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Abstract

We consider a single-item, periodic review inventory control problem where discrete

stochastic demand must be satisfied. When shortages occur, the unmet demand must

be filled by some form of expediting. We allow a very general form for the cost structure

of expediting. This expediting might include in-house rush production, outsourcing, or

even lost sales. However, we explicitly consider the case where expedited production is

allowed to produce up to a positive inventory level. For the infinite horizon discounted

problem, we characterize the structure of the optimal expediting policy and show that

an (s, S) policy is optimal for regular production. In certain cases we demonstrate

that it may indeed be optimal to use expedited production to build up inventory. A

heuristic for policy calculation is given; a numerical study tests the heuristic and add

insight into the results.



1 Introduction

Traditionally, managers have controlled inventory by setting high enough inventory levels

that the likelihood of stockouts is low, and allowing parts to be backordered when shortages

do occur. However, the shift towards lean inventory has caused many managers to reduce

inventories, which in turn may increase the likelihood of stockouts. Moreover, the cost of

backorders (already high, though hard to estimate) is certainly not decreasing in today’s

competitive market. Therefore, we consider a problem where the cost of holding inventory

may be relatively high and backorders are strictly forbidden. Of course, shortages will occur

with stochastic demand; in our problem, these shortages must either be filled by some form

of expediting or by lost sales.

We allow expediting to take two general forms. The first, which comprises the majority

of the paper, allows the possibility of production above and beyond the backlog. The cost

associated with this rush production is assumed to be concave non-decreasing and therefore

it incorporates special cases such as fixed and linear components, models with economies of

scale, etc. For many of our results the cost function need only be non-decreasing. The second

form of expediting, which may be used in combination with the first, is one where only unmet

shortages may be met and no added production is allowed. Naturally this case incorporates

the case of lost sales. We consider this form of expediting alone, where it need only have

non-decreasing costs, and together with rush production, where we study the special case of

linear and fixed costs.

Thus, we study a single-item, periodic review inventory control problem where discrete

stochastic demand cannot be backlogged. The traditional problem studied in Scarf (1960)

and Veinott (1966) allows for backorders when shortages occur; under this condition, (s, S)

policies are optimal. Similarly, Zheng (1991) allows for backorders and shows that (s, S)

policies are optimal for the infinite horizon case. We use Zheng’s results extensively for our

main theorem with a modification to exclude backorders (i.e., we require that s ≥ −1). As in

these papers, we do not consider capacity constraints. One might imagine our results being

applied to a multi-item setting where the cost of capacity is reflected in the production costs.
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Our problem is concerned with meeting shortages in a timely fashion. The literature on

this subject appears under various names, such as expediting, emergency orders, and dual

supply modes. Daniel (1963) derives optimal policies where there are two supply modes with

lead times of 0 or 1 periods. Fukuda (1964) extends these results to the case where the lead

times are k or k+1 periods. Whittmore and Saunders (1977) show that only one supply mode

is optimal when the difference in lead times is more than one period. Interestingly, these

three papers all use different terms for expediting: Daniel uses “Emergency”, Fukuda uses

“Negotiable Leadtime”, and Whittmore and Saunders use “Two Supply Options”. Other

related papers on expediting include: Moinzadeh and Schmidt (1991), Chiang and Gutierrez

(1998), Johansen and Thorstenson (1998), Tagaras and Vlachos (2001), Groenevelt and

Rudi (2002), and Sethi et al. (2003). (See references there-in for further literature.)

One motivating environment for our work was the inventory control problem faced by a

large automobile parts supplier in Michigan, which we will refer to as ‘PartCo’. PartCo pro-

duces mostly engine parts for one of the “big three” automobile manufactures. At PartCo,

inventory levels are relatively low – about “half a day’s worth” according to our contacts.

However, many of the parts they supply to the automobile manufacturer are essential in

keeping the assembly lines moving. The cost of shutting down an assembly line at the man-

ufacturer is extremely high, “unacceptable” according to our contacts at PartCo. Therefore,

backorders are avoided at all costs by either producing extra parts by running overtime or

by shipping parts by air so that they arrive in a few hours or even minutes, rather than

overnight. Both of these expensive practices are “common”.

In the above example expediting corresponds to in-house production. However, an-

other possible application includes outsourced or subcontracted production. Bradley (1997),

(2004), and (2005) has looked at (and provided motivation for) subcontracting in a number

of forms. There has also been some work that looks at the interaction between subcontract-

ing and capacity investment (see, e.g., Van Mieghem, 1999) as well as some continuous time

models of outsourcing (see, e.g., Arslan et al., 2001, and Zheng, 1994). Overtime, or a “ven-

doring option”, in the context of inventory systems with production quotas was considered
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in Hopp et al. (1993), Duenyas et al. (1993), and Duenyas et al. (1997). Each paper pro-

vides structural results for a number of different models. The most related model to ours is

Model 2 in Duenyas et al. (1997). In this paper an order-up-to policy is assumed for regular

production and therefore the paper concentrates on evaluating the amount of overtime to

use in a system where backlogs are allowed. To the best of our knowledge, our work is the

first to provide structural results for both steps in a two stage decision where at both points

one can produce beyond demand backlog.

Our second option for expediting (which may be used as a supplement to the first)

does not allow for excess production. As such it may also be viewed as a shortage or lost

sales cost. There have been several related approaches to dealing with shortages in the

literature. Smith (1977) considers an (S − 1, S) system without backorders where a per unit

penalty L is assessed for units of unmet demand. In the model of Çetinkaya and Parlar

(1998), backorders are allowed and incur fixed and per unit costs. They show that a myopic

base stock policy is optimal over the infinite horizon under certain conditions. Lovejoy and

Sethuraman (2000) consider a novel model where a production schedule must always be met

by rushing production (at the risk of producing defective products) and/or using overtime;

however, they do not explicitly consider stochastic demand. Mohebbi and Posner (1999)

provides performance analysis for a model with both emergency orders and lost sales.

Closest to our work, Aneja and Noori (1987) consider a problem where unmet demand

is met by “some external arrangement” with both per-unit and fixed costs. They assume

that if a shortage occurs, the inventory level will be brought up to 0 and they show that

(s, S) policies are optimal over the finite horizon when the demand density is non-increasing.

Ishigaki and Sawaki (1991) extend this work to give a condition based on the problem

parameters for (s, S) policies to be optimal for a finite horizon model with both fixed and

per unit holding and lost sales costs. To the best of our knowledge, our work is the first to

extend lost sales models with fixed and per unit costs to the infinite horizon and the first

to consider general non-decreasing lost sales costs. However, given that the results fall out

as a natural extension to Zheng’s (1991) work, we do not want to overstate this part of our

3



contribution and cannot guarantee that it has not appeared as a note in a paper or in an

inventory textbook somewhere.

Finally, for our results to hold, we require that our demand distributions be logconcave.

More specifically, the CDF (cumulative distribution function) F (·) of demand must be log-

concave, and hence by definition in Rosling (2002), f(x + 1)/F (x) is non-increasing in x

where f(·) is the associated PMF (probability mass function). We use this assumption ex-

clusively in proving that (s, S) policies are optimal for regular production due to the fact

that logconcave functions are closed with respect to composition, as shown in Ibragimov

(1956).

Rosling gives an excellent overview of logconcavity and lists several useful properties in

his 2002 paper. He defines logconcavity for both the CDF F (·) and frequency function (PDF

or PMF) f(·) and relates the two concepts to each other and to the concept of monotone

convolution ratios (MCRs). He also points out that this assumption is not terribly restrictive

as most commonly assumed distributions are in fact logconcave; for example, the normal,

uniform, exponential, beta and gamma are all continuous logconcave distributions and the

binomial, Poisson, and discrete uniform are all discrete logconcave distributions. In his work,

he analyzes systems with general backlogging costs and shows that the cost rate is quasi-

convex, and hence standard inventory policies hold, under the assumption of logconcave

demand. A function f(x) is quasi-convex, according to Rosling (2002), “if and only if

−f(x) is unimodal.” Lastly, An (1997) considers logconcave functions without assuming

differentiability, as in the discrete case which we assume.

Because our problem has two decision variables (one for expedited production and the

other for regular production), our proof is divided into two main steps. In the first step,

we characterize the structure of the optimal expediting production policy. Then, in the

second step, we show that an (s, S) policy is optimal for regular production. To do so,

we first rely on a relationship between two optimal cost functions (one for expediting, the

other for regular production). Then, because we have quasi-convex cost functions, we utilize

the concept of logconcavity to complete our proof. Finally, our proof yields results for the
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infinite horizon case, bypassing any finite horizon results. The two step nature of the problem

combined with end of horizon effects make finite horizon results difficult to prove. We have

found examples via numerical analysis where, near the end of the horizon, the parameters

vary non-monotonically, preventing us from using monotonicity results for the finite horizon.

Further, the infinite horizon model coupled with a quasi-convex cost function fits naturally

into the framework of Zheng (1991).

We provide explicit heuristic approximations for calculating the parameters in models

with fixed and linear expediting costs (in both the single mode and dual mode models).

These approximations are heavily based on traditional lost sales models with an adjustment

for fixed and linear costs and a further adjustment for expediting to a positive inventory

level. As exact numerical methods are available, we have focused on explicit approximations

so that they are readily spreadsheet implementable. We focus on continuous time approxi-

mations and our primary reference sources are Archibald (1981) and Porteus (1985). Broader

discussion on related heuristics may be found in Lee and Nahmias (1993).

As described above, the contribution of our paper is fivefold. First, we allow for two

different modes of expediting, each with general cost structures. Second, in the first mode

of expediting we explicitly explore the possibility that production may be used to produce

beyond zero. Third, we generalize previous work on lost sales models to the infinite horizon

with general cost functions. Fourth, we provide a novel methodology for dealing with two-

step decisions. Finally, we provide heuristics for explicit calculation of problem parameters.

This paper is organized as follows. In Section 2, we present our basic model involving rush

production. Section 3 explains the two time period viewpoint that will be used throughout

the paper and then uses it to characterize the structure of optimal overtime production

policies and shows that the optimal regular production policy is an (s, S) policy. It also

extends the model to the two modes of expediting described above. In Section 4, we develop

heuristic approximations and numerically analyze the policies found in Section 3. Finally,

Section 5 concludes the paper.
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2 Model, Notation, and Assumptions

This section outlines our base model with one type of expediting and presents notation

and assumptions used throughout the paper. We consider a model where a manager must

make two inventory decisions each day (or period). At the beginning of the day, the current

inventory level is known and the manager must then decide what inventory position to

produce up to with regular production. After regular production is determined, stochastic

demand is realized and inventory updated accordingly. The manager must now decide how

many expedited orders to produce. However, backlogged demand is not allowed for the

following day so that if inventory is negative then the decision becomes whether to just

produce up to zero units, or if not, up-to what positive level to produce to start the next

day with positive inventory. Whatever inventory position is chosen becomes the starting

inventory level for the next day, a holding cost is charged for any positive inventory, and the

cycle continues.

Of course, every decision incurs costs. In reality, the costs of expedited production are

relatively high compared the costs of regular production, which our assumptions take into

account. We assume that all costs are stationary and will be discounted per period by a

factor α. Regular production incurs a fixed cost of Kr ≥ 0 and a per unit cost of cr ≥ 0.

Expedited production incurs a cost e(x) for x units and a general holding cost function

h(x) is assessed to all positive inventory, x, after expediting. Assumptions on e(x) and h(x)

follow. However, we first define the following normalized functions

hr(x) ≡ h(x) + (1 − α)crx

and

er(x) ≡ e(x) − crx.

Define δ(x) = 1 if x > 0 and δ(x) = 0 otherwise. We make the following assumptions.

(A1) The per period demand distribution is discrete and logconcave. Demand in each period

is i.i.d.
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(A2) If D is the generic demand in a period then 0 < E[D] < ∞.

(A3) 0 < α < 1.

(A4) er(x) ≥ αKrδ(x) for x ≥ 0.

(A5) er(x) is non-negative, non-decreasing in x with er(0) = 0 and limx→∞ er(x) = ∞.

(A6) hr(x) is non-negative, non-decreasing in x with hr(0) = 0 and limx→∞ hr(x) = ∞.

Note that (A4) implies that the fixed costs associated with expediting are at least as great

as those associated with performing regular production in the following period. Similarly,

(A5) implies that the marginal cost of expediting is at least as great as the marginal cost

of regular production. Clearly a fixed and per unit cost associated with expediting of Ke

and ce, respectively, fits this model if Ke ≥ αKr and ce > cr. However, other more general

models, such as ones with quantity discounts, will also fit the assumptions.

We define:

Dt = the demand during period t

xt = the inventory level at the start of regular time during period t

yt = the inventory position chosen for regular production during period t

x̃t = the inventory level at the start of expediting during period t

ỹt = the inventory position chosen for expedited production during period t

Note that x̃t = yt − Dt and xt+1 = ỹt. From the problem description we know that the

inventory position chosen cannot be less than the inventory level with which we start, and

after expediting the inventory position cannot be negative since we do not allow backorders.

Thus, yt ≥ x+
t and ỹt ≥ x̃+

t , where we define x+ = x if x ≥ 0 and x+ = 0, otherwise.

Similarly, we define x− = −x if x ≤ 0 and x− = 0, otherwise. Note that we write yt ≥ x+
t

without loss of generality as by definition xt is not allowed to be negative. We are assuming

that initial inventory is non-negative (i.e., x0 ≥ 0).

Due to the dual-period nature of this decision, we will consider two types of time peri-

ods: the regular-period and the expediting-period. We consider these two periods so that
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we may analyze various costs starting at different instances in the production cycle. The

regular-period begins at the start of regular time with known inventory xt and ends after the

expediting inventory position ỹt has been chosen and produced. The expediting-period be-

gins at the start of expediting with known inventory x̃t and ends after the demand Dt+1 has

been realized. Note that during a regular-period, all variables will have the same subscript t;

during an expediting-period, expediting variables will have the subscript t and regular pro-

duction variables will have the subscript t + 1. These periods are displayed on the timeline

in Figure 1 below.

xt yt yt − Dt = x̃t ỹt = xt+1 yt+1 yt+1 − Dt+1 = x̃t+1 ỹt+1 = xt+2

xt yt yt − Dt = x̃t ỹt = xt+1 yt+1 yt+1 − Dt+1 = x̃t+1 ỹt+1 = xt+2

Regular-period t Regular-period t + 1

Expediting-period t/t + 1

Figure 1: Regular- and Expediting-Periods

Of course, the separation between the time periods is artificial as no randomness is

resolved between the end of a regular period and the start of the following regular period

(only costs assessed). Therefore one could write down the model as a Markov decision

problem with two actions to be decided at the start of each expediting period (see equation

(4)). However, as these actions are highly interdependent we found the best way to derive

structural results for them is to look at the two different time periods.

For both regular- and expediting-periods, this problem has functions representing the

cost per stage, the total cost, and the optimal cost. Here we give an idea of what these

functions represent; we will formally define these functions below. We will let g be the cost

per stage for a regular-period and g̃ be the cost per stage for an expediting-period. Similarly,

we will let fπ be the total infinite horizon cost starting in regular time and f̃π be the total
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infinite horizon cost starting with expediting under some admissible policy π. Finally, f ∗

and f̃ ∗ will be the minimum total infinite horizon costs starting in regular time and the

expediting period, respectively. Note that all of the cost functions depend on the initial

inventory, either x0 or x̃0.

To define our cost per stage for a regular-period, consider that during period t, the costs

incurred are Krδ(yt − xt) + cr(yt − xt) + e(ỹt − x̃t) + h(ỹ+
t ). By observing that ỹt = xt+1 and

yt − Dt = x̃t, and observing that E[crDt] is a finite constant (by Assumption A2) that will

not affect the optimization the cost per period can be redefined as (cf., Veinott, 1966):

g(xt, yt, x̃t, ỹt) ≡ Krδ(yt − xt) + er(ỹt − x̃t) + hr(ỹt)

where yt ≥ x+
t and ỹt ≥ x̃+

t . Note that g is non-negative (by Assumptions A5 and A6). We

define our expediting-period cost per stage as:

g̃(x̃t, ỹt, yt+1) ≡ er(ỹt − x̃t) + hr(ỹt) + αKrδ(yt+1 − ỹt) (1)

where ỹt ≥ x̃+
t and yt+1 ≥ ỹ+

t . This can also be seen to be non-negative.

Let π be an admissible policy if yt ≥ x+
t and ỹt ≥ x̃+

t for all t and yt and ỹt are chosen in

a non-anticipatory fashion. In other words, yt may only depend on xt and (xi, yi, Di, x̃i, ỹi)

where i < t; ỹt may only depend on x̃t and (x̃i−1, ỹi−1, xi, yi, Di) where i ≤ t. Let Π be the

set of all such policies. For the regular-period, for π ∈ Π, let

fπ(x0) ≡ lim
N→∞

ED0

[
N−1∑

t=0

αtg(xt, yt, x̃t, ỹt)

]

where D0 = {D0, D1, D2, . . .}. Note that this function does not include −crx0 or crE[D]/(1−

α), but as these are fixed finite costs they do not affect the eventual minimization. For the

expediting-period, for π ∈ Π, let

f̃π(x̃0) ≡ lim
N→∞

ED1

[
N−1∑

t=0

αtg̃(x̃t, ỹt, yt+1)

]

where D1 = {D1, D2, D3, . . .}. Note that the limit is known to exist in both cases since

g(xt, yt, x̃t, ỹt) ≥ 0. and g̃(x̃t, ỹt, yt+1) ≥ 0.
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Finally, we define the optimal cost functions starting in the regular time and expedited

time periods, respectively, as

f ∗(x) ≡ min
π∈Π

fπ(x) (2)

and

f̃ ∗(x̃) = min
π∈Π

f̃π(x̃) (3)

where x ∈ Z+, x̃ ∈ Z, and Z and Z+ are the set of all integers and non-negative integers,

respectively. Since g̃(x̃, ỹ, y) ≥ 0, Proposition 1.1 of Bertsekas (1995, p. 137) holds and the

optimal cost function f̃ ∗ satisfies

f̃ ∗(x̃) = min
ỹ≥x̃+, y≥ỹ+

ED

[
g̃(x̃, ỹ, y) + αf̃ ∗(y − D)

]
. (4)

As would be expected, there is a strong relationship between f ∗(·) and f̃ ∗(·); this rela-

tionship is given in the following lemma, which also provides other properties on the cost

functions that will be used in the following section.

Lemma 1

f ∗(x) = min
y≥x+

{
Krδ(y − x) + ED[f̃ ∗(y − D)]

}
< ∞ (5)

and

f̃ ∗(x̃) = min
ỹ≥x̃+

{er(ỹ − x̃) + hr(ỹ) + αf ∗(ỹ)} < ∞, (6)

where the corresponding policy that solves equation (4) or jointly solves (5) and (6) is the

optimal stationary policy for the system. Further, define

f ∗(−) = f ∗(x), for x < 0,

(since from equation (5) f ∗(x) is constant over x < 0); then for any x̃ < 0

f̃ ∗(x̃) ≥ αf ∗(−). (7)

Finally,

Kr + f ∗(0) ≥ f ∗(−). (8)

Proof: See Appendix.
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3 Optimal Production with Expediting

This section derives the optimal policies for expediting and regular-time production. We

include an extension where two modes of expediting are possible.

3.1 Optimal Expediting Policy

This subsection characterizes the optimal expedited production policy. The following the-

orem shows that if the inventory at the start of the expediting period is non-negative then

expedited production will not be used; this is a direct consequence of Assumptions (A4)

and (A5) and could almost certainly also be proven using a sample path argument. Theo-

rem 1 also provides further structure for the optimal expediting policy when the normalized

expediting cost function is either concave or consists of a fixed and per unit cost.

Theorem 1 Let ỹ∗(x̃) be the smallest minimizer in (6).

1. If x̃ ≥ 0 then ỹ∗(x̃) = x̃.

2. If er(·) is concave and x̃ < 0 then ỹ∗(x̃) is non-increasing in x̃.

3. If er(x) = Ke + cex for some fixed Ke and ce, then ỹ∗(x̃) is constant across x̃ < 0.

Proof: From (4), for x̃ ≥ 0,

f̃ ∗(x̃) = min
ỹ≥x̃,y≥ỹ+

{er(ỹ − x̃) + hr(ỹ) + αKrδ(y − ỹ) + αE[f̃ ∗(y − D)]} (9)

≥ min
y≥x̃

{
min
ỹ≥x̃

{er(ỹ − x̃) + hr(ỹ) + αKrδ(y − ỹ)} + αE[f̃ ∗(y − D)]
}

= min
y≥x̃

{hr(x̃) + αKrδ(y − x̃) + αE[f̃ ∗(y − D)]} (10)

Note that er(ỹ − x̃) + hr(ỹ) + αKrδ(y− ỹ) ≥ hr(x̃) + αKrδ(y − x̃) for ỹ ≥ x̃ by Assumptions

(A4) - (A6). Therefore as (10) is (9) evaluated at ỹ = x̃ we have that the optimal expediting

policy for x̃ ≥ 0 is not to produce and therefore ỹ∗(x̃) = x̃.

Assume er(·) is concave and suppose that x̃1 < x̃2 < 0 and ỹ∗(x̃1) < ỹ∗(x̃2); we wish to

find a contradiction. By definition of ỹ∗(x̃2) (since ỹ∗(x̃1) < ỹ∗(x̃2)),

er(ỹ
∗(x̃1) − x̃2) + hr(ỹ

∗(x̃1)) + αf ∗(ỹ∗(x̃1)) > er(ỹ
∗(x̃2) − x̃2) + hr(ỹ

∗(x̃2)) + αf ∗(ỹ∗(x̃2)).
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But, by the concave non-decreasing nature of er(·),

er(ỹ
∗(x̃1) − x̃1) − er(ỹ

∗(x̃1) − x̃2) − er(ỹ
∗(x̃2) − x̃1) + er(ỹ

∗(x̃2) − x̃2) ≥ 0

so

er(ỹ
∗(x̃1) − x̃1) + hr(ỹ

∗(x̃1)) + αf ∗(ỹ∗(x̃1)) > er(ỹ
∗(x̃2) − x̃1) + hr(ỹ

∗(x̃2)) + αf ∗(ỹ∗(x̃2)).

which contradicts the optimality of er(ỹ
∗(x̃1)).

Finally, suppose er(x) = Ke + cex. For x̃ < 0 expedited production is required and

therefore

er(ỹ − x̃) + hr(ỹ) + αf ∗(ỹ) = Ke + ce(ỹ − x̃) + hr(ỹ) + αf ∗(ỹ).

Thus,

f̃ ∗(x̃) = Ke − cex̃ + min
ỹ≥0

{ceỹ + hr(ỹ) + αf ∗(ỹ)} ,

where the term inside the minimization is independent of (and hence constant in) x̃. 2

Theorem 1 shows that if inventory is negative and the expediting cost function is concave

then the produce-up-to amount is non-decreasing in backlog. In other words, a generalized

(s, S) policy (as defined in Porteus, 1971) is optimal for expedited production when there

are concave expediting costs. According to Porteus’s definition the ordering policy ỹ is

“generalized (s, S)” if there exists (s̃, S̃) such that ỹ(x̃) = x̃ for x̃ ≥ s̃ and ỹ(z̃) ≥ ỹ(x̃) ≥

S̃ ≥ s̃ for z̃ < x̃ < s̃. In our case, s̃ = 0 and S̃ = ỹ(−1) ≥ 0 (recall that inventory is assumed

to be discrete). For the special case of fixed plus linear costs S̃ is the fixed base-stock level

that is optimal when expediting (i.e., when x̃ < s̃ = 0).

In Assumption (A4) we assumed that er(x) ≥ αKrδ(x) for x ≥ 0. This was used in

Theorem 1 to show that expediting is not used if inventory is non-negative entering the

expedited production period. Without this restriction it may well be optimal for expedited

production to be used even if inventory is positive. In this case, we would no longer expect

an (s, S) policy to be optimal for regular production (as will be shown to be the case in the

following subsection). Instead there may well be multiple thresholds depending on whether
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expediting would be likely to be used or not. Note also that Assumption (A4) precludes a

convex er(·) function.

The following lemma sets the stage for incorporating the optimal expediting policy into

the optimal regular production policy.

Lemma 2 Define for z ≥ 0

p(z) ≡ min
y≥0

{er(z + y) + hr(y) + αf ∗(y)} − α(f ∗(0) − δ(z)(f ∗(0) − f ∗(−))), (11)

which is well-defined by Lemma 1, then p(z) is non-decreasing in z with p(0) = 0 and

f̃ ∗(x̃) = hr(x̃
+) + p(x̃−) + αf ∗(x̃) (12)

where hr(x̃
+) + p(x̃−) is quasi-convex in x̃ with lim|x̃|→∞(hr(x̃

+) + p(x̃−)) = ∞.

Proof: By definition ỹ∗(−z) is the minimizer of the right hand-side of (11) for z ≥ 0. Thus,

p(0) = er(0) + hr(0) + αf ∗(0) − αf ∗(0) = 0

since, from Theorem 1, ỹ∗(0) = 0 and, by Assumptions (A5) and (A6), er(0) + hr(0) = 0.

We now show that p(·) is non-decreasing in z. For z1 > 0, if ỹ∗(−z1) > 0,

p(z1) = f̃(ỹ∗(−z1)) − αf ∗(−)

≥ 0 = p(0)

from Lemma 1. If, for z1 > 0, ỹ∗(−z1) = 0 then

p(z1) = er(z1) + α(f ∗(0) − f ∗(−))

≥ 0 = p(0)

from Lemma 1 since er(z1) ≥ αKr by Assumption (A4). Thus, in both cases, p(z1) ≥ p(0)

for z1 > 0. Now for 0 < z1 ≤ z2,

p(z1) = er(z1 + ỹ∗(−z1)) + hr(ỹ
∗(−z1)) + α(f ∗(ỹ∗(−z1)) − f ∗(−))}

≤ er(z1 + ỹ∗(−z2)) + hr(ỹ
∗(−z2)) + α(f ∗(ỹ∗(−z2)) − f ∗(−))}

≤ er(z2 + ỹ∗(−z2)) + hr(ỹ
∗(−z2)) + α(f ∗(ỹ∗(−z2)) − f ∗(−))} = p(z2)
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where the first inequality follows from the definition of minimum and the second from the

fact that er(x) is non-decreasing in x. Thus p(·) is non-decreasing in z.

From equation (6)

f̃ ∗(x̃) = er(ỹ
∗(x̃) − x̃) + hr(ỹ

∗(x̃)) + αf ∗(ỹ∗(x̃)).

If x̃ ≥ 0 then, from Theorem 1, this implies

f̃ ∗(x̃) = er(0) + hr(x̃) + αf ∗(x̃) = hr(x̃
+) + p(x̃−) + αf ∗(x̃),

where the final equality follows since p(0) = 0. If x̃ < 0 then

hr(x̃
+) + p(x̃−) + αf ∗(x̃) = p(x̃−) + αf ∗(−) = f̃ ∗(x̃),

where the final equality follows from (6) and the definition of p(·).

Since p(z) is non-decreasing in z, p(x−) is non-increasing in x. Further, since p(0) =

hr(0) = 0 and, for x ≥ 0, hr(x) is non-decreasing in x we have that hr(x̃
+) + p(x̃−) is quasi-

convex. That limx̃→∞(hr(x̃
+) + p(x̃−)) = ∞ follows immediately from Assumption (A6).

Further, by an argument similar to (8), f ∗(y) − f ∗(−) ≥ −2Kr, for any y ≥ 0. Therefore,

by Assumption (A5), limx̃→−∞(hr(x̃
+) + p(x̃−)) = ∞. This completes the proof. 2

The function p(z) in Lemma 2 represents the penalty associated with a backlog of size

z following regular production and demand. If expedited production above zero was not

allowed then p(z) would simply equal er(z) − αδ(z)(f ∗(0) − f ∗(−)).

3.2 Optimal Regular Time Production Policy

In this subsection we characterize the structure of the optimal regular time production policy.

Combining (12) and (5) we have that

f ∗(x) = min
y≥x+

{Krδ(y − x) + G(y) + αED[f ∗(y − D)]} (13)

where we define

G(y) ≡ ED[hr((y − D)+) + p((y − D)−)].
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Using the fact that demand is logconcave and hr(x̃
+) + p(x̃−) is quasi-convex we have that

G(y) is also quasi-convex, because quasi-convexity is preserved under convolution with log-

concave functions, as discussed in Section 1. We can therefore characterize the optimal

regular production policy.

Theorem 2 The optimal regular production policy is an (s, S) policy with −1 ≤ s < S.

Proof: Equation (13) is the optimization equation from Zheng (1991) except for the y ≥ x+

rather than y ≥ x. We have that G(·) is quasi-convex. Further, lim|x̃|→∞ G(y) = ∞ since

h(·) and p(·) are monotone and therefore the interchange of limit an expectation follows from

the monotone convergence theorem. Thus, G(·) satisfies the required assumptions in Zheng.

For x < 0, redefine G(x) = ∞ and allow backordering. Note that G(·) remains quasi-convex

with lim|x|→∞ G(x) = ∞. This is an equivalent optimization and the optimality of an (s, S)

policy follows directly from Zheng (1991). This infinite cost immediately implies it is better

to order than not order when x < 0, and hence s ≥ −1. 2

Note that Theorem 2 applies both to models with the possibility of expediting above zero

and to models with lost sales. In the latter case the lost sales cost function need only satisfy

Assumption (A5), which guarantees quasi-convexity of G(·); there are no structural results

to prove for lost sales and hence Assumption (A4) is unnecessary.

Corollary 1 provides further structure on the optimal policy. In particular, it shows

that if expedited production is used to build up inventory in some period then regular-

time production will not be used in the following period. It gives a myopic, but relatively

restrictive, condition on when expedited production above zero is not used. Finally, it shows

that the up-to amount when expediting will never exceed the optimal regular-time produce-

up-to amount if the latter amount is positive.

Corollary 1 Let (s∗, S∗) be the optimal regular production controls and let ỹ∗(x̃) be the

optimal produce-up-to amount when expediting (i.e., when x̃ < 0).

1. If, for some x̃ < 0, ỹ∗(x̃) > 0 then s∗ < ỹ∗(x̃).
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2. If, for some x̃ < 0, er(y − x̃) − er(−x̃) + hr(y) ≥ αKr for all y > 0 then ỹ∗(x̃) = 0.

3. If S∗ > 0 then ỹ∗(x̃) ≤ S∗ for any x̃ ≤ S∗.

Proof: See Appendix 2

Note that Condition 2 of Corollary 1 implies that, if Kr = 0 (i.e., there are no fixed costs

associated with regular time production) then expedited production beyond zero will never

be used. Both this and Condition 2 could likely also be proven using a sample path argument

as the intuition behind the condition (and associated proof) is simply that the per period

fixed cost of regular production in the next period is always less than the extra expediting

cost of producing beyond zero plus the holding cost of the extra units of inventory.

3.3 Multiple Modes of Expediting

In many cases one may have two (or more choices) for the expediting options, each having

differing cost structures. In this section we assume that there are two modes of expedited

production. Rush production, which may occur up to any amount, and penalty production

which may only be used to produce up to zero inventory. While general concave cost functions

are easily modeled, here we restrict attention to fixed and linear costs for both rush and

penalty production.

We assume that rush production of x units costs Koδ(x) + cox for some Ko ≥ αKr and

co > cr and penalty production of x units costs Kpδ(x)+cpx for some Kp ≥ αKr and cp > cr.

First observe that for x ≥ z ≥ 0,

Ko + coz + Kp + cp(x − z) ≥ Ko + Kp + min(co, cp)x;

thus it is never optimal for both modes of expediting to occur simultaneously. A formal

proof is trivial and would mirror Theorem 1 or apply a sample path argument.

Define

C∗ ≡ min
y≥0

{(co − cr)y + hr(y) + αf ∗(y)} − αf ∗(0)
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and

S̃ ≡ arg min
y≥0

{(co − cr)y + hr(y) + αf ∗(y)}.

Then, when S̃ > 0, C∗ represents the added cost (or, more correctly, −C∗ ≥ 0 represents

the added benefit) in using expediting up-to S̃ instead of up-to 0. Using this and the above

structure of expediting we have that, in Lemma 2, for z ≥ 0,

p(z) = min{Ko + (co − cr)z + C∗, Kp + (cp − cr)z} + δ(z)(f ∗(0) − f ∗(−)).

Hence, the values of Ko, co, Kp, cp, and C∗ determine which mode of expedited production

is best, when. In particular, if co 6= cp, define

s̃ ≡
⌊
Ko + C∗ − Kp

co − cp

⌋
,

where, for any x, bxc is the largest integer less than or equal to x. Note s̃ remains undefined

if co = cp as it is unnecessary. The optimal expediting policy is represented in the following

table.

Ko + C∗ > Kp Ko + C∗ = Kp Ko + C∗ < Kp

co < cp PP for s̃ < x̃ < 0 RP for all x̃ < 0 RP for all x̃ < 0

RP for x̃ ≤ s̃

co = cp PP for all x̃ < 0 Any RP for all x̃ < 0

co > cp PP for all x̃ < 0 PP for all x̃ < 0 RP for s̃ < x̃ < 0

PP for x̃ ≤ s̃

Table 1: Regions in Which to Use Rush Production (RP) Versus Penalty Production (PP)

Theorem 3 An optimal stationary expediting production policy exists and has structure as

in Table 1 where under rush production the optimal produce-up-to amount equals S̃ and

under penalty production the up-to amount is zero by definition. Regular production follows

an (s, S) policy.
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Proof: Follows directly from the above, Theorem 2, and simple algebra. 2

Note that when C∗ = 0 (for example, when Kr = 0), the optimal expediting policy

depends only on the relative expediting costs and is independent of the demand distribution.

4 Heuristic and Numerical Analysis

In this section, we develop heuristic approximations and perform numerical analyzes assum-

ing linear plus fixed costs for expediting. In Section 4.1, we consider a single form of expedit-

ing (as in Sections 3.1 and 3.2) and develop heuristics for s∗, S∗, and S̃∗. In Section 4.2, we

numerically analyze the model and compare it to the case where no excess expedited produc-

tion is allowed; we also test the approximations developed in Section 4.1. In Section 4.3, we

develop heuristic approximations for the two forms of expediting of Section 3.3 and discuss

some numerical results.

In our problem, we assume that deliveries either occur overnight or effectively instanta-

neously with expediting. This will be true for a manufacturing plant delivering to neighboring

manufacturing plants. However, one of the fundamental aspects of our model is that demand

must be met. If there is a leadtime L for production or shipping then clearly demand must

be provided L periods in advance. If expedited production just allows for a one period gain,

then the model remains the same, just transposed by L periods. We will consider a contin-

uous approximation to our model with a delivery leadtime of L, where L = 1 approximates

the model of the previous section.

4.1 Heuristic with One Mode of Expediting

Assume that er(x) = Keδ(x) + cex for some fixed Ke and ce, x ≥ 0. Then from Theorems 1

and 2, optimal values s∗, S∗, and S̃∗ exist for the model with expedited production as

the only form of expediting. Calculating these optimal values exactly requires a lengthy

iterative procedure, so here we develop heuristic estimates. We focus our attention on

explicit estimates as the most likely to be implemented. Further, for an iterative heuristic
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one would need to show significant improvement either in run-time or complexity, over exact

iterative solutions. Because we found our explicit heuristic to perform reasonably well (see

the following subsection) we choose to avoid any such issues.

To develop these estimates, we follow closely the procedures discussed in Archibald

(1981), Porteus (1985), and Lee and Nahmias (1993). The last is a survey article and

gives appropriate references for the results we use. We first approximate the values of s∗ and

S∗ by using a continuous-time model without excess expedited production. We estimate S∗

using s∗ +Qr for some order quantity Qr, after adjusting for “overshoot”. We then use these

values to estimate S̃∗, the up-to amount for overtime.

As discussed above, we wish to develop explicit estimates. We therefore use the simple

EOQ value for the heuristic value of Qr, QH
r , appropriately adjusted for discounting (see,

e.g., equation (2.3) of Lee and Nahmias, 1992). That is we set

QH
r ≡

√
2µKr

hr + cr(1 − α)
. (14)

As mentioned above, we approximate our model using a continuous-time model without

excess expedited production. This approximation leads to a long-run average cost function

Cr that resembles a lost sales model (see, e.g., p. 38 Lee and Nahmias, 1992) but is different

due to the fixed cost of expedited production. We have

Cr =
µ

Qr

[
Kr + (ce − cr)E[DL − s]+ + KeP [DL > s]

]
+ hr

[
Qr

2
+ E[s − DL]+

]

where µ is the average demand per unit time, Qr is the order quantity, and DL is the

stochastic demand during the lead time.

We plan to set Qr = QH
r and minimize this equation with respect to s (rather than using

lengthier iterative procedures). Define φ(x) = P (DL = dxe), where, for any x, dxe is the

smallest integer greater than or equal to x, so that

P [DL > s] =
∫ ∞

s
φ(x)dx.

Then, setting ∂Cr/∂s = 0 yields

(µ(ce − cr) + Qrhr)P (DL > s) + Keµφ(s) = Qrhr
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The inclusion of the Keµφ(s) term makes this equation a function of both the probabil-

ity mass function and the cumulative probability, which may be solved implicitly but not

explicitly; hence, we employ another estimate.

Our goal is to solve φ(s) ≈ Qrhr

Keµ
, but not exactly since by ignoring the cumulative term,

our estimate for φ(s) would be too high. Moreover, we want the estimate to increase as the

numerator increases, to decrease as the denominator increases, and to remain small enough

such that the fraction for the cumulative distribution is less than 1. To advance these goals,

we reconsider the problem in terms of a simple newsvendor model where the numerator is

the “holding” cost and the denominator is the “penalty” cost and estimate

φH ≡ φ

(
P−1

(
Keµ

hrQH
r + Keµ

))
(15)

which yields the approximation

sH ≡ P−1

(
µ(ce − cr) + KeµφH

µ(ce − cr) + hrQH
r

)
. (16)

Clearly, this is a rough estimate, but it does factor in both the linear and fixed costs of

expediting and it is trivial to calculate (assuming all distributions and costs are known).

We are now ready to estimate S∗. As discussed on p. 139 of Porteus (1985), the average

order size in the discrete model will be larger than S − s. We use the suggested adjustment

for this overshoot as follows,

SH ≡ QH
r + sH − E[D]

2
− V ar[D]

2E[D]
(17)

where D is the generic demand in a period.

Finally, relaxing our assumption of no excess expedited production above, we must esti-

mate when to use excess expedited production and how much. We use a similar procedure as

above and estimate S̃H ≡ QH
e + sH −E[D]/2−V ar[D]/2E[D], where we are yet to estimate

the excess expedited production amount QH
e .

The difference between a regular production cycle and expedited production cycle is

approximately

Cr − Ce ≈
µKr

QH
r

+
hrQ

H
r

2
− hrQe

2
.
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Similarly, the expected benefit of using excess expedited production (over expediting to zero)

is approximately

−CO ≈ (Cr − Ce)
Qe

µ
− (ce − cr)(Qe + sH)

which is maximized by

QH
e ≡ µ

hr

(
Kr

QH
r

+
hrQ

H
r

2µ
− ce + cr

)
. (18)

Finally, we define

S̃H ≡ min{SH , max{QH
e − E[D]

2
− V ar[D]

2E[D]
, 0}} (19)

since S̃∗ ≤ S∗ and if QH
e − E[D]/2 − V ar[D]/2E[D] ≤ 0, the optimal policy is simply to

order up to 0 with expedited production.

Equations (14) - (19) define explicit heuristic estimates sH , SH , and S̃H for s∗, S∗, and

S̃∗, respectively. In the next section we discuss their accuracy.

4.2 Numerical Analysis with One Mode of Expediting

In this section, we numerically analyze the expedited production model with linear plus

fixed costs, and compare it to the case where excess expedited production is not allowed

and to the approximations developed in the previous section. Briefly, our results show that

although excess expedited production may be optimal, the benefits are minimal. However,

our heuristic policy performs quite well.

We compute the optimal parameters for regular and expedited production (s, S, and S̃)

using C++ code to iteratively perform all calculations. In our experiment, we set cr = 10

and varied all other parameters. The regular setup cost, Kr, took on the values of 100 and

200. We ignored the case where Kr = 0 since excess expedited production is never optimal

in that case. We let the holding cost hr = 0.01, 0.05, and 0.1. For expedited production,

we let the per unit cost ce = 10.1, 10.5, 11, and 15 where the smaller costs correspond

to the expediting being performed by a second shift or some other form of inexpensive

expediting, rather than the largest cost which represents traditional “time-and-a-half.” The

expediting setup cost Ke = 150 and 250. Finally, we let α = 0.99, 0.999, and 0.9999,
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roughly corresponding to quarterly, weekly, and daily discounting. These variations lead to

22324 = 144 combinations, although only 108 (three-fourths) are feasible since some of the

combinations violate Assumption (A4) with Ke < αKr.

Our results require discrete, logconcave probability distributions, and we initially ran the

experiment for the Poisson distribution and discretized versions of the Normal, Uniform, and

Exponential distributions, truncated when necessary. However, all distributions provided

similar results for the expedited production parameters so we chose to focus on the discretized

Normal distribution with mean 25 and standard deviation 5.

For each combination we made several calculations: We calculated the optimal parame-

ters s∗, S∗ and S̃∗ as well as the inventory/expediting costs (the total discounted cost less the

expected cost of regular production). Our first result is that with our data, excess expedited

production is frequently optimal, 41% of the time. However, the benefit of excess expedited

production is minimal, saving on average only 0.25% on inventory/expediting costs (with a

maximum benefit of 0.80%) when compared to the model where expedited production just

fills the shortage. Unsurprisingly, excess expedited production mostly occurs with low expe-

diting linear costs (10.1, 10.5) and high regular production fixed costs (200); it never occurs

when ce = 15. This calls into question whether excess expedited production is practical

or not. This question would have to be answered by the inventory managers themselves,

but in some cases (where perhaps a “free” production day could be used to produce a dif-

ferent product, for plant maintenance, etc.), it may make sense. On the other hand, since

the savings are generally low, managers may choose to forego the option of excess overtime

production.

Secondly, we compared our heuristic to optimality, and it performed quite well. We

calculated sH , SH and S̃H for the same data and compared inventory/expediting costs.

On average, the heuristic was only 0.46% higher than the optimal inventory cost, with a

minimum of 0.00% and a maximum of 2.77%. The heuristic appears to be unbiased in that

it there is no clear correlation between any of the cost parameters and its performance.

Our estimates for s∗ appear to be good and our estimates for S∗ appear to be very
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good, although the estimates for S̃∗ are a little too high. For each heuristic, we determined

the mean absolute percentage error (MAPE) and the maximum absolute percentage error

(Max) when compared to optimality. Also, we calculated the frequency of each heuristic

underestimating (Under), exactly estimating (Exact), and overestimating (Over), with the

results listed in the table below.

sH SH S̃H

MAPE 8% 1% 6%

Max 31% 5% 73%

Under 45% 52% 16%

Exact 10% 9% 55%

Over 44% 39% 30%

Table 2: Heuristic Accuracy

Note that the data for S̃H was for all outcomes, including 64/108 (59%)where S̃∗ = 0.

Considering only the cases where both S̃∗ and S̃H are positive, the last column should read

11%, 73%, 36%, 5%, and 60%. Although our values of S̃H are somewhat inaccurate, they

do not have a huge effect on inventory/expediting costs due to the infrequency of using

expedited production. Note that simply assuming that no excess expedited production is

allowed would create a much simpler heuristic where only sH and SH need to be determined.

4.3 Heuristic and Numerical Analysis with Two Modes of Expe-

diting

In this section, we discuss a heuristic for the model with two forms of expediting as outlined

in Section 3.3. We follow a similar process as in Section 4.1 to develop the heuristic, but new

difficulties arise. Then, we perform another numerical analysis assuming that both methods

of expediting are available.
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In order to estimate QH
r , we again consider the long-run average cost Cr. However, this

cost now depends on s̃∗, which in turn depends on −CO and the rest of our parameters. So,

at this point we assume that no excess expediting is allowed (at minimal cost, as seen in the

previous section). Thus, −CO = 0, S̃H ≡ 0 and s̃H may easily be calculated as in Section 3.3

as

s̃H ≡
⌊
Ko − Kp

co − cp

⌋
.

Recall from Section 3.3 that four different possibilities arise. One is to only use rush pro-

duction, in which case, simply follow the heuristic developed in Section 4.1. Another is to

only use penalty production; in this case, use the same technique as before, but substitute

the penalty production costs for the expedited production costs in the heuristic calculations.

Third, it may turn out to use penalty production for small shortages and rush production

for large shortages, or fourth vice-versa, where s̃ is the threshold. We focus on the third case

and find that

Cr =
µ

Qr

[
(cp − cr)E[(DL − s)I(s ≥ DL ≥ s + s̃H)] + KpP [s ≥ DL ≥ s + s̃H ]

]

+
µ

Qr

[
(co − cr)E[(DL − s)I(DL > s + s̃H)] + KoP [DL > s + s̃H ]

]

+
µKr

Qr

+ hr

[
Qr

2
+ E[s − DL]+

]
,

where I(·) is the indicator function which is 1 if the event occurs and zero if it doesn’t.

It is likely that under most logconcave demand functions, smaller shortages occur more

frequently due the unimodal nature of the distribution. Hence to estimate QH
r , sH and SH ,

we suggest using only the costs for whichever method is used for smaller shortages, in this

case penalty production, and follow the previous technique.

Numerically, we analyzed the case with both methods of expediting by repeating our

experiment from Section 5.2 including three linear penalty production costs (cp = 10.2, 12, 16)

and two penalty production fixed costs (Kp = 50, 250). These additions lead to 648 feasible

combinations. Our first result is that all four possibilities arise: only expedited production

occurred 20% of the time; only penalty production, 27%; expedited production for small
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shortages, penalty production for large shortages, 6%; and vice-versa, 46%. Clearly, these

results depend upon the chosen cost parameters, but most importantly, all situations are

possible.

Finally, with both methods of expediting, our heuristic did not perform as well. Overall,

the average inventory/expediting cost of the heuristic was 5.52% higher than optimal, with

a minimum of 0.16% and a maximum of 17.02%. Interestingly, the error depends on α, with

the heuristic being off by 11.99%, 2.88%, 1.70% for α = 0.99, 0.999, 0.9999, respectively.

These results suggest that a more accurate heuristic would depend more on the discount

factor. Lastly, our estimate for S∗ continued to be very good with an MAPE of only 1.58%

whereas our estimate for s∗, unsurprisingly, worsened with an MAPE of 15.55%.

5 Conclusion and Extensions

In this paper we have modeled an inventory control problem where stochastic demand must

always be met and shortages may be filled by expediting. Our goal was to determine optimal

policies for expediting and regular production and to gain insight about this problem.

We first considered a model with one mode of expediting. Under a variety of assumptions

on holding and expediting costs, we characterized the structure of the optimal expediting

policy and showed that the optimal regular production policy is (s, S). We then considered

a model with two forms of expediting. Again, we explored the structure of the optimal

expediting policy and showed that the optimal regular production policy is (s, S). We

presented heuristics for explicit parameter calculation and tested them using a numerical

study. They were shown to perform quite well. Finally, we used numerical analysis to gain

insights into the different optimal expediting policies and the frequency of excess expedited

production and associated savings.

Capacity constraints may apply to either regular production, expedited production, or

possibly both. However, if both types of production are constrained, we cannot guarantee

that demand will always be met. As capacitated inventory problems with fixed order costs
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are extremely challenging in their own right (see, e.g., Gallego and Scheller-Wolf, 2000), we

leave such extensions as the subject of future research.

As discussed in Section 4, if expedited production just allows for a one period gain

then the model remains equivalent. However, the more interesting case is where expedited

production allows for a choice of the number of periods shipping will take. In this case one

would expect an L dimensional state-space where one keeps track of the inventory due in k

periods for k = 1, 2, . . . , L − 1. The decision on which periods to ship by premium freight

would depend on the specific cost structure. One would need conditions to ensure that the

expediting production cost function, p(·), remains quasi-convex and then the same proof

would be able to be used to show (s, S) production for regular time. This is left as the

subject for future research.

A number of other extensions to this work are natural to consider including non i.i.d.

demand, demand forecasting, and multi-echelon supply-chains. The latter has been explored

to some extent for the case of no fixed production costs in Huggins and Olsen (2003, 2005).
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Appendix

Proof of Lemma 1

We first show that:

fπ(x0) = Krδ(y0 − x0) + ED0

[
f̃π(y0 − D0)

]
. (20)

where y0 ≥ x+
0 and

f̃π(x̃0) = er(ỹ0 − x̃0) + hr(ỹ0) + αfπ(ỹ0). (21)

for ỹ0 ≥ x̃+
0 .

To wit,

fπ(x0) = lim
N→∞

ED′

[
N−1∑

t=0

αtg(xt, yt, x̃t, ỹt)

]

= Krδ(y0 − x0) + lim
N→∞

ED′

[
N−1∑

t=0

αtg̃(x̃t, ỹt, yt+1)

]

= Krδ(y0 − x0) + lim
N→∞

ED0

[
ED∞

[
N−1∑

t=0

αtg̃(x̃t, ỹt, yt+1)|D0

]]

= Krδ(y0 − x0) + ED0

[
lim

N→∞
ED∞

[
N−1∑

t=0

αtg̃(x̃t, ỹt, yt+1)|D0

]]

= Krδ(y0 − x0) + ED0

[
f̃π(x̃0)

]

= Krδ(y0 − x0) + ED0

[
f̃π(y0 − D0)

]

where y0 ≥ x+
0 . The first equality is true by definition, the fourth equality is true by the

Monotone Convergence Theorem since g̃(·) ≥ 0, and the fifth equality is true by the definition

of f̃π and because the system is Markovian. The proof of (21) follows immediately as no

expectations are needed. Minimizing these equations over π yields the relationships in (5)

and (6). Below we show that such a minimum indeed exists.

Observe that fπ(x) and f̃π(x̃) are non-negative for all policies π ∈ Π and for all x̃, x ∈ I

because they are the sum of non-negative functions g and g̃, respectively. Thus, to show

that f ∗(x) and f̃ ∗(x̃) are finite, it suffices to show that there exists a policy γ such that

f̃γ(x̃) < ∞ and fγ(x) < ∞ for all x ∈ Z+, x̃ ∈ Z. Let this γ be such that whenever the
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inventory level is negative produce up to 0; otherwise, do nothing. Note that this policy

applies to both expedited and regular production and that this policy is stationary.

Consider the cost per stage for expediting under this policy:

g̃γ(x̃, ỹ, y) = Koδ(ỹ − x̃) + hr(ỹ) =





hr(x̃) if x̃ ≥ 0

Ko if x̃ < 0

since ỹ = x̃+. Thus, since γ is stationary and g̃γ(x̃, ỹ, y) ≥ 0, by Corollary 1.1.1 of Bertsekas

(1995, p. 139) we have that

f̃γ(x̃) =





hr(x̃) + αE[f̃γ(x̃ − D)] if x̃ ≥ 0

Ko + αE[f̃γ(0 − D)] if x̃ < 0.

Now note that

E[f̃γ(0 − D)] = Ko(1 − p0) + αE[f̃γ(0 − D)]

⇒ E[f̃γ(0 − D)] =
Ko(1 − p0)

1 − α
< ∞

Thus,

f̃γ(x̃) =





hx̃ + αE[f̃γ(x̃ − D)] if x̃ ≥ 0

Ko + αKo(1−p0)
1−α

if x̃ < 0

and f̃γ(x̃) < ∞ for −∞ < x̃ < 0. Now, when x̃ ≥ 0, the inventory level will remain non-

negative for some time T and will then eventually become negative at time T + 1. Note,

T < ∞ almost surely (a.s.) since E[D] > 0 by Assumption (A2). While the inventory level

is non-negative, there will be a holding cost of at most hr(x̃) for T discounted periods. When

the inventory goes negative, to some value N say, there will be an αT+1 discounted cost of

Ko + (αKo(1 − p0))/(1 − α) where −∞ < N < 0 a.s. and −E[N ] ≤ E[D]. So, for x̃ ≥ 0,

f̃γ(x̃) ≤ E

[
T∑

t=0

αthr(x̃) + αT+1

(
Ko +

αKo(1 − p0)

1 − α

)]

≤ hr(x̃)

1 − α
+ Ko + coE[D] + α

Ko(1 − p0)

1 − α
< ∞.

Thus f̃γ(x̃) < ∞ for 0 ≤ x̃ < ∞. So, f̃ ∗(x̃) ≤ f̃γ(x̃) < ∞ for all x̃ ∈ Z. Now, f ∗(x) is also

finite since

fγ(x) = E[f̃γ(x − D)] < ∞.
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Thus, f ∗(x) ≤ fγ(x) < ∞ for all x ∈ Z+. Therefore the optimal cost functions are both

finite and satisfy the relationships in (5) and (6).

The fact that any solution to (4) or any joint solution to (5) and (6) must be the optimal

solution to (3) and to (2) and to (3), respectively, follows directly from Proposition 1.1 of

Bertsekas (1995, p. 137) Further, that the corresponding policy that solves equation (4) or

jointly solves (5) and (6) is the optimal stationary policy for the system follows directly from

Proposition 1.3 of Bertsekas (1995, p. 143).

We wish to show (7). For x̃ < 0,

f̃ ∗(x̃) = min
ỹ≥x̃+, y≥ỹ+

ED

[
g̃(x̃, ỹ, y) + αf̃ ∗(y − D)

]

≥ min
ỹ≥x̃+, y≥ỹ+

g̃(x̃, ỹ, y) + α min
y≥0

ED

[
f̃ ∗(y − D)

]

≥ αKr + α min
y≥0

ED

[
f̃ ∗(y − D)

]

= αf ∗(−)

The first inequality follows from the definition of a minimum and because x̃ < 0; the second

follows because x̃ < 0 and Assumptions (A5) and (A6) imply that g̃(x̃, ỹ, y) ≥ er(x̃) and

then from Assumption (A4). Finally, (8) follows since

f ∗(−) = Kr + min
y≥0

ED

[
f̃ ∗(y − D)

]

≤ Kr + min
y≥0

{Krδ(y) + ED

[
f̃ ∗(y − D)

]
}

= Kr + f ∗(0).

This completes the proof. 2

Proof of Corollary 1

Assume, for some x̃ < 0, ỹ∗(x̃) > 0. We wish to show s∗ < ỹ∗(x̃). From equations (4) and

(1)

f̃ ∗(x̃) = min
ỹ≥0,y≥ỹ+

{
er(ỹ − x̃) + hr(ỹ) + αKrδ(y − ỹ) + αED

[
f̃ ∗(y − D)

]}
.

Now if ỹ 6= y then, since er(ỹ − x̃) + hr(ỹ) is non-decreasing in ỹ, then it is optimal to set ỹ

equal to zero. Thus, for any given y, there are only two possible optimal values for ỹ, namely

0 or y. In other words, either expediting is used to return the system to zero or, if expediting
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results in positive inventory, then regular time production is not used. This directly implies

that s∗ < ỹ∗(x̃) if ỹ∗(x̃) > 0. Further, if for any x̃ < 0, er(y − x̃) + hr(y) ≥ er(−x̃) + αKr for

all y > 0, then ỹ∗(x̃) = 0.

We wish to prove Condition 3. For 0 ≤ x̃ ≤ S∗, ỹ∗(x̃) = x̃ ≤ S∗ (by Theorem 1). Now

suppose x̃ < 0. If expedited production results in positive leftover inventory then

f̃ ∗(x̃) = min
y≥0

{
er(y − x̃) + hr(y) + αED

[
f̃ ∗(y − D)

]}

and if expedited production produces up to zero then

f̃ ∗(x̃) = er(−x̃) + min
y≥0

{
αKrδ(y) + αED

[
f̃ ∗(y − D)

]}

Thus, by definition,

S∗ = arg min
y≥0

{
αKrδ(y) + αED

[
f̃ ∗(y − D)

]}

and

ỹ∗(x̃) = arg min
y≥0

{
er(y − x̃) + hr(y) + αED

[
f̃ ∗(y − D)

]}

By assumption S∗ > 0 so that

S∗ = arg min
y>0

{
αED

[
f̃ ∗(y − D)

]}

But er(y − x̃) + hr(y) is non-decreasing in y so ỹ∗(x̃) ≤ S∗. 2
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