assumption that the initial system inventory is less than the

system base-stock level, xs ≤ S∗cen, we can further calculate f ∗cen(x1, xs).

f ∗cen(x1, xs)

= −αc1x1 + f ∗cen,m(x1, xs)

= −αc1x1 + m(xs)− αc2xs + f ∗cen,s(xs)

= −αc1x1 + m(xs)− αc2xs +

min
ys≥xs

{
α(1− α)c2ys + αED[m(ys −D)] + α2c2µ + αED[f ∗cen,s(ys −D)]

}

= −αc1x1 + m(xs)− αc2xs +

α(1− α)c2S
∗
cen + αED[m(S∗cen −D)] + α2c2µ + αED[f ∗cen,s(S

∗
cen −D)]

= −αc1x1 + m(xs)− αc2xs +

α ((1− α)c2S
∗
cen + ED[m(S∗cen −D)] + αc2µ) (1 + α + α2 + . . .)

= −αc1x1 + m(xs)− αc2xs +
α

1− α
((1− α)c2S

∗
cen + ED[m(S∗cen −D)] + αc2µ)

= −αc1x1 + m′(xs) + αc2(S
∗
cen − xs) +

α

1− α
(ED[m′(S∗cen −D)] + α(c1 + c2)µ)

We will use this relationship to compare costs in Chapter IV.

3.5 Optimal Policies with Premium Freight

In this section, we study the problem where both overtime production and pre-

mium freight are viable options. We follow the analysis from the previous four
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sections but add additional comments or proofs when necessary. In this problem,

the overtime production decision is a real decision. If a shortage exists, the manager

must choose how much of the shortage to fill with overtime production and how much

to fill with premium freight. We will later show that it is optimal to pick one or the

other expediting options, but never both. The decision timing occurs as described in

Section 3.1, and the manager must decide y1,t+1, ỹ2,t, and y2,t+1 all at the same time.

When both options are viable, we require some additional assumptions. First,

if both overtime production costs are less than the corresponding premium freight

costs (Ko < αKp and co < α(cp+c2)), we have a situation where overtime production

will always be utilized to fill shortages, and this is the problem we just considered.

Similarly, if the premium freight costs are both less than the overtime costs, we have

a situation where premium freight will always be utilized to fill shortages, and the

analysis from the first four sections of this chapter applies. So, the problem is only

interesting when one overtime cost is greater (e.g. Ko ≥ αKp) and one overtime cost

is less (e.g. co ≤ α(cp + c2)), or vice-versa. The discussion is the same in either

case, so we will assume the case listed in the previous sentence. Second, we modify

assumption (A8) from the beginning of the chapter.

(A8) b1 ≥ (1− α)c1 + cp.

(A11) Ko ≥ αKp

(A12) co ≤ α(cp + c2)

Using the same notation as before, we now develop the various cost equations.

gcen(x1, y1, x̄2, y2, z̃2, D) ≡
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Koδ(z̃2) + coz̃2 + h2(x̄2 − (y1 − x1) + z̃2)
+

+αKpδ((x̄2 − (y1 − x1) + z̃2)
−) + αcp(x̄2 − (y1 − x1) + z̃2)

− + αc1(y1 − x1) +

+αc2(y2 − (x̄2 − (y1 − x1) + z̃2)) + α(h1(y1 −D)+ + b1(y1 −D)−)

with y1 ≥ x1, z̃2 ≥ 0, and y2 ≥ (x̄2− (y1− x̄2) + z̃2)
+. Clearly, gcen(·) ≥ 0 and hence

by [7], the optimal cost function f ∗cen(x1, x̄2) satisfies

f ∗cen(x1, x̄2) = min
y1≥x1

z̃2≥0
y2≥(x̄2−(y1−x1))+

E[gcen(x1, y1, x̄2, y2, z̃2, D) + αf ∗cen(y1 −D, y2)].

The argument that minimizes this equation is the optimal inventory control policy

which we seek. Moving the −αc1x1 back to the previous period as −α2c1(y1 − D)

(as before) and moving some terms around, we get:

gcen,m(x1, y1, x̄2, y2, z̃2, D) ≡

α(1− α)c1y1 + α2c1D + Koδ(z̃2) + coz̃2 + h2(x̄2 − (y1 − x1) + z̃2)
+

+αKpδ((x̄2 − (y1 − x1) + z̃2)
−) + αcp(x̄2 − (y1 − x1) + z̃2)

−

+αc2(y2 − (x̄2 − (y1 − x1) + z̃2)) + α(h1(y1 −D)+ + b1(y1 −D)−)

under the same restrictions. Substituting system variables, we get:

gcen,m(x1, y1, xs, ys, z̃2, D) ≡

α(1− α)c1y1 + α(αc1D + h1(y1 −D)+ + b1(y1 −D)−) (3.8)

+Koδ(z̃2) + (co − αc2)z̃2 + h2(xs − y1 + z̃2)
+ (3.9)

+αKpδ((xs − y1 + z̃2)
−) + αcp(xs − y1 + z̃2)

− (3.10)

+αc2(ys − xs)
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with y1 ≥ x1, z̃2 ≥ 0, and ys ≥ y1 + (xs − y1 + z̃2)
+ = max{y1, xs + z̃2}. We can

rewrite gcen,m(·) as

gcen,m(x1, y1, xs, ys, z̃2, D) = L1(y1, D) + L2(y2, xs, z̃2) + αc2(ys − xs)

where L1(y1, D) represents the terms on line (3.8) and L2(y2, x̄2, z̃2) represents the

terms on lines (3.9) and (3.10).

Again, we relax some constraints. First, we drop the constraint that y1 ≥ x1.

Second, we relax the constraint on the system inventory position so that only ys ≥ xs.

For later reference, we label the relaxed assumptions as:

(R1) y1 ≥ x1, and

(R2) ys ≥ max{y1, xs + z̃2} → ys ≥ xs.

After relaxing the constraints, our cost per period becomes

gcen,r(y1, xs, ys, z̃2, D) ≡ L1(y1, D) + L2(y1, xs, z̃2) + αc2(ys − xs)

with z̃2 ≥ 0 and ys ≥ xs. The function gcen,r(·) can be shown to be non-negative by

analysis similar to Lemma 9 and we can thus use the same result from Bertsekas [7]

for the optimal cost function f ∗cen,r.

f ∗cen,r(xs)

= min
ys≥xs,z̃2≥0,y1

ED

[
gcen,r(y1, xs, ys, z̃2, D) + αf ∗cen,r(ys −D)

]
(3.11)

= min
ys≥xs,z̃2≥0,y1





ED[L1(y1, D)] + L2(y1, xs, z̃2)

+αc2(ys − xs) + αED[f ∗cen,r(ys −D)]





Again, it is important to notice that under the relaxed conditions, y1 and z̃2 have no
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effect on either ys or the cost to go, αED[f ∗cen,r(ys −D)]. Thus,

f ∗cen,r(xs)

= min
ys≥xs





minz̃2≥0,y1 {ED[L1(y1, D)] + L2(y1, xs, z̃2)}

+αc2(ys − xs) + αED[f ∗cen,r(ys −D)]





= min
ys≥xs

{
m(xs) + αc2(ys − xs) + αED[f ∗cen,r(ys −D)]

}
(3.12)

where m(xs) = minz̃2≥0,y1 {ED[L1(y1, D)] + L2(y1, xs, z̃2)}. Finding the optimal in-

ventory policy for stage 1 has become a myopic problem that now depends on y1 and

z̃2. Now consider m(xs) under two cases, when stage 1 does not order more than

the system inventory on hand (y1 ≤ xs) and when stage 1 does order more than the

system inventory on hand (y1 > xs). In the first case, we get that

L2(y1, xs, z̃2) = Koδ(z̃2) + (co − αc2)z̃2 + h2(xs − y1 + z̃2)

= Koδ(z̃2) + (h2 + co − αc2)z̃2 + h2(xs − y1)

which is minimized when z̃2 = 0 and thus L2(y1, xs, z̃2) = h2(xs − y1)− αc2xs when

y1 ≤ xs. In other words, if there isn’t a shortage, don’t use overtime production.

In the second case, there are four options.

L2(y1, xs, z̃2) =



αKp + αcp(y1 − xs) if z̃2 = 0

Ko + αKp + (co − α(cp + c2))z̃2 + αcp(y1 − xs) if 0 < z̃2 < y1 − xs

Ko + (co − αc2)(y1 − xs) if z̃2 = y1 − xs.

Ko + (h2 + co − αc2)z̃2 + h2(xs − y1) if z̃2 > y1 − xs.

It is easy to show that the third option is less expensive than both the second and

fourth options using assumption (A12). Thus, either the first option or the third
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option are optimal. Either z̃2 = 0 (use premium freight) with L2(y1, xs, z̃2) = αKp +

αcp(y1 − xs), or z̃2 = y1 − xs (use overtime production up to 0) with L2(y1, xs, z̃2) =

Ko + (co − αc2)(y1 − xs).

Before returning to m(xs), define NM(y1) as

NM(y1) = α((1− α)c1 + cp)y1 + αED[αc1D + h1(y1 −D)+ + b1(y1 −D)−].

Similar to the results of Lemma 10, define yM = arg miny1{NM(y1)}. As before,

NM(y1) is convex and we have that 0 ≤ yM ≤ yL ≤ yH < ∞. [0 ≤ yM by assumption

(A8), yM ≤ yL by assumption (A12), yL ≤ yH by algebra, and yH < ∞ as before.]

We have

m(xs) = min
z̃2≥0,y1

{ED[L1(y1, D)] + L2(y1, xs, z̃2)}

= min





miny1≤xs{h2xs + NH(y1)} if y1 ≤ xs

miny1>xs{αKp − αcpxs + NM(y1)} if y1 > xs

miny1>xs{Ko − (co − αc2)xs + NL(y1)} if y1 > xs.

= min





h2xs + miny1≤xs{NH(y1)}

αKp − αcpxs + miny1>xs{NM(y1)}

Ko − (co − αc2)xs + miny1>xs{NL(y1)}
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= min





h2xs + NH(yH) if xs ≥ yH

N(xs) if xs < yH

αKp + N(xs) if xs > yM

αKp − αcpxs + NM(yM) if xs ≤ yM

Ko + N(xs) if xs > yL

Ko − (co − αc2)xs + NL(yL) if xs ≤ yL

=





h2xs + NH(yH) if xs ≥ yH

N(xs) if tM ≤ xs < yH

αKp − αcpxs + NM(yM) if tL ≤ xs < tM

Ko − (co − αc2)xs + NL(yL) if xs < tL

where tM is defined as the smallest w such that N(w) ≤ αKp−αcpw +NM(yM) and

tL is redefined as

tL ≡
⌈

Ko + NL(yL)− αKp −NM(yM)

co − α(cp + c2)

⌉
. (3.13)

We have now defined m(xs) explicitly and again determined the relaxed optimal

inventory control policy at stage 1.

y∗cen,1 =





yH if xs ≥ yH

xs if tM ≤ xs < yH

yM if tL ≤ xs < tM

yL if xs < tL.

(3.14)

From equation (3.12), we have that

f ∗cen,r(xs) = min
ys≥xs

{
m(xs) + αc2(ys − xs) + αED[f ∗cen,r(ys −D)]

}
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As earlier in the chapter, we move the m(xs) and −αc2xs terms back to get

f ∗cen,s(xs) = min
ys≥xs

{
Gcen,s(ys) + α2c2µ + αED[f ∗cen,s(ys −D)]

}

where Gcen,s(ys) = α((1 − α)c2ys + ED[m(ys −D)]). We justify this step as before.

The only difference is that now the g+(·) function has an extra kink on the left.

From the left, g+(·) starts out decreasing at rate −(co − c2) up to point tL; next, by

assumption (A12), the function decreases at the steeper rate −(α(cp + c2)− c2) up to

the point tM ; after this point, the function behaves as before. Analogous results to

Lemma 11 hold, Gcen,s(·) is a quasiconvex function, and the relaxed optimal system

inventory control policy is a base-stock policy.

We have just shown that the optimal policies for the relaxed problem minimize

the fully constrained problem, assuming the original constraints are met. In other

words, as before, fcen(x1, x̄2) has the same solution as fcen,m(x1, xs) and fcen,r(xs)

has the same solution as fcen,s(xs), and we need to show the relaxed constraints are

met to link fcen,m(x1, xs) and fcen,r(xs). The first relaxed constraint (R1) is satisfied

by similar analysis as before. To show that the second relaxed constraint (R2) is

satisfied, note that in the relaxed optimal solution, z̃2 = 0 or z̃2 = y1 − xs. Thus,

the original constraint ys ≥ max{y1, xs + z̃2} is equivalent to ys ≥ max{y1, xs} under

optimality and similar analysis as before yields that (R2) is satisfied. Thus, we have

solved our original problem when both methods of expediting are available.
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3.6 Conclusion and Insights

In this chapter we have studied the two-stage supply chain under centralized

control. We have shown that the optimal inventory control policies for both stages

depend only on the system inventory, xs, and that the optimal policy for the system

inventory is a base-stock policy. In the first four sections, we assumed that overtime

production was the only method of expediting. In Section 3.1, we defined our relaxed

cost functions. In Section 3.2, we proved the relaxed optimal policy for stage 1 and

in Section 3.3, we proved the relaxed optimal policy for the system. In Section

3.4, we showed that the solution for the relaxed problem also solves the original,

fully constrained problem and in the last section we repeated the analysis when the

premium freight option is included.

The obvious question at this point is how much does centralized control save

over decentralized control? The centralized optimal policies are more complicated

than the two base-stock policies of the decentralized model, and they require that

the two firms share inventory information. In Chapter V, we address this issue with

numerical analysis. We show that the centralized optimal policies do affect significant

savings over the decentralized optimal policies, particularly if demand variation is

high or if the fixed costs of expediting are expensive.

We feel that some of our analyses and results are distinctive when compared to

traditional inventory literature. Traditional two-echelon proofs proceed by separating

variables and then solving two independent problems (e.g., see [21]). We tried this

approach at first, but we were unable to decouple the equations. However, we found
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that by substituting system variables and relaxing some constraints, we could first

solve a myopic problem then solve a straightforward dynamic program. Our optimal

policies also vary from traditional optimal inventory policies. Our stage 1 policy of

ordering up to two (or three) separate inventory levels and occasionally underordering

is quite different from traditional inventory policies. Hence, we feel that our base-

stock result for the system is also interesting.

The main managerial insight gained from this chapter is that to cut costs in this

kind of supply chain, stage 1 must be sensitive to the amount of inventory available

at stage 2. Stage 1 must be willing to occasionally underorder in order to save

significant overtime production costs (or premium freight shipping costs) at stage

2. By the same token, stage 2 must be willing to produce extra units when stage 1

underorders, trusting that stage 1 will want those additional units the next period.

Here it is interesting to compare our centralized results with those of Federgruen

and Zipkin [21]. In their model, stage 1 completely ignores stage 2 and follows a

base-stock model dependent on only stage 1 cost parameters; stage 2 also follows

a base-stock policy, but with a higher base-stock level to reduce the chance of not

filling supply requests from stage 1. In our model, stage 1 is sensitive to the costs

and inventory available at stage 2, and orders accordingly; stage 2 orders more when

stage 1 underorders, bringing the system inventory up to a base-stock level.



CHAPTER IV

COORDINATED MODEL

In this chapter, we study a coordinated system. We consider how to coordinate

the decisions made at both stages so that each stage reduces its own individual costs

and together the two stages achieve system optimal (or near-optimal) results. We

investigate two related, but slightly different contracts which we refer to as Contract

A and Contract B. In Section 4.1, we describe the two contracts and the associated

costs, and we describe the decision timing. In Section 4.2, we show that under

Contract A, both stages follow the centralized optimal policies. In Section 4.3, we

show that under Contract B, stage 1 follows the centralized optimal policy and the

system policy will be base-stock, although the base-stock level may be too high. In

Section 4.4, we discuss appropriate values for the linear transfer payment W . We

consider the average cost case in Section 4.5, and show that Contract B performs

optimally under this criterion. In Section 4.6, we reconsider the problem when both

options of expediting are available and we conclude the chapter in the last section.

91
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4.1 Contract Descriptions

In both contracts, stage 2 charges a two-tiered wholesale cost to stage 1, but also

offers a negotiable linear transfer payment to stage 1 to sweeten the deal. When

overtime production is the only method of expediting available, the wholesale cost

and transfer payment combined are w(z1 − x̄2), where z1 is the amount ordered by

stage 1 and x̄2 is the amount stage 2 has on hand before the order:

w(z1 − x̄2) ≡ −W +





h2(x̄2 − z1) if z1 ≤ x̄2

Ko + (co − αc2)(z1 − x̄2) if z1 > x̄2

where W is the side payment from stage 2 to stage 1. We will discuss appropriate

values for W later in the chapter. Note that in terms of previously defined variables,

z1− x̄2 = (y1−x1)− x̄2 = y1−(x1+ x̄2) = y1−xs. So, we can also write the combined

cost as

w(y1 − xs) = −W +





h2(xs − y1) if y1 ≤ xs

Ko + (co − αc2)(y1 − xs) if y1 > xs

The combined cost depends on whether the stage 1 order quantity is greater than

how much is available at stage 2, z1 > x̄2, or, in other words, whether the stage 1

order-up-to level is greater than how much is available in the system, y1 > xs. Under

either contract, stage 1 will receive the side payment every period, but will face

additional production costs that depend on the stage 2 inventory. These costs will

induce stage 1 to make its order quantity close to the stage 2 inventory. However,

stage 1 will now have some control over what that stage 2 inventory will be.

For both contracts, we assume that stage 2 proposes the contract to stage 1 and

the two firms negotiate over a linear transfer payment W . Assuming that the two
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stages are currently under decentralized control, there are two reasons why stage 2

should desire a contract. First, stage 2 pays all the costs of expediting, which may be

quite high, whereas stage 1 ignores these costs and is not affected by them. Second,

in our original problem, stage 2 is a parts supplier for a stage 1, a major automobile

assembler. Stage 1 is the more powerful firm, and an appropriate contract will help

even out the power structure between the two firms, helping stage 2. Stage 1 should

desire a contract if it reduces costs compared to the stage 1 decentralized costs. Also,

in both contracts, stage 1 will have some control over the inventory decisions at stage

2. We assume that both stages will follow the contract in good faith; however, in

reality, either stage may not follow the contract or may misreport their inventory

levels, and the possibility of gaming exists.

In Contract A, stage 1 determines its own inventory policy and stage 2 guarantees

that it will bring the system inventory up to the optimal level y∗cen,s as determined

in Chapter III. The advantage of this contract, as we will show, is that the system

optimal policies will be followed by both stages. The disadvantage of this contract

is that stage 2 must know the optimal centralized system policy prior to proposing

the contract. In Contract B, stage 1 is allowed to determine its own inventory

policy and the inventory policy for the system (and hence the stage 2 policy). The

advantage of Contract B is that stage 2 only needs to know its own costs to propose

the contract, and all of the inventory control parameters are determined explicitly

using the contract. The disadvantage of Contract B, as we will show, is that stage 1

may tend to overestimate the optimal system base-stock level, yielding non-optimal
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results. However, we show in Section 4.5 that Contract B is optimal for the average

cost case and in Chapter V, we show that for the discounted cost case Contract B

yields near-optimal results.

We have attempted to design contracts that follow the three “good” contract

properties discussed in Lee and Whang [38]: cost conservation, incentive compati-

bility, and informational decentralizability. Both contracts follow the first property:

cost conservation holds when all relevant system costs are paid by the two stages,

without requiring a “headquarters” to disburse payments. Incentive compatibility

holds when each stage is induced to follow the centralized optimal policy. This prop-

erty holds for stage 1 for both contracts, but not for stage 2: under Contact A,

stage 2 follows the optimal centralized policy as a condition of the contract (but not

because it is induced to do so), and under Contract B, stage 2 follows the policy

determined by stage 1, which may not be optimal. Informational decentralizability

holds when each stage makes decisions considering only their own information, i.e,

inventory levels. Neither of our contracts have this property for good reason. The

centralized optimal policies for both stages depend explicitly on the amount of inven-

tory available in the system, xs = x1 + x̄2, and thus sharing information is necessary

in order to achieve system optimal results.

When we analyze the contracts in this chapter (and compare costs in Chapter

V), we must be very careful about the timing of the decisions. Recall from Chapter

II that when stage 1 and stage 2 make their decisions in a decentralized fashion,

their respective inventory information is x1,t and x2,t. In Chapter III, centralized
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decisions are made with inventory information x1,t+1 and y2,t = x̄2,t. Thus the total

costs fdec,1(x1,0) and fdec,2(x2,0) contain additional costs compared to fcen(x1,1, x̄2,0),

which we must bear in mind when we compare them. Referring to Table 1.1, the

additional costs at stage 1 consist of all costs during time period 0 which are c1(y1,0−

x1,0)+h1(y1,0−D0)
+ + b1(y1,0−D0)

−. In other words, stage 1 pays for an extra time

period under the decentralized total cost calculation; to account for these costs, we

multiply the stage 1 total costs by a factor of α when we compare them to the total

costs under contract, which has the same decision timing as the centralized model.

The additional costs at stage 2 consist of the production costs during time period 0

which are c2(y2,0 − x+
2,0); to account for these costs, we simply subtract them from

the stage 2 decentralized costs when we compare contract costs.

4.2 Contract A

Under Contract A, stage 1 pays its original production, holding, and backorder-

ing costs plus the combined cost w(y1 − xs) to stage 2. Stage 2 pays its original

production, holding, and overtime costs and receives w(y1 − xs) from stage 1; stage

2 also guarantees to bring the system inventory up to the optimal centralized system

inventory level. For a range of appropriate W , we show that under Contract A, both

stage 1 and stage 2 will follow the optimal policies for the centralized model and will

each spend less than under decentralized control.

Having adjusted the original stage 1 costs by α to equalize the timing, stage 1
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pays the following one period costs:

g1,CA(x1, xs, y1, D) = α(c1(y1 − x1) + h1(y1 −D)+ + b1(y1 −D)−) + w(y1 − xs).

with y1 ≥ x1. Again by [7], the optimal cost function f ∗1,CA(x1, xs) satisfies

f ∗1,CA(x1, xs) = min
y1≥x1

ED[g1,CA(x1, xs, y1, D) + αf ∗1,CA(y1 −D, y∗cen,s −D)].

since stage 2 ensures the centralized system inventory. The solution to this equation

is the optimal inventory control policy which we seek. As before, we move the −c1x1

term back and get

g1,CA,m(x1, xs, y1, D) =

α((1− α)c1y1 + αc1D + h1(y1 −D)+ + b1(y1 −D)−) + w(y1 − xs)

with y1 ≥ x1. Note that

f ∗1,CA(x1, xs) = −αc1x1 + f ∗1,CA,m(x1, xs).

We now relax the constraint that y1 ≥ x1 and write our relaxed one period costs and

optimal cost functions:

g1,CA,r(xs, y1, D) =

α((1− α)c1y1 + αc1D + h1(y1 −D)+ + b1(y1 −D)−) + w(y1 − xs)

and again by [7] we have

f ∗1,CA,r(xs) = min
y1

ED[ g1,CA,r(xs, y1, D) + αf ∗1,C1,r(y
∗
cen,s −D)]

= min
y1

ED[ g1,CA,r(xs, y1, D)] + αED[ f ∗1,C1,r(y
∗
cen,s −D)]
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since y1 has no effect on the costs to go. We now show that stage 1 follows the

optimal policy of the centralized model.

Lemma 12 Under Contract A, stage 1 follows the optimal policies of the centralized

model.

Proof: The stage 1 relaxed optimal policy under Contract A is the solution to

the myopic problem:

min
y1

ED[g1,CA,r(xs, y1, D)]

= min
y1

ED[α(1− α)c1y1 + α2c1D + αh1(y1 −D)+ + αb1(y1 −D)− + w(y1 − xs)]

= min
y1

{α(1− α)c1y1 + ED[α2c1D + αh1(y1 −D)+ + αb1(y1 −D)−]−

W + h2(xs − y1)
+ + Koδ(y1 − xs) + (co − αc2)(y1 − xs)

+}

= m(xs)−W.

Stage 1 minimizes the same problem, m(xs), as in the centralized model, and

hence stage 1 will follow the centralized optimal policy for the relaxed problem.

Under the assumption (A10) that x1 ≤ S∗1,dec, we can show that the solution to the

relaxed problem will always have y1 ≥ x1 by the same argument as in Theorem 5.

Thus we have solved the original, fully constrained problem as well. Stage 1 follows

the optimal policies of the centralized model. 2

From the previous lemma and under the assumption that xs ≤ S∗cen we have that

f ∗1,CA(x1, xs) = −αc1x1 + f ∗1,CA,m(x1, xs)

= −αc1x1 + f ∗1,CA,r(xs)
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= −αc1x1 + min
y1

ED[g1,CA,r(xs, y1, D)] + αED[f ∗1,CA,r(S
∗
cen −D)]

= −αc1x1 + m(xs)−W + αED[f ∗1,CA,r(S
∗
cen −D)]

= −αc1x1 + m(xs)−W +

αED[m(S∗cen −D)−W + αED[f ∗1,CA,r(S
∗
cen −D)]]

= −αc1x1 + m(xs) + (αED[m(S∗cen −D)]−W )

+α(αED[m(S∗cen −D)]−W ) + α2(αED[m(S∗cen −D)]−W ) + . . .

= −αc1x1 + m(xs) +
1

1− α
(−W + αED[m(S∗cen −D)])

= −αc1x1 + m′(xs) +
1

1− α
(−W + α(ED[m′(S∗cen −D)] + αc1µ)).

Now consider stage 2 under Contract A. We know stage 2 will follow the cen-

tralized optimal policy (it is in the contract), but what will the cost be? Under

decentralized control, stage 2 pays the following costs per period:

g2,dec(x2, y2, D) = c2(y2 − x+
2 ) + Koδ((y2 −D)−) + co(y2 −D)− + h2(y2 −D)+

with y2 ≥ x+
2 . As usual we move the −c2x

+
2 term back and get

g2,dec,m(x2, y2, D) = c2y2 + Koδ((y2 −D)−) + co(y2 −D)− + (h2 − αc2)(y2 −D)+

under the same restrictions. Now we replace y2 with x̄2 and D with y1 − x1, then

x1 + x̄2 with xs and get:

g2,dec,m(x̄2, xs, y1) = c2x̄2 + Koδ(y1 − xs) + co(y1 − xs)
+ + (h2 − αc2)(xs − y1)

+.

The decision under Contract A takes places after x̄2 has been chosen. We now move

the c2x̄2 back a period as αc2y2 and define our one period cost at stage 2 under
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Contract A as:

g2,C2(xs, y1, y2)

= Koδ(y1 − xs) + co(y1 − xs)
+ + (h2 − αc2)(xs − y1)

+ + αc2y2 − w(y1 − xs)

= (h2 − αc2)(xs − y1)
+ + co(y1 − xs)

+ + Koδ(y1 − xs) + αc2y2

+W − h2(xs − y1)
+ − (co − αc2)(y1 − xs)

+ −Koδ(y1 − xs)

= αc2y2 + αc2(y1 − xs) + W

= αc2(y1 + y2 − xs) + W

= αc2(S
∗
cen − xs) + W

since stage 2 brings the system inventory up to S∗cen every period. We can calculate

f ∗2,CA(xs).

f ∗2,CA(xs) = αc2(S
∗
cen − xs) + W + ED[

∞∑

k=1

αk(αc2(S
∗
cen − xs,k) + W )]

= αc2(S
∗
cen − xs) + W + ED[

∞∑

k=1

αk(αc2(S
∗
cen − (S∗cen −Dk−1)) + W )]

= αc2(S
∗
cen − xs) + W + ED[

∞∑

k=1

αk(αc2Dk−1) + W )]

= αc2(S
∗
cen − xs) + W +

∞∑

k=1

αk(ED[αc2Dk−1] + W )

= αc2(S
∗
cen − xs) + W +

∞∑

k=1

αk(αc2µ + W )

= αc2(S
∗
cen − xs) +

1

1− α
(W + α2c2µ).

Note that we can interchange the expectation and the infinite sum by Fubini’s

Theorem since the terms are all positive. A quick algebraic check shows that

f ∗1,CA(x1, xs) + f ∗2,CA(xs) = f ∗cen(x1, xs), so Contract A does achieve system opti-

mality. Lastly, neither stage will bother considering Contract A unless it decreases
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costs. There is a range of W for which both stages will improve over the decentralized

model. In Section 4.4, we discuss the values of W such that f ∗1,CA(x1, xs) < αf ∗1,dec(x1)

and f ∗2,CA(xs) < f ∗2,dec(x2)− c2(S
∗
2,dec− x+

2 ). Note that the values have been adjusted

so equivalent costs are considered, given the different decision timing.

4.3 Contract B

Under Contract B, stage 1 pays its original production, holding, and backordering

costs plus the combined cost w(y1 − xs) to stage 2. Stage 1 determines its own

inventory policy, the system inventory policy, and therefore stage 2’s inventory policy.

Stage 2 pays its original costs less w(y1−xs) and follows the inventory control policy

determined by stage 1. We show that under Contract B, stage 1 will follow the

optimal policies for the centralized model, stage 1 will determine that a base-stock

policy is optimal for the system inventory, but that the base-stock level determined

by stage 1, S∗CB, may be greater than the optimal base-stock level S∗cen. Thus, the

system performance under Contract B may not be optimal.

Stage 1 pays the same one period costs as under Contract A:

g1,CB(x1, xs, y1, D) = α(c1(y1 − x1) + h1(y1 −D)+ + b1(y1 −D)−) + w(y1 − xs).

with y1 ≥ x1. However, the optimal cost function f ∗1,CB(x1, xs) which satisfies

f ∗1,CB(x1, xs) = min
y1≥x1

ys≥max{xs,y1}
ED[g1,CB(x1, xs, y1, D) + αf ∗1,CB(y1 −D, ys −D)]

is different since stage 1 must also choose the system inventory level ys. As before,
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we move the −c1x1 term back and get

g1,CB,m(x1, xs, y1, D) =

α((1− α)c1y1 + αc1D + h1(y1 −D)+ + b1(y1 −D)−) + w(y1 − xs)

with y1 ≥ x1. Note that

f ∗1,CB(x1, xs) = −αc1x1 + f ∗1,CB,m(x1, xs).

We now relax the constraints that y1 ≥ x1 and that ys ≥ y1 and write our relaxed

one period costs and optimal cost functions:

g1,CB,r(xs, y1, D) =

α((1− α)c1y1 + αc1D + h1(y1 −D)+ + b1(y1 −D)−) + w(y1 − xs)

and again by [7] we have

f ∗1,CB,r(xs) = min
y1,ys≥xs

ED[ g1,CB,r(xs, y1, D) + αf ∗1,CB,r(ys −D)]

= min
ys≥xs

{ min
y1

ED[g1,CB,r(xs, y1, D)] + αED[f ∗1,CB,r(ys −D)]}
since y1 has no effect on the costs to go. Following the argument from Lemma 12,

we get that under the relaxed conditions, miny1 ED[g1,CB,r(xs, y1, D)] = m(xs)−W ,

stage 1 follows the centralized optimal policy, and

f ∗1,CB,r(xs) = min
ys≥xs

{
m(xs)−W + αED[f ∗1,CB,r(ys −D)]

}
.

Now we move the m(xs) term back as αm(ys−D), define g1,CB,r2(ys, D) ≡ αm(ys−

D), and get

f ∗1,CB,r2(xs) = min
ys≥xs

{
ED[g1,CB,r2(ys, D)]−W + αED[f ∗1,CB,r2(ys −D)]

}

= min
ys≥xs

{
αED[m(ys −D)]−W + αED[f ∗1,CB,r2(ys −D)]

}
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Note that f ∗1,CB,r(xs) = m(xs) + f ∗1,CB,r2(xs) and that f ∗1,CB,r2(xs) is similar to a

function we have previously studied. Besides the constant W , the term we are trying

to minimize every period is αED[m(ys − D)]; in equation (3.7) from Chapter III

(besides the constant α2c2µ), the terms we are trying to minimize are αED[m(ys −

D)] + α(1−α)c2ys. The minimization problem differs by the term α(1−α)c2ys, the

coefficient of which will be relatively small for high values of α.

Lemma 13 Under Contract B, stage 1 determines a base-stock policy for the system

with base stock level S∗CB ≥ S∗cen, and the optimal policies for the relaxed problem also

solve the original, fully constrained problem.

Proof: The base-stock result follows from the same arguments as Lemma 11

and Theorem 4 from Chapter III. The difference is that the α(1 − α)c2ys term

is missing. We redefine g+(w) ≡ m(w), which is still quasiconvex, although the

slopes have changed slightly (the slope on the left is now −(co − αc2) < 0, in the

middle the function follows N(w), and the slope on the right is h2 > 0). Because

0 < α(1− α)c2ys, the “slope” under Contract B is less than in the centralized case,

and S∗CB ≥ S∗cen. To show that f1,CB,m(x1, xs) = f1,CB,r(xs), we follow the exact

same proof as Theorem 5 and use the fact that S∗CB ≥ S∗cen. 2

How different are S∗CB and S∗cen and how different are the total costs under Con-

tract B and under centralized control? First, since S∗CB and S∗cen are discrete, they

may turn out to be the same. Second, as α ↑ 1, the values should converge together.

We show that this is the case for α = 1 in Section 4.5 and in Chapter V, we show that

the values of S∗CB and S∗cen and the total costs are very close by numerical analysis.
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Under the assumption that xs ≤ S∗CB we have that

f ∗1,CB(x1, xs) = −αc1x1 + m′(xs) +
1

1− α
(−W + α(ED[m′(S∗CB −D)] + αc1µ))

and

f ∗2,CB(xs) = αc2(S
∗
CB − xs) +

1

1− α
(W + α2c2µ).

The total system cost under Contract B is the sum of these two costs. By some

algebra, we get that

f ∗1,CB(x1, xs) + f ∗2,CB(xs)

= −αc1x1 + m′(xs) + αc2(S
∗
CB − xs) +

α

1− α
(ED[m′(S∗CB −D)] + α(c1 + c2)µ)

≥ −αc1x1 + m′(xs) + αc2(S
∗
cen − xs) +

α

1− α
(ED[m′(S∗cen −D)] + α(c1 + c2)µ)

= fcen(x1, xs).

It is possible to guarantee that Contract B will yield the centralized optimal

results, by adding the term (1 − α)xs to w(y1 − xs). However, now the combined

cost w(y1 − xs) depends not only on the difference y1 − xs, but also on the actual

value of xs. We feel that this kind of contract is less reasonable than one that simply

depends on the difference. As mentioned earlier, neither stage 1 nor stage 2 will even

consider Contract B unless it saves them money. In the next section, we explore the

appropriate values of the transfer payment W that benefit both stages.

4.4 Transfer Payment W

For either contract, the two stages need to negotiate an appropriate transfer

payment W . Stage 1 will determine a minimum value of the transfer payment and
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strive for the highest possible payment during negotiations. Alternatively, stage 2

will determine a maximum value of the transfer payment and will strive to make it

as low as possible. We will first discuss appropriate values for WA under Contract

A. The analysis for Contract B will be very similar.

For stage 2 to consider proposing the contract, the total cost under contract

must be less expensive for than under decentralized control. Taking into account the

different decision timing, stage 2 will require that f ∗2,CA(xs) < f ∗2,dec(x2)− c2(S
∗
2,dec−

x+
2 ), or f ∗2,CA(xs)− (f ∗2,dec(x2)− c2(S

∗
2,dec − x+

2 )) < 0.

f ∗2,CA(xs)− (f ∗2,dec(x2)− c2(S
∗
2,dec − x+

2 ))

= αc2(S
∗
cen − xs) +

1

1− α
(WA + α2c2µ)−

(−c2x
+
2 +

G2,dec,m(S∗2,dec)

1− α
− c2(S

∗
2,dec − x+

2 ))

= c2(α(S∗cen − xs) + S∗2,dec) +
1

1− α
(WA + α2c2µ−G2,dec,m(S∗2,dec))

< 0

Solving for WA, we get that

WA < G2,dec,m(S∗2,dec)− α2c2µ− (1− α)c2(α(S∗cen − xs) + S∗2,dec). (4.1)

Note that WA does depend on xs. However, for a good approximation, if we let

α ↑ 1, we get that stage 2 desires WA < G2,dec,m(S∗2,dec) − c2µ. In other words, the

transfer payment must be less that stage 2’s per period expected decentralized costs

that are not due to production.

For stage 1 to consider accepting the contract, again taking into account the

different decision timing, stage 1 will require that f ∗1,CA(x1, xs) < αf ∗1,dec(x1), or
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f ∗1,CA(x1, xs)− αf ∗1,dec(x1) < 0.

f ∗1,CA(x1, xs)− αf ∗1,dec(x1)

= −αc1x1 + m′(xs) +
1

1− α
(−WA + α(ED[m′(S∗cen −D)] + αc1µ)

−α

(
−c1x1 +

G1,dec,m(S∗1,dec)

1− α

)

= m′(xs) +
1

1− α
(−WA + α(ED[m′(S∗cen −D)]− (G1,dec,m(S∗1,dec)− αc1µ))

< 0.

Solving for WA, we get that

WA > α(ED[m′(S∗cen −D)]− (G1,dec,m(S∗1,dec)− αc1µ)) + (1− α)m′(xs). (4.2)

Note that WA does depend on xs. Again, for a good approximation, if we let α ↑ 1,

we get that stage 1 desires WA > ED[m′(S∗cen−D)]−(G1,dec,m(S∗1,dec)−c1µ). In other

words, the transfer payment must be more than the difference between the per period

expected centralized non-production costs and the per period stage 1 decentralized

non-production costs.

So, under the assumption of risk neutrality, both stage 1 and stage 2 will ac-

cept Contract A for values of WA defined by equations (4.1) and (4.2). However,

as mentioned previously, the inventory control policies under Contract A are more

complicated than the two base-stock policies of the decentralized model. Further,

the contract requires that both stages trust each other and share information. Real-

istically, for both stages to actually endorse this contract, a fairly significant savings

would have to exist for both parties. In the next chapter, we show that these savings

can be significant with numerical analysis.
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Now we consider Contract B. The analysis of WB is nearly identical, and here

we list the results. For stage 2 to propose Contract B, we must have f ∗2,CB(xs) <

f ∗2,dec(x2)− c2(S
∗
2,dec − x+

2 ), or that

WB < G2,dec,m(S∗2,dec))− α2c2µ− (1− α)c2(α(S∗CB − xs) + S∗2,dec).

This condition is nearly the same as before. For stage 1 to accept contract B, we

must have that f ∗1,CA(x1, xs) < αf ∗1,dec(x1), or that

WB > α(ED[m′(S∗CB −D)]− (G1,dec,m(S∗1,dec)− αc1µ)) + (1− α)m′(xs).

4.5 Average Cost Case

In this section, we consider the average cost case of some of our previous models,

under the assumption that overtime production is the only method of expediting. In

the previous sections of this chapter, we showed that differences may exist between

Contract A and Contract B for 0 < α < 1; when α = 1, we will show that the

structure of the optimal policies remains the same for the decentralized, centralized,

and contract coordinated models and that the two contracts induce exactly the same

behavior from both stages. We are now interested in minimizing the average cost

function fπ(x0):

fπ(x0) ≡ lim
N→∞

1

N
E

[
N−1∑

k=0

g(period “k” variables)

]
.

We discuss the existence of the limit later in the section. We wish to find the optimal

policy π out of all possible admissible policies Π and hence the optimal average cost
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per period over the infinite horizon, f ?(x0) ≡ minπ∈Π fπ(x0), where the ? indicates

average cost optimality.

We now revisit the results from the first two sections of Chapter II, the first four

sections of Chapter III, and the previous sections of the current chapter. The results

from Sections 2.1 and 2.2 continue to hold for the average cost case by Section 4 of

Zheng’s paper [66]. The optimal policy at stage 1 is to produce up to a base-stock

level of S?
1,dec and the optimal policy at stage 2 is to produce up to a base-stock level

of S?
2,dec. In fact, for any initial inventories x1 and x2,

f ?
1,dec(x1) = G1,dec,m(S?

1,dec), and

f ?
2,dec(x2) = G2,dec,m(S?

2,dec).

The analysis of the centralized and coordinated models is not as straightforward.

For this analysis, we restrict our attention to finite demand distributions and finite

inventory state spaces. We feel that these are not restrictive assumptions as in reality,

an upper limit on demand must exist and there are physical limits on inventory

at both stages. For the remainder of this section, we assume that the demand

D ∈ [0, D̂]. (The assumption that the minimum value of D = 0 is not necessary, but

clarifies the exposition.) Since the demand distribution is logconcave, the random

variable D has a positive probability of taking on all values in [0, D̂]. We also assume

that the inventory positions for the centralized model, x1 and x̄2, have finite state

spaces with −D̂ ≤ x1 ≤ x̂1 and 0 ≤ x̄2 ≤ ̂̄x2, where x̂1 and ̂̄x2 are large numbers.

The lower bound on x1 is −D̂ for ease of exposition; this lower bound could be any

negative number and the analysis would still hold with a slight modification of the
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policy π. The lower bound on x̄2 is 0 since backorders are not allowed at stage 2.

We now reconsider the centralized model with α = 1. Since we have restricted

our attention to finite state spaces, the average cost exists by Proposition 1.1 of

Bertsekas ([7], page 187). We next use Proposition 2.6 from Bertsekas ([7], page 198)

to show that the optimal average cost per period f ?
cen satisfies Bellman’s equation

and then show that similarly structured inventory policies as those from Chapter

III minimize the average cost case. Proposition 2.6 of [7] states the following: Let

i1, j1 ∈ [−D̂, x̂1] and i2, j2 ∈ [0, ̂̄x2]. If for every two inventory positions (i1, i2) and

(j1, j2), there exists a stationary policy π such that, for some k, P ((x1,k, x̄2,k) =

(j1, j2)|(x1,0, x̄2,0) = (i1, i2), π) > 0, then f ?
cen has the same value for all initial states,

f ?
cen = limα→1(1− α)f ∗cen(i1, i2), and f ?

cen satisfies Bellman’s equation.

Consider the following stationary policy π:

π(x1, x̄2) =





(x1, x̄2) if x1 ≥ 0

(x̂1, x̄2 − 1) if x1 < 0 and x̄2 > 0

(x̂1, ̂̄x2) if x1 < 0 and x̄2 = 0

The policy works as follows: If the inventory at stage 1 is non-negative, the policy π

keeps both values the same, but then the stage 1 inventory decreases by a random

amount D, and the inventory at the start of the next period is (x1−D, x̄2). Eventu-

ally, the stage 1 inventory goes negative, at which point stage 1 places a large order

up to x̂1, stage 2 experiences demand x̂1− x1 from stage 1, then stage 2 reorders up

to its previous inventory level minus 1 unit. The stage 1 inventory quantity rapidly

cycles from its upper bound to its lower bound, while the stage 2 inventory quantity

slowly cycles by 1 unit each time stage 1 completes a cycle.
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The probability that D = 1 for the first (x̂1 + 1) ̂̄x2 periods is small, but positive.

Thus, every possible value of x̄2 has a positive probability of being paired up with

every non-negative value of x1, and with x1 = −1. There is also a positive probability

that for the next (x̂1 + 1) ̂̄x2 periods, D = 1 every period, except when x1 = 0, when

D = 2. Thus, every possible value of x̄2 has a positive probability of being paired

up with x1 = −2. These small but positive probabilities continue through the case

where when x1 = 0, D = D̂. At this point, after k = (x̂1 + 1) ̂̄x2D̂ periods, there is a

positive probability of reaching every possible inventory position. Thus, Proposition

2.6 of [7] holds.

From Proposition 2.6 of [7], we know that f ?
cen satisfies Bellman’s equation. We

now need to show that the structure of the optimal policies for the average cost

case is the same as the structure for the discounted cost case, or in other words,

we need to show that the results from Chapter III do not depend on the fact that

0 < α < 1. Following Section 3.1, we define gcen(·) and f ?
cen(x1, x̄2) the same way,

just with α = 1. We can move the −c1x1 term back as −c1(y1 − D) by the same

reasoning, and we substitute the same system variables as before. We make the same

relaxations and get that

gcen,r(xs, y1, ys, D) = c1D + h1(y1 −D)+ + b1(y1 −D)−

+Koδ(y1 − xs) + (co − c2)(y1 − xs)
+ + h2(xs − y1)

+

+c2(ys − xs)

with ys ≥ xs. We define f ?
cen,r(xs) the same way, and note that since xs = x1 + x̄2,

Proposition 2.6 of [7] still holds, since we have shown that that we we can reach every
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inventory pair, we can surely reach the sum of every pair. We move the minimization

over y1 inside the minimization over ys for the same reason, defining the functions

m(xs) and m′(xs) for the average cost case.

In Section 3.2, the definitions of NL(y1), NH(y1), and N(xs) do not change (they

actually simplify since α = 1) and our study of m(xs) remains the same. Theorem 3

still holds and the structure of the optimal policy for stage 1 is the same. In Section

3.3, we define f ?
cen,s(xs) as before and Lemma 11 still holds. Theorem 4 continues to

hold because Gcen,s(ys) is only different by the factor of α, and the base-stock result

again holds from Zheng [66], only this time from Section 4 rather than Section 3.

Finally, Theorem 5 in Section 3.4 holds by the same logic, and thus the structure of

the optimal policies for the average cost case is the same as for the discounted cost

case. Using Proposition 2.6 of [7], we get that:

f ?
cen = lim

α→1
(1− α)f ∗cen(x1, x̄2)

= ED[m′(S?
cen −D)] + (c1 + c2)µ

At this point, it is interesting to compare the average cost for the system under

centralized control and under decentralized control. Under centralized control, the

average cost for the system is

f ?
cen = (c1 + c2)µ + ED[m′(S?

cen −D)]

= (c1 + c2)µ +

ED min
y1





h1(y1 −D)+ + b1(y1 −D)− + Koδ(y1 − (S?
cen −D))+

(co − c2)(y1 − (S?
cen −D))+ + h2((S

?
cen −D)− y1)

+





.
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Under decentralized control, the average cost for the system is

f ?
1,dec + f ?

2,dec = G1,dec(S
?
1,dec) + G2,dec(S

?
2,dec)

= c1µ + min
y1

ED[h1(y1 −D)+ + b1(y1 −D)−] +

c2µ + min
y2

ED[Koδ((y2 −D)−) + (co − c2)(y2 −D)− + h2(y2 −D)+]

= (c1 + c2)µ +

min
y1

ED[h1(y1 −D)+ + b1(y1 −D)−] +

min
y2

ED[Koδ((y2 −D)−) + (co − c2)(y2 −D)− + h2(y2 −D)+].

As one would expect, both systems pay the average production costs at both stages,

plus each system minimizes inventory and overtime production costs. Under decen-

tralized control, stage 1 independently minimizes its own holding and backordering

costs and stage 2 independently minimizes its own holding and overtime production

costs. Under centralized control, stage 1 minimizes all of these costs together, and

hence potential savings exist for the centralized system.

We now reconsider the earlier sections of this chapter for the average cost model.

We first consider Contract A from Section 4.2. We define g1,CA(x1, xs, y1, D) and

f ?
1,CA(x1, xs) the same as we did earlier in the chapter. Note that the inventory

state for f ?
1,CA is (x1, xs), rather than (x1, x̄2) as earlier in this section. However,

since xs = x1 + x̄2, the possible inventory positions have a one-to-one correlation

and Proposition 2.6 of [7] still holds. Following the rest of Section 4.2, we define the

moved and relaxed average cost functions as before. Lemma 12 still holds because we

first consider the myopic problem for stage 1 and then solve for the fully constrained

problem exactly as in Chapter III. Thus, under Contract A, stage 1 follows the same
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kind of optimal policy as in the discounted cost case. We define f ?
2,CA(xs) as before,

and note that Proposition 2.6 of [7] holds because xs = x1 + x̄2. Stage 2 follows the

centralized policy (because it’s in the contract) and ensures that the system optimal

base-stock level will be met. By Proposition 2.6 of [7],

f ?
1,CA = lim

α→1
(1− α)f ∗1,CA(x1, xs)

= −W + ED[m′(S?
cen −D)] + c1µ

Similarly,

f ?
2,CA = lim

α→1
(1− α)f ∗2,CA(xs)

= W + c2µ

In other words, under Contract A, stage 2 pays only its own production costs and

the transfer payment. Stage 1 pays for every other cost in the system, and thus will

require a significant transfer payment to enter into the contract.

Now consider Contract B. Following Section 4.3, we define f ?
1,CB(x1, xs),

f ∗1,CB,m(x1, xs), and f ?
1,CB,r(xs) as before. For f ?

1,CB,r(xs), we move the m(xs) term

back as before; however, since α = 1, the coefficient of α(1 − α)c2ys is 0 and hence

the two minimization problems are the same. Thus, Contract B yields the same

results as Contract A and the centralized model for the average cost case. Under

either contract, the transfer payment W has the following bounds:

ED[m′(S?
cen −D)]− (G1,dec,m(S?

1,dec)− c1µ) < W < G2,dec,m(S?
2,dec)− c2µ.

The transfer payment is bounded below by the difference between the expected

centralized system non-production costs and the expected decentralized stage 1 non-
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production costs, and is bounded above by the expected decentralized stage 2 non-

production costs. In this section, we have shown that under the average cost criterion,

our previous results hold (assuming only one method of expediting) and that both

contracts achieve system optimality.

4.6 Contracts with Premium Freight

In this section we include premium freight as an expediting option and reconsider

our contracts. We show that a combined cost function similar to the one described

in Section 4.1, with an additional payment choice for stage 1, will achieve system

optimality. We do not specify a particular contract (A or B) because the analysis is

the same for both.

The combined cost consists of the transfer payment W and the wholesale cost

that stage 2 will charge stage 1. For this case, the wholesale cost will be h2(xs − y1)

if y1 ≤ xs, as before. However, if stage 1 decides to order more than the system

has available, stage 1 will actually choose from a menu of two different costs, either

αKp + αcp(y1 − xs) or Ko + (co − αc2)(y1 − xs). At first glance, the choice may

seem obvious: pick the minimum of the two, depending on the values of y1 and xs.

However, this choice may not be optimal. When stage 1 chooses to force expediting

at stage 2, the optimal value of y1 will be either yM or yL (refer to Section 3.5). These

two values depend on the slopes of the functions to be minimized, which depend on

the coefficients of y1 in the choices above.

We now show why picking the minimum of the two costs, without considering
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other costs, may not be optimal. Define

wm(y1 − xs) = −W +





h2(xs − y1) if y1 ≤ xs

min





αKp + αcp(y1 − xs)

Ko + (co − αc2)(y1 − xs)





if y1 > xs

The analysis of the contract turns out to be the same as in Section 4.2 up until

Lemma 12. Now note that we can rewrite

wm(y1 − xs) = −W +





h2(xs − y1) if y1 ≤ xs

αKp + αcp(y1 − xs) if 0 > y1 − xs ≥ tmin

Ko + (co − αc2)(y1 − xs) if y1 − xs < tmin

where tmin ≡ K0−αKp

co−α(cp+c2)
. Following the steps of Lemma 12,

min
y1

ED[g1,C,r(xs, y1, D)]

= miny1 ED[α((1− α)c1y1 + αc1D + h1(y1 −D)+ + b1(y1 −D)−) + wm(y1 − xs)]

= miny1 {α(1− α)c1y1 + ED[α2c1D + αh1(y1 −D)+ + αb1(y1 −D)−]−

W + h2(xs − y1)
+ + (αKp + cp(y1 − xs))1(0 > y1 − xs ≥ tmin) +

(Ko + (co − αc2)(y1 − xs))1(y1 − xs < tmin)}

= miny1 {α(1− α)c1y1 + ED[α2c1D + αh1(y1 −D)+ + αb1(y1 −D)−]

h2(xs − y1)
+ + (αKp + cp(y1 − xs))1(0 > y1 − xs ≥ tmin) +

(Ko + (co − αc2)(y1 − xs))1(y1 − xs < tmin)} −W

6= m(xs)−W.

Referring to Section 3.5, we see that by minimizing too early, we have limited the

options that stage 1 has. Note that the real threshold between premium freight
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and overtime production should be tL, as defined in equation (3.13), not tmin as

defined above. The combined cost wm(y1− xs) does not induce stage 1 to follow the

centralized optimal policy.

Now redefine the wholesale cost as below, where the “choice” indicates that stage

1 may choose either of the two costs if y1 > xs.

wc(y1 − xs) = −W +





h2(xs − y1) if y1 ≤ xs

choice





αKp + αcp(y1 − xs)

Ko + (co − αc2)(y1 − xs)





if y1 > xs

Note that we could write wc(y1 − xs) without the choice, but it would depend on

both the difference y1 − xs and the actual value of xs. Again following Lemma 12,

min
y1

ED[g1,C,r(xs, y1, D)]

= miny1 ED[α((1− α)c1y1 + αc1D + h1(y1 −D)+ + b1(y1 −D)−) + wc(y1 − xs)]

= miny1 {α(1− α)c1y1 + ED[α2c1D + αh1(y1 −D)+ + αb1(y1 −D)−]−

W + h2(xs − y1)
+ + {(αKpδ(y1 − xs) + αcp(y1 − xs)

+),

(Koδ(y1 − xs) + (co − αc2)(y1 − xs)
+)}}

= miny1 {α(1− α)c1y1 + ED[α2c1D + αh1(y1 −D)+ + αb1(y1 −D)−]

+h2(xs − y1)
+ + {(αKpδ(y1 − xs) + αcp(y1 − xs)

+),

(Koδ(y1 − xs) + (co − αc2)(y1 − xs)
+)}} −W

= min {(h2xs + min
y1≤xs

{NH(y1)}),

(αKp − αcpxs + min
y1>xs

{NM(y1)}),

(Ko − (co − αc2)xs + min
y1>xs

{NL(y1)})} −W
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= m(xs)−W.

Thus, the combined cost wc(y1 − xs) does induce stage 1 to follow the centralized

optimal policy when both premium freight and overtime production exist as expe-

diting options. By giving stage 1 the choice of which payment to make, not only

do we achieve optimality, but we also help convince stage 1 to actually consider the

contract by offering more flexibility in payments. The rest of the analysis for this

case follows exactly as in Sections 4.2, 4.3, and 4.4.

4.7 Conclusion and Insights

In this chapter, we have considered two contracts that will induce system opti-

mality (or near-optimality). In both contracts, stage 1 pays a two-tiered wholesale

cost to stage 2, and stage 2 makes a linear transfer payment to stage 1. Under

Contract A, the two stages achieve system optimality, but Contract A requires that

stage 2 has prior knowledge of the optimal system base-stock level. Under Contract

B, stage 1 achieves centralized optimality, the two stages together follow the right

kind of policy for the system, but the actual system inventory may be too high.

For each stage to be interested in a contract, the transfer payment W will have to

be within certain boundaries; above one threshold for stage 1 and below another

threshold for stage 2. Using the average cost criterion, we showed that the structure

of the optimal policies are the same as for the discounted cost case and then showed

that Contract B will achieve system optimality. Finally, when premium freight is

included, an interesting three-tiered wholesale cost with a choice will induce stage 1
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to behave as in the centralized model.

The main insight from this chapter is that it is possible for the two stages to

achieve system optimal (or near-optimal) performance by working together under

one of the two contracts. Because Contract A requires prior knowledge of optimal

system parameters, it would be more likely to work as a coordinating scheme between

managers at two stages that are both part of the same firm. On the other hand, for

the manager at stage 2 to propose Contract B, that manager must only know the

various costs associated with stage 2 operations. Hence, Contract B is more likely

to work between two independent firms than Contract A. In either contract, the

wholesale cost is pre-determined, but the transfer payment W is negotiable. There

exists a range of W , and we feel that somewhere within this range the two stages can

agree on a value that benefits both stages enough so that it is worthwhile to follow

the contractual policies, rather than the decentralized base-stock policies.



CHAPTER V

NUMERICAL ANALYSIS

In this chapter, we perform a numerical analysis. We first discuss our numerical

experiment and then use the results of the experiment in the following sections. In

Section 5.1, we compare costs under centralized and decentralized control. We show

that the savings of the centralized model are significant, particularly if the demand

variance is high, if the holding costs are high, or if the setup cost for overtime

production Ko is large. In Section 5.2, we compare costs under Contract B to the

centralized costs. We show that in general, Contract B results in very near-optimal

system performance. In Section 5.3, we study two example problems to see how the

centralized model saves costs over the decentralized model and to gain insight about

the transfer payment W under both contracts. We conclude the chapter in Section

5.4.

We performed numerical experiments written in C++ code, under the assumption

that overtime production is the only method of expediting in order to reduce the

total number of variables. During each experiment, we assign various values for

each parameter except the cost of production at stage 1, which we arbitrarily set to

118
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c1 = 10. For the rest of the parameters, we let:

h1 = 1, 2, 4, 8,

b1 = 10, 20, 40,

c2 = 3, 5, 7,

h2 = 0.5, 1, 2, 4,

co = 4, 6, 10,

Ko = 0, 50, 200, and

α = 0.90, 0.95, 0.99.

The holding costs are relatively high in order to represent a lean inventory environ-

ment and we chose the α values as 0.99 or less because for values of α > 0.99, the

numerical results were very similar but took longer to obtain. These variations lead

to a total of 3542 = 3888 possible combinations. However, recall that we require that

the per unit cost of overtime production is greater than the per unit cost of regular

production at stage 2, the backordering cost at stage 1 is not too small, and the hold-

ing cost at stage 2 is not more than the holding cost at stage 1. The combinations

that violate assumption (A4), (A8), or (A9) are not included in the experimental

results.

We compare the results for four different demand distributions: Poisson(mean),

Uniform(lower bound, upper bound), Normal(mean, standard deviation), and Expo-

nential(mean). Since we consider discrete demand, we use discrete approximations

for the last three distributions. Also, we truncate each distribution below at zero

and above at forty-nine to fit into our probability array, and adjust the probabilities
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appropriately to ensure the total probability is one. We use a relatively small prob-

ability array in order to decrease computation times, but we feel that the array is

still large enough to reflect realistic outcomes. In reality, each unit in the array may

represent a batch of 10, 100, or even 1000 units.

5.1 Comparison of Centralized and Decentralized Policies

To compare the centralized and decentralized models, we made several calcula-

tions for each combination. Under decentralized control, we calculated the optimal

base-stock levels and the expected total discounted costs. For the centralized case,

we first calculated the optimal inventory control parameters for stage 1: tL, yL, and

yH . Using these parameters, we calculated the system base-stock level S∗cen and the

total expected discounted cost for the system. Finally, for each combination we cal-

culated two statistics comparing the centralized case and the decentralized case: the

percentage savings in total costs and the percentage reduction in system inventory.

The percentage savings in total costs is the difference between the sum of the decen-

tralized costs and the centralized cost, divided by the sum of the decentralized costs.

The inventory reduction percentage is determined by
S∗1,dec+S∗2,dec−S∗cen

S∗1,dec+S∗2,dec
. For several

different distributions, we averaged these savings over all feasible combinations and

we determined the maximum total savings out of all the trials; the results are in

Table 5.1 below.

Note that we ran the experiment for constant demand (Uniform(25,25)) as one

way to check the accuracy of our computer code. Our first observation from the
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Demand Distribution Average Savings Maximum Savings Inv. Reduction

Uniform(25,25) 0.00% 0.00% 0.00%

Normal(25,1) 0.47% 2.30% 1.74%

Normal(25,5) 1.86% 9.24% 6.31%

Normal(25,10) 2.72% 13.58% 8.56%

Poisson(25) 1.94% 9.60% 6.52%

Uniform(0,49) 2.81% 16.43% 9.92%

Exponential(15) 5.43% 23.25% 13.17%

Table 5.1: Average Savings of the Centralized Optimal Policy

data is that in general, the centralized savings are somewhat attractive, around 2%

or 3% of the total cost. We feel that this is a significant enough value to make

the centralized policy worth considering. A second observation is that as demand

variance increases, so do the total savings. This trend is particularly evident by

looking at the Normal distribution results. Clearly, as demand variance increases,

it becomes more difficult to manage inventory and the centralized policy adds more

flexibility by allowing stage 1 to underorder. A third observation is that in general,

system inventory levels are reduced by more than 5% under the centralized policy.

It turns out that leaner inventory is a pleasant by-product of the centralized policy.

After comparing results for the different parameters, we found that the parame-

ters that had the greatest effect on total cost savings were the overtime production

cost, Ko, and the holding costs, h1 and h2. For the Poisson(25) distribution, we
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Poisson(25) with: Average Savings Maximum Savings Inv. Reduction

Ko = 0 0.59% 3.54% -0.39%

Ko = 50 2.00% 6.60% 6.78%

Ko = 200 3.22% 9.60% 11.42%

h1 = 1, 2; h2 = 0.5, 1 1.39% 3.74% 7.78%

h1 = 4, 8; h2 = 2, 4 3.17% 9.60% 5.35%

Table 5.2: Savings Depend on Overtime Setup Costs and Holding Costs

broke down the various savings by the three different values of overtime production,

and we broke down the costs into the low values of holding and the high values of

holding for both stages. The results are in Table 5.2. Note that for Ko = 0, the total

cost savings are only about half a percent, and in fact, the average system inventory

increases under centralized control. These two results indicate that if stage 2 does

not pay a setup cost for overtime production, it is probably not worthwhile consid-

ering a contract that would induce the centralized results. On the other hand, when

Ko increases to 50 or 200, the opposite is true. When the overtime production setup

cost is large, then the centralized policies save a significant amount. From the last

two rows of Table 5.2, notice that when the holding costs are high at both stages,

the average savings more than doubles compared to when the holding costs are low.

Higher holding costs force stage 1 to increase the risk of backorders and stage 2 to

increase the risk of overtime production, but these risks can be better managed under

centralized control.
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5.2 Comparison of Contract B and Centralized Policies

In this section, we show that Contract B from Chapter IV nearly achieves system

optimality. As in the previous section, we calculated all the inventory control pa-

rameters and total costs for the centralized and decentralized models. For Contract

B we calculated the system base-stock level S∗CB and the total costs experienced by

both stages. We calculated three different statistics comparing the total costs of the

centralized, decentralized, and Contract B coordinated models. The first statistic is

the same savings in total costs of the centralized model compared to the decentral-

ized model as before. The second statistic is the savings in total costs of Contract B

compared to the decentralized model. The third statistic is the savings in total cost

of the centralized model compared to Contract B. We performed the experiment for

the same demand distributions as before and the results are in Table 5.3

Demand Centralized vs. Contract B vs. Centralized vs.

Distribution Decentralized Decentralized Contract B

Normal(25,1) 0.47% 0.46% 0.0078%

Normal(25,5) 1.86% 1.82% 0.034%

Normal(25,10) 2.72% 2.66% 0.060%

Poisson(25) 1.94% 1.90% 0.035%

Uniform(0,49) 2.81% 2.73% 0.084%

Exponential(15) 5.43% 5.27% 0.16%

Table 5.3: Comparison of Contract B
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Although Contract B may not be optimal, it is extremely close! The savings of

Contract B over the decentralized model are just as significant as the savings of the

centralized model. The two models differ by less than two tenths of one percent.

Clearly the value of α will affect how close they are. As mentioned in the previous

chapter, as α ↑ 1, the minimization problems for Contract B and the centralized

model approach one another. To investigate the effect of α, we reconsidered the

Poisson(25) distribution and broke it down into results for the three different values

of the discount factor. The total costs do not actually vary by that much, but we

compared the values of S∗cen and S∗CB for each α.

When α = 0.90, the average value of S∗cen = 56.07 and the average value of

S∗CB = 57.44. Under Contract B, the system base-stock level is 2.4% larger, on

average. Also, S∗CB = S∗cen in only 12% of the experimental trials. When α increases

to 0.95, the average value of S∗cen = 57.16 and the average value of S∗CB = 57.88.

The system base-stock level under Contract B is 1.3% larger on average and the two

base-stock levels are equal in 37% of the trials. Finally, for α = 0.99, the average

value of S∗cen = 58.12 and the average value of S∗CB = 58.31. The system base-stock

level under Contract B is only 0.033% larger on average and S∗CB = S∗cen in 80% of

the trials. Overall, Contract B sets a system base-stock level that is 1.3% larger, on

average, than the centralized model, but the difference in total costs is much less,

around 0.1%.
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5.3 Two Examples

In this section, we look at two numerical examples to gain insight into central-

ized savings and appropriate values for W . We consider a “typical” example with

Poisson demand that reflects results that are common to most of our experimen-

tal outcomes. We also consider an “atypical” example with Exponential demand

that has uncommon characteristics, compared to the majority of our experimental

outcomes.

As a typical example, consider a problem that has Poisson demand with mean

25. The per unit costs at stage 1 are 10 for production, 2 for holding, and 20 for

backorders. The per unit costs at stage 2 are 5 for production, 1 for holding, and 6

for overtime production; the fixed cost for overtime production is 200. The discount

factor is 0.95. Under decentralized control, the optimal policy at stage 1 is to order

up to a base-stock level of 31 and the optimal policy at stage 2 is to order up to a

base-stock level of 36, for a total system inventory of 67. Under centralized control,

the optimal policy at stage 1 is to order up to 30 if the system inventory is 11 or

less, use up the available system inventory if the system inventory is between 12 and

32, and order up to 33 if the system inventory is 33 or more. The optimal system

base-stock level is 59 and the optimal policy at stage 2 is to order the difference

between the system inventory and the inventory at stage 1.

So, under the centralized policy, the system carries 67−59 = 8 less units of inven-

tory. This is an inventory reduction of 11.9%, which is one factor that contributes

to cost savings. Another factor that contributes is how often stage 2 is forced to
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run overtime production. In the decentralized case, stage 2 must run overtime when

demand is greater than 36; the probability that D > 36 is 0.015. In the centralized

case, stage 2 must run overtime when the system inventory after demand is less than

the low threshold, or when 59−D < 12. The probability that stage 2 must run over-

time equals the probability that D > 47, which is 0.000021. So, for this particular

example, stage 2 is over seven hundred times more likely to run overtime production

under decentralized control! These two factors lead to a total cost savings of 2.43%.

These results are typical for the majority of our experimental outcomes.

The two stages can achieve these savings by working together under either Con-

tract A or Contract B. Under Contract A, stage 1 and stage 2 will negotiate the

value of WA in order to determine how to split up the 2.43% savings on total system

costs. Using equations (4.1) and (4.2) and making a reasonable assumption about

the initial value of the system inventory , we calculate that the range for the transfer

payment is 6.37 < WA < 15.89. Stage 2 will negotiate for a low value of WA, receiv-

ing savings up to 4.13% as WA approaches the low threshold. Stage 1 will negotiate

for a high value of WA, receiving savings up to 3.73% as WA approaches the high

threshold. A fair negotiation would likely end up with a WA where both stages each

save around the system savings of 2.43%. Under Contract B, the system base-stock

level is 60, one unit higher than under centralized control, and the savings on total

system costs is 2.42%. Again, the two stages will negotiate a value of WB, this time

with 6.19 < WB < 15.66.

Now we consider an atypical example that has Exponential demand with mean
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15. The per unit costs at stage 1 are 10 for production, 4 for holding, and 20 for

backorders. The per unit costs at stage 2 are 7 for production, 4 for holding, and

10 for overtime production. There is no fixed cost for overtime production and the

discount factor is 0.99. Under decentralized control, the optimal policy at stage 1 is

to order up to a base-stock level of 24 and the optimal policy at stage 2 is to order

up to a base-stock level of 7. Note that the decentralized system carries a total of 31

units. Under centralized control, the optimal policy at stage 1 is to order up to 16

if the system inventory is 16 or less and to use up the available system inventory if

the system inventory is 17 or more. Stage 1 will never order up to it’s high inventory

level of 48, because that value is greater than the optimal base-stock level for the

system inventory, which is 35.

So, under the centralized policy, the system actually carries 35 - 31 = 4 more

units of inventory than under the decentralized policy, or an inventory increase of

12.9%. However, there is still a significant savings in total cost for the centralized

policy, 4.06%, despite the increase in system inventory. The reason for the savings

is that under decentralized control, stage 2 uses overtime production almost 57% of

the time, compared to 24% of the time under centralized control. Even though there

is no fixed cost for overtime production, stage 2 is paying the overtime cost of 10 per

unit very often. In this case, both Contract A and Contract B set a system base-

stock level of 35. Under either contract, the two stages can negotiate the transfer

payment in order to share the 4.06% savings, with 15.44 < W < 28.75.
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5.4 Conclusion

In this chapter, we described various numerical experiments. In Section 5.1, we

showed that in general, the centralized optimal policies result in reasonable savings

over the decentralized optimal policies, somewhere in the neighborhood of 2% or 3%.

The centralized optimal policies also tend to (but do not always) decrease the system

inventory. We discussed three factors that affect these savings: demand variation,

the setup cost for overtime production, and holding costs. As demand variation

increases, so do the savings. Similarly, as the setup cost Ko increases, savings are

increased as the centralized model allows for stage 1 to underorder to avoid forcing

overtime production at stage 2. When we assume that the holding costs at both

stages are high, savings are increased under centralized control, as well. In Section

5.2, we showed that in general, Contract B produces results that are very near

optimal. The discount factor α has a strong effect on these results, and as α ↑ 1,

Contract B is more likely to determine the appropriate value for the system base-

stock level. Finally, in the last section, we discussed two numerical examples. The

first example is typical, showing that the savings of the centralized policy come from

lower inventories and decreasing the likelihood of overtime production. The second

example was less typical, where the inventory actually increases under decentralized

control, but a significant savings still exists on the total cost.



CHAPTER VI

CONCLUSION

In this thesis, we have studied a two-stage supply chain where the upstream

stage always meets demand from the downstream stage, using two different forms

of expediting when necessary. Our work models the interaction between two stages

of an automotive supply chain, and although our models are simplified versions of

reality, we feel that our theoretical results have practical value. In Chapter II, we

showed that the choice between overtime production and premium freight depends on

the size of the shortage and the relative costs of the two expediting methods, and we

showed that standard inventory control policies are optimal for regular production.

In Chapter III, we showed that under centralized control, the downstream stage needs

to be sensitive to the amount of inventory available upstream and order accordingly,

and the upstream stage must ensure the system inventory level is optimal. In Chapter

IV, we discussed contracts that coordinate the system and allow both stages to share

in the centralized savings. Finally, in Chapter V, we showed that the centralized

system affects reasonable savings over the decentralized system, and hence it may be

worthwhile for the two stages to work together.
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We have analyzed the supply chain under three forms of control: decentralized,

centralized, and coordinated. Under decentralized control, both stages minimize

their own costs and follow base-stock policies (or an (s, S) policy at stage 2 when we

include a production setup cost). Under centralized control, the optimal policies for

both stages depend on the amount of system inventory available, and the optimal

policy for the system is a base-stock policy. Under coordinated control, the two

stages achieve system optimality following a contract with a multi-tiered wholesale

cost and a linear transfer payment. We compared the different forms of control at

the end of the thesis using numerical analysis.

Throughout this thesis, we have used various techniques to prove our results.

In some cases, we simply applied standard techniques from the inventory control

literature. However, in other cases, we had to develop novel ways to prove our results.

In Section 2.3, we faced a problem with two separate inventory control decisions,

one occurring before random demand was realized, and one afterwards. We solved

the problem by defining overtime- and regular-periods, then showing how the two

periods were related. We were then able to optimize the overtime production decision

and the regular production decision, in that order. In Chapter III, we were unable

to decouple our two-stage problem, a standard technique. Instead, we solved the

problem by first substituting system variables for stage 2 variables and then relaxing

two of our constraints on inventory levels, making the stage 1 decision a myopic

problem. Later, we showed that the solution to the relaxed problem also solved the

fully constrained problem. Lastly, due to our multi-tiered inventory control policies
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in the centralized model, in Chapter IV we developed contracts with multi-tiered

wholesale costs that allowed us to coordinate the two stages.

Numerous extensions to our model exist and are worthy of further study. These

include, but are not limited to, positive lead times, capacity constraints, demand

forecasting, the N-stage supply chain, multiple suppliers, multiple assemblers, and

substitutable products. Clearly, our model would be much more robust if we in-

cluded the possibility of positive lead times for either regular or premium freight

shipments. Unfortunately, a review of the literature (see Section 1.2) shows that

analytical results would be difficult, if not impossible, to determine under this as-

sumption. However, we may be able to develop reasonably efficient heuristic policies

based on our current results and to test these policies using simulation. Another

realistic assumption would be to include capacity constraints on either regular pro-

duction, overtime production, or premium freight shipments. It would be interesting

to see how a capacity constraint on just one of the expediting methods affects how

the two different methods are utilized. Note that if both methods of expediting have

capacities, we can not guarantee the 100% fill rate at stage 2. For examples of papers

with capacity constraints, see [22] and [26].

In reality, both stages of the supply chain will probably have demand forecasts

that may or may not be accurate. When we originally spoke to two managers at

Visteon, they explained that they receive demand forecasts from Ford varying in

length from six months to two weeks. However, the forecasts rarely match the

actual demand and hence we include stochastic demand in our model. It would be
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interesting to study how the changing forecasts affect production, and to see how

much better forecasting would save the supply chain. For a recent review of demand

forecasting, see [6]. In this thesis, we have limited our scope to a two-stage supply

chain. We could expand our model to an N-stage supply chain, but we would have

to carefully reconsider our assumptions about overtime production and premium

freight. For example, we assume that products shipped by premium freight are

produced very early in the day and shipped instantaneously, arriving downstream to

be used the same day. Is it realistic to assume these shipments can occur twice or

more in the same day and still be on time?

It may be worthwhile to consider our model with multiple suppliers, multiple

assemblers, or both. Originally, Visteon made nearly all its parts for Ford, but Vis-

teon has since branched out and now sells parts to several different companies. How

multiple assemblers would affect the overtime production decision is an interesting

question. See [1], [9], and [44] for examples of systems with one supplier and mul-

tiple retailers. Finally, the automotive supply chain clearly involves more than one

part, and in fact, many of the parts may be substitutable. A study of our model

with multiple, substitutable parts may yield interesting results concerning when to

substitute and when to expedite.
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APPENDIX

Case 2 from Section 2.3

In this case, we have the following stationary policy µ2, which happens to be a

(−1, S̃) policy for overtime production:

µ2 =





x̃ ≥ 0 → ỹ = x̃, y = y∗x̃

x̃ < 0 → ỹ = S̃, y =





y∗0 if S̃ = 0

ỹ∗+ if S̃ = ỹ∗+.

From equations (2.8) and (2.9), we have also that f̃ ∗(x̃) =





(h2 − αc2)x̃ + αK2δ(y
∗
x̃ − x̃) + αc2y

∗
x̃ + αED[f̃ ∗(y∗x̃ −D)] if x̃ ≥ 0




Ko − cox̃ + αK2δ(y
∗
0) + αc2y

∗
0 + αED[f̃ ∗(y∗0 −D)] if S̃ = 0

Ko − cox̃ + (co + h2)ỹ
∗
+ + αED[f̃ ∗(ỹ∗+ −D)] if S̃ = ỹ∗+

if x̃ < 0.

Also, plugging µ2 into equation (2.6) we get:

f̃ ∗(x̃) =





(h2 − αc2)x̃ + αf ∗m(x̃) if x̃ ≥ 0

Ko − cox̃ + (co + h2 − αc2)S̃ + αf ∗m(S̃) if x̃ < 0.

We get G2(y) ≡ c2y +
∑y

d=0(h2 − αc2)(y − d)pd +
∑∞

d=y+1 (Kall − co(y − d)) pd and

following the proof for case 1, we show that G2(y) → ∞ as |y| → ∞, −G2(y) is
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unimodal and the minimum point y0 ≥ 0.

∆G2(y) = c2(y + 1)− c2y +

y+1∑

d=0

(h2 − αc2)(y + 1− d)pd −
y∑

d=0

(h2 − αc2)(y − d)pd

+
∞∑

d=y+2

(Kall − co(y + 1− d)) pd −
∞∑

d=y+1

(Kall − co(y − d)) pd

= c2 + (h2 − αc2)

y∑

d=0

pd − (Kall + co)py+1 − co

∞∑

d=y+2

pd

= c2 + (h2 − αc2)F (y)− co(1− F (y))−Kallpy+1

= c2 − co + (co + h2 − αc2)F (y)−Kallpy+1.

At this point, note that as y → −∞, ∆G2(y) → c2 − co < 0 and as y → ∞,

∆G2(y) → h2 + c2(1 − α) > 0. Thus, as y → −∞, G2(y) → ∞ and as y → ∞,

G2(y) →∞. Also note that for y < 0,

∆G2(y) = c2 − co −Kallpy+1 < 0

by Lemma 6 and so any minimum point of G2(y), y0, will be non-negative. Finally,

for y ≥ d0, rewrite ∆G2(y) as:

∆G2(y) = c2 − co + F (y)

[
(co + h2 + αcp)−Kall

py+1

F (y)

]
.

Again, the terms in the brackets are all nondecreasing due to logconcavity. By the

same argument as for case 1, ∆G2(y) changes signs exactly once and −G2(y) is

unimodal.
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Case 3 from Section 2.3

In this case, we have the following stationary policy µ3, which can be considered

an (s̃, S̃) policy for overtime production with s̃ = −∞:

µ3 =





x̃ ≥ 0 → ỹ = x̃, y = y∗x̃

x̃ < 0 → ỹ = x̃, y = y∗p.

From equations (2.8) and (2.9), we have also that:

f̃ ∗(x̃) =





(h2 − αc2)x̃ + αK2δ(y
∗
x̃ − x̃) + αc2y

∗
x̃ + αED[f̃ ∗(y∗x̃ −D)] if x̃ ≥ 0

αKp − α(cp + c2)x̃ + αK2 + αc2y
∗
p + αED[f̃ ∗(y∗p −D)] if x̃ < 0.

Also, plugging µ3 into equation (2.6) we get:

f̃ ∗(x̃) =





(h2 − αc2)x̃ + αf ∗m(x̃) if x̃ ≥ 0

αKp − α(cp + c2)x̃ + αf ∗m(x̃) if x̃ < 0.

For this case we get G3(y) ≡ c2y +
∑y

d=0(h2−αc2)(y− d)pd +
∑∞

d=y+1(αKp−α(cp +

c2)(y−d))pd and following the proof for case 1, we show that G3(y) →∞ as |y| → ∞,

−G3(y) is unimodal and the minimum point y0 ≥ 0.

∆G3(y) = c2(y + 1)− c2y +

y+1∑

d=0

(h2 − αc2)(y + 1− d)pd −
y∑

d=0

(h2 − αc2)(y − d)pd

+
∞∑

d=y+2

(αKp − α(cp + c2)(y + 1− d)) pd

−
∞∑

d=y+1

(αKp − α(cp + c2)(y − d)) pd

= c2 + (h2 − αc2)

y∑

d=0

pd − (αKp + α(cp + c2))py+1 − α(cp + c2)
∞∑

d=y+2

pd

= c2 + (h2 − αc2)F (y)− α(cp + c2)(1− F (y))− αKppy+1

= c2 − α(cp + c2) + (h2 + αcp)F (y)− αKppy+1.
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At this point, note that as y → −∞, ∆G3(y) → c2 − α(cp + c2) < 0 by assumption

(A7) and as y →∞, ∆G3(y) → h2 + c2(1− α) > 0. Thus, as y → −∞, G3(y) →∞

and as y →∞, G3(y) →∞. Also note that for y < 0,

∆G3(y) = c2 − α(cp + c2)− αKppy+1 < 0

and so any minimum point of G3(y), y0, will be non-negative. Finally, for y ≥ d0,

rewrite ∆G3(y) as:

∆G3(y) = c2 − α(cp + c2) + F (y)

[
(h2 + αcp)− αKp

py+1

F (y)

]
.

Again, the terms in the brackets are all nondecreasing since demand is logconcave.

By the same argument as for case 1, ∆G3(y) changes signs only once and −G3(y) is

unimodal.

Case 4 from Section 2.3

In this case, we have the following stationary policy µ4, which is not an (s̃, S̃)

policy for overtime production:

µ4 =





x̃ ≥ 0 → ỹ = x̃, y = y∗x̃

s̃ < x̃ < 0 → ỹ = S̃, y =





y∗0 if S̃ = 0

ỹ∗+ if S̃ = ỹ∗+

x̃ < s̃ → ỹ = x̃, y = y∗p.
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From equations (2.8) and (2.9), we have also that f̃ ∗(x̃) =





(h2 − αc2)x̃ + αK2δ(y
∗
x̃ − x̃) + αc2y

∗
x̃ + αED[f̃ ∗(y∗x̃ −D)] if x̃ ≥ 0




Ko − cox̃ + αK2δ(y
∗
0) + αc2y

∗
0 + αED[f̃ ∗(y∗0 −D)] if S̃ = 0

Ko − cox̃ + (co + h2)ỹ
∗
+ + αED[f̃ ∗(ỹ∗+ −D)] if S̃ = ỹ∗+

if s̃ < x̃ < 0

αKp − α(cp + c2)x̃ + αK2 + αc2y
∗
p + αED[f̃ ∗(y∗p −D)] if x̃ ≤ s̃.

For this case, we get

G4(y) ≡ c2y +

y∑

d=0

(h2 − αc2)(y − d)pd +

y−s̃−1∑

d=y+1

(Kall − co(y − d)) pd +

∞∑

d=y−s̃

(αKp − α(cp + c2)(y − d)) pd

and following the proof for case 1, we show that under the conditions of case 4

(co > α(cp + c2) and C∗
OT < C∗

PF ), G4(y) →∞ as |y| → ∞, −G4(y) is unimodal and

the minimum point y0 ≥ 0.

∆G4(y)

= c2(y + 1)− c2y +
y+1∑

d=0

(h2 − αc2)(y + 1− d)pd −
y∑

d=0

(h2 − αc2)(y − d)pd +

y−s̃∑

d=y+2

(Kall − co(y + 1− d)) pd −
y−s̃−1∑

d=y+1

(Kall − co(y − d)) pd +

∞∑

d=y−s̃+1

(αKp − α(cp + c2)(y + 1− d)) pd −
∞∑

d=y−s̃

(αKp − α(cp + c2)(y − d)) pd

= c2 + (h2 − αc2)
y∑

d=0

pd − (Kall + co)py+1 + (Kall − co(s̃ + 1))py−s̃

−co

y−s̃−1∑

d=y+2

pd − (αKp − α(cp + c2)s̃)py−s̃ − α(cp + c2)
∞∑

d=y−s̃+1

pd

= c2 + (h2 − αc2)F (y)− co(F (y − s̃)− F (y))− α(cp + c2)(1− F (y − s̃))

−Kallpy+1 + (Kall − αKp − (co − α(cp + c2))s̃) py−s̃.
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Now by Lemma 6,

∆G4(y) = c2 − α(cp + c2) + (co + h2 − αc2)F (y) + (α(cp + c2)− co)F (y − s̃)

−Kallpy+1 + (C∗
OT − C∗

PF − (co − α(cp + c2))s̃) py−s̃

= c2 − α(cp + c2) + (co + h2 − αc2)F (y) + (α(cp + c2)− co)F (y − s̃− 1)

−αKppy+1 + (1− β)(α(cp + c2)− co))py−s̃

by Lemma 7 where 0 ≤ β < 1. At this point, note that as y → −∞, ∆G4(y) →

c2−α(cp +c2) < 0 by assumption (A7) and as y →∞, ∆G4(y) → h2 +c2(1−α) > 0.

Thus, as y → −∞, G4(y) → ∞ and as y → ∞, G4(y) → ∞. Also note that for

y < 0,

∆G4(y) = c2 − α(cp + c2) + (α(cp + c2)− co)F (y − s̃− 1)

−αKppy+1 + (1− β)(α(cp + c2)− co))py−s̃

< 0

and so any minimum point of G4(y), y0, will be non-negative. Finally, for y ≥ d0,

we have that

∆G4(y) = c2 − α(cp + c2) + F (y)F4(y)

where

F4(y) = (co + h2 − αc2) + (α(cp + c2)− co)
F (y − s̃− 1)

F (y)
+

(1− β)(α(cp + c2)− co)
py−s̃

F (y)
− αKp

py+1

F (y)
.

Again, F4(y) is nondecreasing. By the same argument as for case 1, ∆G4y) changes

signs exactly once and −G4(y) is unimodal.
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ABSTRACT

SUPPLY CHAIN MANAGEMENT WITH

OVERTIME AND PREMIUM FREIGHT

by

Eric Logan Huggins

Chairperson: Tava Maryanne Olsen

This thesis models a two-stage supply chain where the upstream stage (stage 2)

always meets demand from the downstream stage (stage 1). Demand is stochastic;

hence, shortages will occasionally occur at stage 2. Stage 2 must fill these short-

ages by expediting, using overtime production and/or premium freight shipments.

We derive optimal inventory control policies under decentralized, centralized, and

coordinated control and perform numerical analysis to compare the results.

Under decentralized control, stage 1 ignores stage 2 and follows a simple base-

stock policy; stage 2 also follows a simple base-stock policy if there is no setup cost

for regular production. When we include this setup cost at stage 2, two decisions

must be made: how much to produce during regular production and how much to



produce during overtime production. We show that the optimal regular production

policy is an (s, S) policy and that the optimal overtime production policy depends

on the cost parameters.

Under centralized control, the two stages work together to minimize system costs.

By substituting system variables for stage 2 variables and relaxing some constraints,

we show that the optimal policy at stage 1 has two order-up-to levels and depends on

the available system inventory. We also show that the optimal policy for the system

is a base-stock policy and the optimal policy for stage 2 is to ensure the system

base-stock level is achieved.

To coordinate the two stages, we develop two contracts. Both contracts depend

on a two-tiered wholesale cost and a linear transfer payment. Contract A achieves

system optimality, but requires the two stages to share cost information. Without

sharing cost information, Contract B achieves near-optimality for the system (op-

timality for the average cost case). Under both contracts, an appropriate transfer

payment may be negotiated that benefits both stages.

We perform numerical analysis to compare the supply chain under different forms

of control. We show that centralized control may affect significant savings over de-

centralized control, particularly if the demand variation, holding costs, or expediting

costs are high. We also show that Contract B yields nearly optimal results, particu-

larly if the discount factor is close to one.


