12

Inventory Control Models

LEARNING OBJECTIVES

After completing this chapter, students will be able to:

1. Understand the importance of inventory control.
2. Use inventory control models to determine how much to order or produce and when to order or produce.
3. Understand inventory models that allow quantity discounts.
4. Understand the use of safety stock with known and unknown stockout costs.
5. Understand the importance of ABC inventory analysis.
6. Use Excel to analyze a variety of inventory control models.

CHAPTER OUTLINE

12.1 Introduction
12.2 Importance of Inventory Control
12.3 Inventory Control Decisions
12.4 Economic Order Quantity: Determining How Much to Order
12.5 Reorder Point: Determining When to Order
12.6 Economic Production Quantity: Determining How Much to Produce
12.7 Quantity Discount Models
12.8 Use of Safety Stock
12.9 ABC Analysis

Summary • Glossary • Solved Problems • Discussion Questions and Problems • Case Study: Sturdivant Sound Systems • Case Study: Martin-Pullin Bicycle Corporation • Internet Case Studies

Copyright ©2013 Pearson Education, Inc. publishing as Prentice Hall
12.1 Introduction

Inventory is one of the most expensive and important assets of many companies, representing as much as 50% of total invested capital. Managers have long recognized that good inventory control is crucial. On one hand, a firm can try to reduce costs by reducing on-hand inventory levels. On the other hand, customers become dissatisfied when frequent inventory outages, called stockouts, occur. Thus, companies must make the balance between low and high inventory levels. As you would expect, cost minimization is the major factor in obtaining this delicate balance.

Inventory is any stored resource that is used to satisfy a current or future need. Raw materials, work-in-process, and finished goods are examples of inventory. Inventory levels for finished goods, such as clothes dryers, are a direct function of market demand. By using this demand information, it is possible to determine how much raw materials (e.g., sheet metal, paint, and electric motors in the case of clothes dryers) and work-in-process are needed to produce the finished product.

Every organization has some type of inventory planning and control system. A bank has methods to control its inventory of cash. A hospital has methods to control blood supplies and other important items. State and federal governments, schools, and virtually every manufacturing and production organization are concerned with inventory planning and control. Studying how organizations control their inventory is equivalent to studying how they achieve their objectives by supplying goods and services to their customers. Inventory is the common thread that ties all the functions and departments of the organization together.

Figure 12.1 illustrates the basic components of an inventory planning and control system. The planning phase involves primarily what inventory is to be stocked and how it is to be acquired (whether it is to be manufactured or purchased). This information is then used in forecasting demand for the inventory and in controlling inventory levels. The feedback loop in Figure 12.1 provides a way of revising the plan and forecast based on experiences and observation.

Through inventory planning, an organization determines what goods and/or services are to be produced. In cases of physical products, the organization must also determine whether to produce these goods or to purchase them from another manufacturer. When this has been determined, the next step is to forecast the demand. As discussed in Chapter 11, many mathematical techniques can be used in forecasting demand for a particular product. The emphasis in this chapter is on inventory control—that is, how to maintain adequate inventory levels within an organization to support a production or procurement plan that will satisfy the forecasted demand.

In this chapter, we discuss several different inventory control models that are commonly used in practice. For each model, we provide examples of how they are analyzed. Although we show the equations needed to compute the relevant parameters for each model, we use Excel worksheets (included on this textbook’s Companion Website) to actually calculate these values.

12.2 Importance of Inventory Control

There are five main uses of inventory.

1. The decoupling function
2. Storing resources

FIGURE 12.1
Inventory Planning and Control

Copyright ©2013 Pearson Education, Inc. publishing as Prentice Hall
3. Irregular supply and demand
4. Quantity discounts
5. Avoiding stockouts and shortages

Inventory can act as a buffer.

Decoupling Function

One of the major functions of inventory is to decouple manufacturing processes within the organization. If a company did not store inventory, there could be many delays and inefficiencies. For example, when one manufacturing activity has to be completed before a second activity can be started, it could stop the entire process. However, stored inventory between processes could act as a buffer.

Storing Resources

Agricultural and seafood products often have definite seasons over which they can be harvested or caught, but the demand for these products is somewhat constant during the year. In these and similar cases, inventory can be used to store these resources.

In a manufacturing process, raw materials can be stored by themselves, as work-in-process, or as finished products. Thus, if your company makes lawn mowers, you might obtain lawn mower tires from another manufacturer. If you have 400 finished lawn mowers and 300 tires in inventory, you actually have 1,900 tires stored in inventory. Three hundred tires are stored by themselves, and 1,600 (= 4 tires per lawn mower × 400 lawn mowers) tires are stored on the finished lawn mowers. In the same sense, labor can be stored in inventory. If you have 500 subassemblies and it takes 50 hours of labor to produce each assembly, you actually have 25,000 labor hours stored in inventory in the subassemblies. In general, any resource, physical or otherwise, can be stored in inventory.

Resources can be stored in work-in-process.

Irregular Supply and Demand

When the supply or demand for an inventory item is irregular, storing certain amounts in inventory can be important. If the greatest demand for Diet-Delight beverage is during the summer, the Diet-Delight company will have to make sure there is enough supply to meet this irregular demand. This might require that the company produce more of the soft drink in the winter than is actually needed in order to meet the winter demand. The inventory levels of Diet-Delight will gradually build up over the winter, but this inventory will be needed in the summer. The same is true for irregular supplies.

Quantity Discounts

Another use of inventory is to take advantage of quantity discounts. Many suppliers offer discounts for large orders. For example, an electric jigsaw might normally cost $10 per unit. If you order 300 or more saws at one time, your supplier may lower the cost to $8.75. Purchasing in larger quantities can substantially reduce the cost of products. There are, however, some disadvantages of buying in larger quantities. You will have higher storage costs and higher costs due to spoilage, damaged stock, theft, insurance, and so on. Furthermore, if you invest in more inventory, you will have less cash to invest elsewhere.

Avoiding Stockouts and Shortages

Another important function of inventory is to avoid shortages or stockouts. If a company is repeatedly out of stock, customers are likely to go elsewhere to satisfy their needs. Lost goodwill can be an expensive price to pay for not having the right item at the right time.

Inventory helps when there is irregular supply or demand.

Purchasing in large quantities may lower unit costs.

Inventory can help avoid stockouts.

12.3 Inventory Control Decisions

Even though there are literally millions of different types of products manufactured in our society, there are only two fundamental decisions that you have to make when controlling inventory:

1. How much to order
2. When to order

Copyright ©2013 Pearson Education, Inc. publishing as Prentice Hall
The purpose of all inventory models is to determine how much to order and when to order. As you know, inventory fulfills many important functions in an organization. But as the inventory levels go up to provide these functions, the cost of storing and holding inventory also increases. Thus, we must reach a fine balance in establishing inventory levels. A major objective in controlling inventory is to minimize total inventory costs. Some of the most significant inventory costs are as follows:

1. Cost of the items
2. Cost of ordering
3. Cost of carrying, or holding, inventory
4. Cost of stockouts
5. Cost of safety stock, the additional inventory that may be held to help avoid stockouts

The inventory models discussed in the first part of this chapter assume that demand and the time it takes to receive an order are known and constant, and that no quantity discounts are given. When this is the case, the most significant costs are the cost of placing an order and the cost of holding inventory items over a period of time. Table 12.1 provides a list of important factors that make up these costs. Later in this chapter we discuss several more sophisticated inventory models.

12.4 Economic Order Quantity: Determining How Much to Order

The economic order quantity (EOQ) model is one of the oldest and most commonly known inventory control techniques. Research on its use dates back to a 1915 publication by Ford W. Harris. This model is still used by a large number of organizations today. This technique is relatively easy to use, but it makes a number of assumptions. Some of the more important assumptions follow:

1. Demand is known and constant.
2. The lead time—that is, the time between the placement of the order and the receipt of the order—is known and constant.
3. The receipt of inventory is instantaneous. In other words, the inventory from an order arrives in one batch, at one point in time.
4. Quantity discounts are not possible.
5. The only variable costs are the cost of placing an order, ordering cost, and the cost of holding or storing inventory over time, carrying, or holding, cost.
6. If orders are placed at the right time, stockouts and shortages can be avoided completely.

With these assumptions, inventory usage has a sawtooth shape, as in Figure 12.2. Here, Q represents the amount that is ordered. If this amount is 500 units, all 500 units arrive at one time.
The objective of the simple EOQ model is to minimize ordering and carrying costs.

Through the effective use of inventory optimization models, P&G has reduced its total inventory investment significantly. Spreadsheet-based inventory models that locally optimize different portions of the supply chain drive nearly 60 percent of P&G’s business. For more complex supply chain networks (which drive about 30 percent of P&G’s business), advanced multi-stage models yield additional average inventory reductions of 7 percent. P&G estimates that the use of these tools was instrumental in driving $1.5 billion in cash savings in 2009, while maintaining or increasing service levels.

12.4 • ECONOMIC ORDER QUANTITY: DETERMINING HOW MUCH TO ORDER

Optimizing Inventory at Procter & Gamble

Procter & Gamble (P&G) is a world leader in consumer products with annual sales of over $76 billion. Managing inventory in such a large and complex organization requires making effective use of the right people, organizational structure, and tools. P&G’s logistics planning personnel coordinate material flow, capacity, inventory, and logistics for the firm’s extensive supply chain network, which comprises 145 P&G-owned manufacturing facilities, 300 contract manufacturers, and 6,900 unique product-category market combinations. Each supply chain requires effective management based on the latest available information, communication, and planning tools to handle complex challenges and trade-offs on issues such as production batch sizes, order policies, replenishment timing, new-product introductions, and assortment management.

When an order is received. Thus, the inventory level jumps from 0 to 500 units. In general, the inventory level increases from 0 to \(Q \) units when an order arrives.

Because demand is constant over time, inventory drops at a uniform rate over time. (Refer to the sloped line in Figure 12.2.) Another order is placed such that when the inventory level reaches 0, the new order is received and the inventory level again jumps to \(Q \) units, represented by the vertical lines. This process continues indefinitely over time.

Ordering and Inventory Costs

The objective of most inventory models is to minimize the total cost. With the assumptions just given, the significant costs are the ordering cost and the inventory carrying cost. All other costs, such as the cost of the inventory itself, are constant. Thus, if we minimize the sum of the ordering and carrying costs, we also minimize the total cost.

To help visualize this, Figure 12.3 graphs total cost as a function of the order quantity, \(Q \). As the value of \(Q \) increases, the total number of orders placed per year decreases. Hence, the total ordering cost decreases. However, as the value of \(Q \) increases, the carrying cost increases because the firm has to maintain larger average inventories.

The optimal order size, \(Q^* \), is the quantity that minimizes the total cost. Note in Figure 12.3 that \(Q^* \) occurs at the point where the ordering cost curve and the carrying cost curve intersect. This is not by chance. With this particular type of cost function, the optimal quantity always occurs at a point where the ordering cost is equal to the carrying cost.

\[\text{Order Quantity} = Q = \text{Maximum Inventory Level} \]
Now that we have a better understanding of inventory costs, let us see how we can determine the value of Q^* that minimizes the total cost. In determining the annual carrying cost, it is convenient to use the average inventory. Referring to Figure 12.2, we see that the on-hand inventory ranges from a high of Q units to a low of zero units, with a uniform rate of decrease between these levels. Thus, the average inventory can be calculated as the average of the minimum and maximum inventory levels. That is,

$$\text{Average inventory level} = \frac{0 + Q}{2} = \frac{Q}{2}$$

(12-1)

We multiply this average inventory by a factor called the annual inventory carrying cost per unit to determine the annual inventory cost.

Finding the Economic Order Quantity

We pointed out that the optimal order quantity, Q^*, is the point that minimizes the total cost, where total cost is the sum of ordering cost and carrying cost. We also indicated graphically that the optimal order quantity was at the point where the ordering cost was equal to the carrying cost. Let us now define the following parameters:

- Q^* = Optimal order quantity (i.e., the EOQ)
- D = Annual demand, in units, for the inventory item
- C_o = Ordering cost per order
- C_h = Carrying or holding cost per unit per year
- P = Purchase cost per unit of the inventory item

The unit carrying cost, C_h, is usually expressed in one of two ways, as follows:

1. As a fixed cost. For example, C_h is $0.50 per unit per year.
2. As a percentage (typically denoted by I) of the item’s unit purchase cost or price. For example, C_h is 20% of the item’s unit cost. In general,

$$C_h = I \times P$$

(12-2)

For a given order quantity Q, the ordering, holding, and total costs can be computed using the following formulas:\(^{1}\)

$$\text{Total ordering cost} = \left(\frac{D}{Q}\right) \times C_o$$

(12-3)

\(^{1}\) See a recent operations management textbook such as J. Heizer and B. Render, *Operations Management*, 10th ed. Upper Saddle River, NJ: Prentice Hall, 2011, for more details of these formulas (and other formulas in this chapter).
12.4 • ECONOMIC ORDER QUANTITY: DETERMINING HOW MUCH TO ORDER

Total carrying cost = \(Q/2 \times C_h \) \hspace{1cm} (12-4)

Total cost = Total ordering cost + Total carrying cost + Total purchase cost
= \(D/Q \times C_o \) + \(Q/2 \times C_h \) + \(P \times D \) \hspace{1cm} (12-5)

Observe that the total purchase cost (i.e., \(P \times D \)) does not depend on the value of \(Q \). This is so because regardless of how many orders we place each year, or how many units we order each time, we will still incur the same annual total purchase cost.

The presence of \(Q \) in the denominator of the first term makes Equation 12-5 a nonlinear equation with respect to \(Q \). Nevertheless, because the total ordering cost is equal to the total carrying cost at the optimal value of \(Q \), we can set the terms in Equations 12-3 and 12-4 equal to each other and calculate the EOQ as

\[Q^* = \sqrt{\frac{2DC_o}{C_h}} \] \hspace{1cm} (12-6)

Sumco Pump Company Example

Let us now apply these formulas to the case of Sumco, a company that buys pump housings from a manufacturer and distributes to retailers. Sumco would like to reduce its inventory cost by determining the optimal number of pump housings to obtain per order. The annual demand is 1,000 units, the ordering cost is $10 per order, and the carrying cost is $0.50 per unit per year. Each pump housing has a purchase cost of $5. How many housings should Sumco order each time? To answer these and other questions, we use the ExcelModules program.

Using ExcelModules for Inventory Model Computations

Excel Notes

- The Companion Website for this textbook, at www.pearsonhighered.com/balakrishnan, contains a set of Excel worksheets, bundled together in a software package called ExcelModules. Appendix B describes the procedure for installing and running this program, and it gives a brief description of its contents.
- The Companion Website also provides the Excel file for each sample problem discussed here. The relevant file name is shown in the margin next to each example.
- For clarity, all worksheets for inventory models in ExcelModules are color coded as follows:
 - Input cells, where we enter the problem data, are shaded yellow.
 - Output cells, which show results, are shaded green.

When we run the ExcelModules program, we see a new tab titled ExcelModules in Excel’s Ribbon. We select this tab and then click the Modules icon followed by the Inventory Models menu. The choices shown in Screenshot 12-1A are displayed. From these choices, we select the appropriate model.

When we select any of the inventory models in ExcelModules, we are first presented with a window that allows us to specify several options. Some of these options are common for all models, whereas others are specific to the inventory model selected. For example, Screenshot 12-1B shows the options window that appears when we select the Economic Order Quantity (EOQ) model. The options here include the following:

1. Title. The default value is Problem Title.
2. Graph. Checking this box results in a graph of ordering, carrying, and total costs versus order quantity.
3. Holding cost. This is either a fixed amount or a percentage of unit purchase cost.
4. Reorder Point. Checking this box results in the calculation of the reorder point, for a given lead time between placement of the order and receipt of the order. We discuss the reorder point in section 12.5. This option is available only for the EOQ model.

USING EXCELMODULES FOR THE EOQ MODEL Screenshot 12-2A shows the options we select for the Sumco Pump Company example.

When we click OK on this screen, we get the worksheet shown in Screenshot 12-2B on page 12-9. We now enter the values for the annual demand, \(D \), ordering cost, \(C_o \), carrying cost, \(C_h \), and unit purchase cost, \(P \), in cells B6 to B9, respectively.

Copyright ©2013 Pearson Education, Inc. publishing as Prentice Hall
ExcelModules tab appears when ExcelModules is started. Click the Modules icon to access the main menu in ExcelModules. Inventory Models menu in ExcelModules.

ExcelModules options. See Appendix B for details. Main menu in ExcelModules.

Default problem title

This specifies how carrying or holding cost is entered.

Check here to get plot of costs. Check here to compute reorder point (see section 12.5).
SCREENSHOT 12-2A Options Window for EOQ Model in ExcelModules

SCREENSHOT 12-2B EOQ Model for Sumco Pump

Copyright ©2013 Pearson Education, Inc. publishing as Prentice Hall
The worksheets in ExcelModules contain formulas to compute the results for different inventory models. The default value of zero for the input data causes the results of these formulas to initially appear as #N/A, #VALUE!, or #DIV/0!. However, as soon as we enter valid values for these input data, the worksheets display the formula results.

Once ExcelModules has been used to create the Excel worksheet for a particular inventory model (e.g., EOQ), the resulting worksheet can be used to compute the results with several different input data. For example, we can enter different input data in cells B6:B9 of Screenshot 12-2B and compute the results without having to create a new EOQ worksheet each time.

The worksheet calculates the EOQ (shown in cell B12 of Screenshot 12-2B). In addition, the following output measures are calculated and reported:

- Maximum inventory \((= Q^*)\), in cell B13
- Average inventory \((= Q^{1/2})\), in cell B14
- Number of orders \((= D/Q^*)\), in cell B15
- Total holding cost \((= C_h \times Q^{1/2})\), in cell B17
- Total ordering cost \((= C_o \times D/Q^*)\), in cell B18
- Total purchase cost \((= P \times D)\), in cell B19
- Total cost \((= C_h \times Q^{1/2} + C_o \times D/Q^* + P \times D)\), in cell B20

As you might expect, the total ordering cost of $50 is equal to the total carrying cost. (Refer to Figure 12.3 on page 12-6 again to see why.) You may wish to try different values for the order quantity \(Q\), such as 100 or 300 pump housings. (Plug in these values one at a time in cell B12.) You will find that the total cost (in cell B20) has the lowest value when \(Q\) is 200 units. That is, the EOQ, \(Q^*\), for Sumco is 200 pump housings. The total cost, including the purchase cost of $5,000, is $5,100.

If requested, a plot of the total ordering cost, total holding cost and total cost for different values of \(Q\) is drawn by ExcelModules. The graph, shown in Screenshot 12-2C, is drawn on a separate worksheet.

Purchase Cost of Inventory Items

It is often useful to know the value of the average inventory level in dollar terms. We know from Equation 12-1 that the average inventory level is \(Q/2\), where \(Q\) is the order quantity. If we order \(Q^*\) (the EOQ) units each time, the value of the average inventory can be computed by multiplying the average inventory by the unit purchase cost, \(P\). That is,

\[
\text{Average dollar value of inventory} = P \times (Q^*/2)
\]

(12-7)

Calculating the Ordering and Carrying Costs for a Given Value of Q

Recall that the EOQ formula is given by Equation 12-6 as

\[
Q^* = \sqrt{\frac{2DC_o}{C_h}}
\]

In using this formula, we assumed that the values of the ordering cost \(C_o\) and carrying cost \(C_h\) are known constants. In some situations, however, these costs may be difficult to estimate precisely. For example, if the firm orders several items from a supplier simultaneously, it may be difficult to identify the ordering cost separately for each item. In such cases, we can use the EOQ formula to compute the value of \(C_o\) or \(C_h\) that would make a given order quantity the optimal order quantity.

To compute these \(C_o\) or \(C_h\) values, we can manipulate the EOQ formula algebraically and rewrite it as follows:

\[
C_o = Q^2 \times C_h/(2D)
\]

(12-8)
12.4 • ECONOMIC ORDER QUANTITY: DETERMINING HOW MUCH TO ORDER 12-11

SCRENSHOT 12-2C Plot of Costs versus Order Quantity for Sumco Pump

and

\[C_b = 2DC_o/Q^2 \] \hspace{1cm} (12-9)

where \(Q \) is the given order quantity. We illustrate the use of these formulas in Solved Problem 12-1 at the end of this chapter.

Sensitivity of the EOQ Formula

The EOQ formula in Equation 12-6 assumes that all input data are known with certainty. What happens if one of the input values is incorrect? If any of the values used in the formula changes, the optimal value of \(Q^* \) also changes. Determining the magnitude and effect of these changes on \(Q^* \) is called sensitivity analysis. This type of analysis is important in practice because the input values for the EOQ model are usually estimated and hence subject to error or change.

Let us use the Sumco example again to illustrate this issue. Suppose the ordering cost, \(C_o \), is actually $15, instead of $10. Let us assume that the annual demand for pump housings is still the same, namely, \(D = 1,000 \) units, and that the carrying cost, \(C_h \), is $0.50 per unit per year.

If we use these new values in the EOQ worksheet (as in Screenshot 12-2B), the revised EOQ turns out to be 245 units. (See if you can verify this for yourself.) That is, when the ordering cost increases by 50% (from $10 to $15), the optimal order quantity increases only by 22.5% (from 200 to 245). This is because the EOQ formula involves a square root and is, therefore, nonlinear.

We observe a similar occurrence when the carrying cost, \(C_h \), changes. Let us suppose that Sumco’s annual carrying cost is $0.80 per unit, instead of $0.50. Let us also assume that the annual demand is still 1,000 units, and the ordering cost is $10 per order. Using the EOQ worksheet in ExcelModules, we can calculate the revised EOQ as 158 units. (See if you can verify this for yourself.) That is, when the carrying cost increases by 60% (from $0.50 to $0.80), the EOQ decreases by only 21%. Note that the order quantity decreases here because a higher carrying cost makes holding inventory more expensive.
12.5 Reorder Point: Determining When to Order

Now that we have decided how much to order, we look at the second inventory question: when to order. In most simple inventory models, it is assumed that we have instantaneous inventory receipt. That is, we assume that a firm waits until its inventory level for a particular item reaches zero, places an order, and receives the items in stock immediately.

In many cases, however, the time between the placing and receipt of an order, called the lead time, or delivery time, is often a few days or even a few weeks. Thus, the when to order decision is usually expressed in terms of a reorder point (ROP), the inventory level at which an order should be placed. The ROP is given as

\[\text{ROP} = (\text{Demand per day}) \times (\text{Lead time, in days}) \]

\[= d \times L \]

Figure 12.4 shows the reorder point graphically. The slope of the graph is the daily inventory usage. This is expressed in units demanded per day, \(d \). The lead time, \(L \), is the time that it takes to receive an order. Thus, if an order is placed when the inventory level reaches the ROP, the new inventory arrives at the same instant the inventory is reaching zero. Let’s look at an example.

Sumco Pump Company Example Revisited

Recall that we calculated an EOQ value of 200 and a total cost of $5,100 for Sumco (see Screenshot 12-2B on page 543). These calculations were based on an annual demand of 1,000 units, an ordering cost of $10 per order, an annual carrying cost of $0.50 per unit, and a purchase cost of $5 per pump housing.

Now let us assume that there is a lead time of 3 business days between the time Sumco places an order and the time the order is received. Further, let us assume there are 250 business days in a year.

To calculate the ROP, we must first determine the daily demand rate, \(d \). In Sumco’s case, because there are 250 business days in a year and the annual demand is 1,000, the daily demand rate is

\[d = \frac{1,000}{250} = 4 \] pump housings.

To compute the ROP, we need to know the demand rate per period.

To compute the ROP, we need to know the demand rate per period.

USING EXCELMODULES TO COMPUTE THE ROP We can include the ROP computation in the EOQ worksheet provided in ExcelModules. To do so for Sumco’s problem, we once again choose the choice titled Economic Order Quantity (EOQ) from the Inventory Models menu in ExcelModules (refer to Screenshot 12-1A on page 12-8). The only change in the options window (see Screenshot 12-2A) is that we now check the box labeled Reorder Point.

FIGURE 12.4
Reorder Point (ROP) Curve

\[Q^* \]

\[\text{Slope} = \text{Units/Day} = d \]

\[\text{ROP (Units)} \]

\[\text{Lead Time} = L \]

\[\text{Time (Days)} \]
The worksheet shown in Screenshot 12-3 is now displayed. We enter the input data as before (see Screenshot 12-2B). Note the additional input entries for the daily demand rate in cell B10 and the lead time in cell B11. In addition to all the computations shown in Screenshot 12-2B, the worksheet now calculates and reports the ROP of 12 units (shown in cell B24).

Hence, when the inventory stock of pump housings drops to 12, an order should be placed. The order will arrive three days later, just as the firm’s stock is depleted to zero. It should be mentioned that this calculation assumes that all the assumptions listed earlier for EOQ are valid. When demand is not known with complete certainty, these calculations must be modified. This is discussed later in this chapter.

IN ACTION

Dell Uses Inventory Optimization Models in Its Supply Chain

Dell was the leader in global market share in the computer-systems industry during the early 2000s. It was also the fastest-growing company in this industry, competing in multiple market segments. Dell was founded on the concept of selling computer systems directly to customers without a retail middleman, thereby reducing delays and costs due to the elimination of this stage in the supply chain. Dell’s superior financial performance during this period can be attributed in large measure to its successful implementation of this direct-sales model.

In the rapidly evolving computer systems industry, holding inventory is a huge liability. It is common for components to lose 0.5 to 2.0 percent of their value each week, rendering a supply chain filled with old technology obsolete in a short time. Within Dell, the focus was on speeding components and products through its supply chain, while carrying very little inventory.

Dell’s management was, however, keen that its suppliers also hold just the right inventory to ensure a high level of customer service while reducing total costs. Working with a team from the University of Michigan, Dell identified a sustainable process and decision-support tools for determining optimal levels of component inventory at different stages of the supply chain to support the final assembly process.

The tools allowed Dell to change how inventory was being pulled from supplier logistics centers into Dell’s assembly facilities, resulting in a more linear, predictable product pull for suppliers. The direct benefit for Dell is that there is more robustness in supply continuity and suppliers are better able to handle unexpected demand variations.

Source: Based on R. Kapuscinski et al. “Inventory Decisions in Dell’s Supply Chain,” Interfaces 34, 3 (May–June 2004): 191–205.
12.6 Economic Production Quantity: Determining How Much to Produce

In the EOQ model, we assumed that the receipt of inventory is instantaneous. In other words, the entire order arrives in one batch, at a single point in time. In many cases, however, a firm may build up its inventory gradually over a period of time. For example, a firm may receive shipments from its supplier uniformly over a period of time. Or, a firm may be producing at a rate of \(p \) per day and simultaneously selling at a rate of \(d \) per day (where \(p > d \)). Figure 12.5 shows inventory levels as a function of time in these situations. Clearly, the EOQ model is no longer applicable here, and we need a new model to calculate the optimal order (or production) quantity. Because this model is especially suited to the production environment, it is also commonly known as the production lot size model or the economic production quantity (EPQ) model. We refer to this model as the EPQ model in the remainder of this chapter.

In a production process, instead of having an ordering cost, there will be a setup cost. This is the cost of setting up the production facility to manufacture the desired product. It normally includes the salaries and wages of employees who are responsible for setting up the equipment, engineering and design costs of making the setup, and the costs of paperwork, supplies, utilities, and so on. The carrying cost per unit is composed of the same factors as the traditional EOQ model, although the equation to compute the annual carrying cost changes.

In determining the annual carrying cost for the EPQ model, it is again convenient to use the average on-hand inventory. Referring to Figure 12.5, we can show that the maximum on-hand inventory is \(Q^* \) units, where \(d \) is the daily demand rate and \(p \) is the daily production rate. The minimum on-hand inventory is again zero units, and the inventory decreases at a uniform rate between the maximum and minimum levels. Thus, the average inventory can be calculated as the average of the minimum and maximum inventory levels. That is,

\[
\text{Average inventory level} = \frac{[0 + Q \times (1 - d/p)]/2}{Q \times (1 - d/p)/2} = \frac{Q}{2}(1 - d/p)/2 \tag{12-11}
\]

Analogous to the EOQ model, it turns out that the optimal order quantity in the EPQ model also occurs when the total setup cost equals the total carrying cost. We should note, however, that making the total setup cost equal to the total carrying cost does not always guarantee optimal solutions for models more complex than the EPQ model.

Finding the Economic Production Quantity

Let us first define the following additional parameters:

\(Q^* = \) Optimal order or production quantity (i.e., the EPQ)

\(C_s = \) Setup cost per setup

For a given order quantity, \(Q \), the setup, holding, and total costs can now be computed using the following formulas:

\[
\text{Total setup cost} = \frac{D}{Q} \times C_s \tag{12-12}
\]

\[
\text{Total carrying cost} = \left[Q(1 - d/p)/2 \right] \times C_h \tag{12-13}
\]

FIGURE 12.5

Inventory Control and the Production Process

<table>
<thead>
<tr>
<th>Part of Inventory Cycle During Which Production Is Taking Place</th>
<th>There Is No Production During This Part of the Inventory Cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Inventory</td>
<td>Time</td>
</tr>
<tr>
<td>Inventory Level</td>
<td>t</td>
</tr>
</tbody>
</table>

Copyright ©2013 Pearson Education, Inc. publishing as Prentice Hall
12.6 • ECONOMIC PRODUCTION QUANTITY: DETERMINING HOW MUCH TO PRODUCE

Total cost = Total setup cost + Total carrying cost + Total production cost
= \((D/Q) \times C_s + \left[Q(1 - d/p) / 2 \right] \times C_h + P \times D \) \hspace{1cm} (12-14)

As in the EOQ model, the total production (or purchase, if the item is purchased) cost does not depend on the value of \(Q \). Further, the presence of \(Q \) in the denominator of the first term makes the total cost function nonlinear. Nevertheless, because the total setup cost should equal the total ordering cost at the optimal value of \(Q \), we can set the terms in Equations 12-12 and 12-13 equal to each other and calculate the EPQ as

\[
Q^* = \sqrt{\frac{2DC_s}{h}} \left[C_h(1 - d/p) \right] \hspace{1cm} (12-15)
\]

Brown Manufacturing Example

Brown Manufacturing produces mini-sized refrigeration packs in batches. The firm’s estimated demand for the year is 10,000 units. Because Brown operates for 167 business days each year, this annual demand translates to a daily demand rate of about 60 units per day. It costs about $100 to set up the manufacturing process, and the carrying cost is about $0.50 per unit per year. When the production process has been set up, 80 refrigeration packs can be manufactured daily. Each pack costs $5 to produce. How many packs should Brown produce in each batch? As discussed next, we determine this value, as well as values for the associated costs, by using ExcelModules.

USING EXCELMODULES FOR THE EPQ MODEL We select the choice titled Economic Production Quantity (EPQ) from the Inventory Models menu in ExcelModules (refer to Screenshot 12-1A on page 12-8). The options for this procedure are similar to those for the EOQ model (see Screenshot 12-2A on page 12-9). The only change is that the ROP option is not available here. After we enter the title and other options for this problem, we get the worksheet shown in Screenshot 12-4A. We now enter the values for the annual demand, \(D \), setup cost, \(C_s \), carrying cost, \(C_h \), daily production rate, \(p \), daily demand rate, \(d \), and unit production (or purchase) cost, \(P \), in cells B7 to B12, respectively.

The worksheet calculates and reports the EPQ (shown in cell B15), as well as the following output measures:

- Maximum inventory (= \(Q^*[1 - d/p] \)), in cell B16
- Average inventory (= \(Q^*[1 - d/p]/2 \)), in cell B17
- Number of setups (= \(D/Q^* \)), in cell B18
- Total holding cost (= \(C_h \times Q^*[1 - d/p]/2 \)), in cell B20
- Total setup cost (= \(C_s \times D/Q^* \)), in cell B21
- Total purchase cost (= \(P \times D \)), in cell B22
- Total cost (= \(C_h \times Q^*[1 - d/p]/2 + C_s \times D/Q^* + P \times D \)), in cell B23

Here again, as you might expect, the total setup cost is equal to the total carrying cost ($250 each). You may wish to try different values for \(Q \), such as 3,000 or 5,000 pumps. (Plug these values, one at a time, into cell B15.) You will find that the minimum total cost occurs when \(Q \) is 4,000 units. That is, the EPQ, \(Q^* \), for Brown is 4,000 units. The total cost, including the production cost of $50,000, is $50,500.

If requested, a plot of the total setup cost, holding cost, and total cost for different values of \(Q \) is drawn by ExcelModules. This graph, shown in Screenshot 12-4B, is drawn on a separate worksheet.

Length of the Production Cycle

Referring to Figure 12.5, we see that the inventory buildup occurs over a period \(t \) during which Brown is both producing and selling refrigeration packs. We refer to this period \(t \) as the production cycle. In Brown’s case, if \(Q^* = 4,000 \) units and we know that 80 units can be produced daily, the length of each production cycle will be \(Q^*/p = 4,000/80 = 50 \) days. Thus, when Brown decides to produce refrigeration packs, the equipment will be set up to manufacture the units for a 50-day time span.
SCREENSHOT 12-4A EPQ Model for Brown Manufacturing

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>Brown Manufacturing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Inventory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Economic Production Quantity Model</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Enter the data in the cells shaded YELLOW. You may have to do some work to compute the daily production and demand rates.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>Input Data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>Demand rate, D</td>
<td>10000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>Setup cost, C₂</td>
<td>$100.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>Carrying cost, C₃</td>
<td>$0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>Daily production rate, p</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>Daily demand rate, d</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>Unit purchase cost, P</td>
<td>$5.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>Results</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>Economic production quantity, Q*</td>
<td>4000.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>Maximum inventory</td>
<td>1000.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>Average inventory</td>
<td>500.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>Number of setups</td>
<td>2.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>Total holding cost</td>
<td>$250.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>Total setup cost</td>
<td>$250.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>Total production cost</td>
<td>$500.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>Total cost, TC</td>
<td>$505,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td>Cost Table for Graph</td>
<td>Start at</td>
<td>Increment by</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
<td>Q</td>
<td>Setup cost</td>
<td>Holding cost</td>
<td>Total cost</td>
</tr>
<tr>
<td>28</td>
<td></td>
<td>1000.00</td>
<td>1000.00</td>
<td>62.50</td>
<td>1062.50</td>
</tr>
<tr>
<td>29</td>
<td></td>
<td>1233.33</td>
<td>750.00</td>
<td>83.33</td>
<td>833.33</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>1666.67</td>
<td>600.00</td>
<td>164.17</td>
<td>704.17</td>
</tr>
</tbody>
</table>

EPQ is 4,000 units.

Holding cost = Setup cost

Carrying cost is specified as a fixed amount.

SCREENSHOT 12-4B Plot of Costs versus Order Quantity for Brown Manufacturing

Copyright ©2013 Pearson Education, Inc. publishing as Prentice Hall
Quantity Discount Models

To increase sales, many companies offer quantity discounts to their customers. A quantity discount is simply a decreased unit cost for an item when it is purchased in larger quantities. It is not uncommon to have a discount schedule with several discounts for large orders. A typical quantity discount schedule is shown in Table 12.2.

As can be seen in Table 12.2, the normal cost for the item in this example is $5. When 1,000 to 1,999 units are ordered at one time, the cost per unit drops to $4.80, and when the quantity ordered at one time is 2,000 or more, the cost is $4.75 per unit. As always, management must decide when and how much to order. But with quantity discounts, how does a manager make these decisions?

As with other inventory models discussed so far, the overall objective is to minimize the total cost. Because the unit cost for the third discount in Table 12.2 is lowest, you might be tempted to order 2,000 units or more to take advantage of this discount. Placing an order for that many units, however, might not minimize the total inventory cost. As the discount quantity goes up, the item cost goes down, but the carrying cost increases because the order sizes are large. Thus, the major trade-off when considering quantity discounts is between the reduced item cost and the increased carrying cost.

Recall that we computed the total cost (including the total purchase cost) for the EOQ model as follows (see Equation 12-5):

\[
\text{Total cost} = \text{Total ordering cost} + \text{Total carrying cost} + \text{Total purchase cost} = \frac{D}{Q}C_o + \frac{Q}{2}Ch + P \times \text{D}
\]

Next, we illustrate the four-step process to determine the quantity that minimizes the total cost. However, we use a worksheet included in ExcelModules to actually compute the optimal order quantity and associated costs in our example.

Four Steps to Analyze Quantity Discount Models

1. For each discount price, calculate a \(Q^*\) value, using the EOQ formula (see Equation 12-6 on page 12-7). In quantity discount EOQ models, the unit carrying cost, \(C_h\), is typically expressed as a percentage \((I)\) of the unit purchase cost \((P)\). That is, \(C_h = I \times P\), as discussed in Equation 12-2. As a result, the value of \(Q^*\) will be different for each discounted price.

2. For any discount level, if the \(Q^*\) computed in step 1 is too low to qualify for the discount, adjust \(Q^*\) upward to the lowest quantity that qualifies for the discount. For example, if \(Q^*\) for discount 2 in Table 12.2 turns out to be 500 units, adjust this value up to 1,000 units. The reason for this step is illustrated in Figure 12.6.

3. Using the total cost equation (Equation 12-5), compute a total cost for every \(Q^*\) determined in steps 1 and 2. If a \(Q^*\) had to be adjusted upward because it was below the allowable quantity range, be sure to use the adjusted \(Q^*\) value.

4. Select the \(Q^*\) that has the lowest total cost, as computed in step 3. It will be the order quantity that minimizes the total cost.

<table>
<thead>
<tr>
<th>DISCOUNT NUMBER</th>
<th>DISCOUNT QUANTITY</th>
<th>DISCOUNT</th>
<th>DISCOUNT COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0 to 999</td>
<td>0%</td>
<td>$5.00</td>
</tr>
<tr>
<td>2</td>
<td>1,000 to 1,999</td>
<td>4%</td>
<td>$4.80</td>
</tr>
<tr>
<td>3</td>
<td>2,000 and over</td>
<td>5%</td>
<td>$4.75</td>
</tr>
</tbody>
</table>
Brass Department Store stocks toy cars. Recently, the store was given a quantity discount schedule for the cars, as shown in Table 12.2. Thus, the normal cost for the cars is $5. For orders between 1,000 and 1,999 units, the unit cost is $4.80, and for orders of 2,000 or more units, the unit cost is $4.75. Furthermore, the ordering cost is $49 per order, the annual demand is 5,000 race cars, and the inventory carrying charge as a percentage of cost, \(I \), is 20%, or 0.2. What order quantity will minimize the total cost? We use the ExcelModules program to answer this question.

Brass Department Store Example

Brass Department Store stocks toy cars. Recently, the store was given a quantity discount schedule for the cars, as shown in Table 12.2. Thus, the normal cost for the cars is $5. For orders between 1,000 and 1,999 units, the unit cost is $4.80, and for orders of 2,000 or more units, the unit cost is $4.75. Furthermore, the ordering cost is $49 per order, the annual demand is 5,000 race cars, and the inventory carrying charge as a percentage of cost, \(I \), is 20%, or 0.2. What order quantity will minimize the total cost? We use the ExcelModules program to answer this question.

USING EXCELMODULES FOR THE QUANTITY DISCOUNT MODEL We select the choice titled Quantity Discount from the Inventory Models menu in ExcelModules (refer back to Screenshot 12-1A on page 12-8). The window shown in Screenshot 12-5A is displayed. The option entries in this window are similar to those for the EOQ model (see Screenshot 12-2A on page 12-9).
12.7 • QUANTITY DISCOUNT MODELS

The only additional choice is the box labeled **Number of price ranges**. The specific entries for Brass Department Store’s problem are shown in Screenshot 12-5A.

When we click **OK** on this screen, we get the worksheet shown in Screenshot 12-5B. We now enter the values for the annual demand, \(D \), ordering cost, \(C_o \), and holding cost percentage, \(I \), in cells B7 to B9, respectively. Note that \(I \) is entered as a percentage value (e.g., enter 20 for the Brass Department Store example). Then, for each of the three discount ranges, we enter the minimum quantity needed to get the discount and the discounted unit price, \(P \). These entries are shown in cells B12:D13 of Screenshot 12-5B.

The worksheet works through the four-step process and reports the following output measures for each discount range:

- **EOQ value** (shown in cells B17:D17), computed using Equation 12-6
- **Adjusted EOQ value** (shown in cells B18:D18), as discussed in step 2 of the four-step process
- **Total holding cost, total ordering cost, total purchase cost, and overall total cost**, shown in cells B20:D23

In the Brass Department Store example, observe that the \(Q^* \) values for discounts 2 and 3 are too low to be eligible for the discounted prices. They are, therefore, adjusted upward to 1,000 and 2,000, respectively. With these adjusted \(Q^* \) values, we find that the lowest total cost of $24,725 results when we use an order quantity of 1,000 units.

If requested, ExcelModules will also draw a plot of the total cost for different values of \(Q \). This graph, shown in Screenshot 12-5C, is drawn on a separate worksheet.
Safety stock helps in avoiding stockouts. It is extra stock kept on hand.

Safety stock is additional stock that is kept on hand.\(^2\) If, for example, the safety stock for an item is 50 units, you are carrying an average of 50 units more of inventory during the year. When demand is unusually high, you dip into the safety stock instead of encountering a stockout. Thus, the main purpose of safety stock is to avoid stockouts when the demand is higher than expected. Its use is shown in Figure 12.7. Note that although stockouts can often be avoided by using safety stock, there is still a chance that they may occur. The demand may be so high that all the safety stock is used up, and thus there is still a stockout.

One of the best ways of maintaining a safety stock level is to use the ROP. This can be accomplished by adding the number of units of safety stock as a buffer to the reorder point. Recall from Equation 12-10 on page 12-12 that

\[
ROP = d \times L
\]

where \(d\) is the daily demand rate and \(L\) is the order lead time. With the inclusion of safety stock (\(SS\)), the reorder point becomes

\[
ROP = d \times L + SS
\] \hspace{1cm} (12-16)

How to determine the correct amount of safety stock is the only remaining question. The answer to this question depends on whether we know the cost of a stockout. We discuss both of these situations next.

Safety Stock with Known Stockout Costs

When the EOQ is fixed and the ROP is used to place orders, the only time a stockout can occur is during the lead time. Recall that the lead time is the time between when an order is placed

\(^2\) Safety stock is used only when demand is uncertain, and models under uncertainty are generally much harder to deal with than models under certainty.

Copyright ©2013 Pearson Education, Inc. publishing as Prentice Hall
3M, a diverse company that manufactures tens of thousands of products, has operations in 60 countries with annual sales of over $16 billion. Supply-chain structures at 3M vary as much as its product offerings. While many of 3M’s products are made entirely within individual facilities, others are manufactured and distributed using multiple steps across several facilities. 3M’s finished-goods inventory just in the United States exceeds $400 million and therefore reducing inventory-related costs in the supply chain is of vital importance.

Historically, most 3M supply chains have used ad hoc inventory-control policies that do not account for differences in factors such as set-up costs, demand and supply variability, lead time, or site- or product-specific issues. As a result, lot sizes, safety stocks, and service levels can often be severely misestimated. To address these limitations, 3M extended the classical reorder-point/order-quantity approach to develop an integrated inventory-management system that determines optimal lot sizes and safety stocks based on the characteristics of each individual stock-keeping-unit (SKU) in the supply chains.

Between 2003 and 2004, the new system was implemented at just 22 of 3M’s supply chains, which varied from a few dozen SKUs to over 10,000 SKUs. The system reduced inventory by over $17 million and annual operating expenses by over $1.4 million, leading 3M to implement it at several other of its supply chains. Although this initiative began as a grassroots effort, 3M’s management has fully embraced it and made it the standard for managing inventory.

and when it is received. In the procedure discussed here, it is necessary to know the probability of demand during lead time (DDLT) and the cost of a stockout. In the following pages, we assume that DDLT follows a discrete probability distribution. This approach, however, can be easily modified when DDLT follows a continuous probability distribution.

What factors should we include in computing the stockout cost per unit? In general, we should include all costs that are a direct or indirect result of a stockout. For example, let us assume that if a stockout occurs, we lose that specific sale forever. Thus, if there is a profit margin of $1 per unit, we have lost this amount. Furthermore, we may end up losing future business from customers who are upset about the stockout. An estimate of this cost must also be included in the stockout cost.

When we know the probability distribution of DDLT and the cost of a stockout, we can determine the safety stock level that minimizes the total cost. We illustrate this computation using an example.

ABCO EXAMPLE ABCO, Inc., uses the EOQ model and ROP analysis (which we saw in sections 12.4 and 12.5, respectively) to set its inventory policy. The company has determined that its optimal ROP is 50 units, and the optimal number of orders per year is 6. ABCO’s DDLT is, however, not a constant. Instead, it follows the probability distribution shown in Table 12.3.

Because DDLT is uncertain, ABCO would like to find the revised ROP, including safety stock, which will minimize total expected cost. The total expected cost is the sum of expected stockout cost and the expected carrying cost of the additional inventory.

When we know the unit stockout cost and the probability distribution of DDLT, the inventory problem becomes a decision making under risk problem. (Refer to section 8.5 in Chapter 8 for a discussion of such problems, if necessary.) For ABCO, the decision alternatives are to use an ROP of 30 (alternative 1), 40 (alternative 2), 50 (alternative 3), 60 (alternative 4), or 70 (alternative 5) units. The outcomes are DDLT values of 30 (outcome 1), 40 (outcome 2), 50 (outcome 3), 60 (outcome 4), or 70 (outcome 5) units.

Determining the economic payoffs for any decision alternative and outcome combination involves a careful analysis of the stockout and additional carrying costs. Consider a situation in which the ROP equals the DDLT (say, 30 units each). This means that there will be no stockouts and no extra units on hand when the new order arrives. Thus, stockouts and additional carrying costs will be zero. In general, when the ROP equals the DDLT, total cost will be zero.

Now consider what happens when the ROP is less than the DDLT. For example, say that ROP is 30 units and DDLT is 40 units. In this case we will be 10 units short. The cost of this stockout situation is $2,400 (= 10 units short × $40 per stockout × 6 orders per year). Note that we have to multiply the stockout cost per unit and the number of units short by the number of orders per year (6, in this case) to determine annual expected stockout cost. Likewise, if the ROP is 30 units and the DDLT is 50 units, the stockout cost will be $4,800 (= 20 × $40 × 6), and so on. In general, when the ROP is less than the DDLT, the total cost is equal to the total stockout cost.

TABLE 12.3

<table>
<thead>
<tr>
<th>NUMBER OF UNITS</th>
<th>PROBABILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>0.2</td>
</tr>
<tr>
<td>40</td>
<td>0.2</td>
</tr>
<tr>
<td>ROP \rightarrow 50</td>
<td>0.3</td>
</tr>
<tr>
<td>60</td>
<td>0.2</td>
</tr>
<tr>
<td>70</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Note that we have assumed that we already know the values of Q^* and ROP. If this is not true, the values of Q^*, ROP, and safety stock would have to be determined simultaneously. This requires a more complex solution.
Finally, consider what happens when the ROP exceeds the DDLT. For example, say that ROP is 70 units and DDLT is 60 units. In this case, we will have 10 additional units on hand when the new inventory is received. If this situation continues during the year, we will have 10 additional units on hand, on average. The additional carrying cost is $50 (= 10 additional units × $5 carrying cost per unit per year). Likewise, if the DDLT is 50 units, we will have 20 additional units on hand when the new inventory arrives, and the additional carrying cost will be $100 (= 20 × $5). In general, when the ROP is greater than the DDLT, total cost will be equal to the total additional carrying cost.

Using the procedures described previously, we can easily set up a spreadsheet to compute the total cost for every alternative and state of nature combination. The formula view for this spreadsheet is shown in Screenshot 12-6A.

The results of the analysis are shown in Screenshot 12-6B. The expected monetary values (EMV) in column G show that the best reorder point for ABCO is 70 units, with an expected total cost of $110. Recall that ABCO had determined its optimal ROP to be 50 units if DDLT was a constant. Hence, the results in Screenshot 12-6B imply that due to the uncertain nature of DDLT, ABCO should carry a safety stock of 20 (= 70 − 50) units.
Safety Stock with Unknown Stockout Costs

When stockout costs are not available or if they are not relevant, the preceding type of analysis cannot be used. Actually, there are many situations in which stockout costs are unknown or extremely difficult to determine. For example, let’s assume that you run a small bicycle shop that sells mopeds and bicycles with a one-year service warranty. Any adjustments made within the year are done at no charge to the customer. If the customer comes in for maintenance under the warranty, and you do not have the necessary part, what is the stockout cost? It cannot be lost profit because the maintenance is done free of charge. Thus, the major stockout cost is the loss of goodwill. The customer may not buy another bicycle from your shop if you have a poor service record. In this situation, it could be very difficult to determine the stockout cost. In other cases, a stockout cost may simply not apply. What is the stockout cost for life-saving drugs in a hospital? The drugs may cost only $10 per bottle. Is the stockout cost $10? Is it $100 or $10,000? Perhaps the stockout cost should be $1 million. What is the cost when a life may be lost as a result of not having the drug?

In such cases, an alternative approach to determining safety stock levels is to use a service level. In general, a service level is the percentage of the time that you will have the item in stock. In other words, the probability of having a stockout is 1 minus the service level. That is,

\[
\text{Service level} = 1 - \text{Probability of a stockout}
\]

or

\[
\text{Probability of a stockout} = 1 - \text{Service level}
\]

To determine the safety stock level, it is only necessary to know the probability of DDLT and the desired service level. Here is an example of how the safety stock level can be determined when the DDLT follows a normal probability distribution.

HINSDALE COMPANY EXAMPLE Hinsdale Company carries an item whose DDLT follows a normal distribution, with a mean of 350 units and a standard deviation of 10 units. Hinsdale wants to follow a policy that results in a service level of 95%. How much safety stock should Hinsdale maintain for this item?

Figure 12.8 may help you to visualize the example. We use the properties of a standardized normal curve to get a Z value for an area under the normal curve of 0.95 = (1 − 0.05). Using the normal table in Appendix C on page 574, we find this Z value to be 1.645.

As shown in Figure 12.8, Z is equal to \((X - \mu)/\sigma\), or \(SS/\sigma\). Hence, \(SS\) is equal to \(Z \times \sigma\). That is, Hinsdale’s safety stock for a service level of 95% is \((1.645 \times 10) = 16.45\) units.

\[
\begin{align*}
\mu & = \text{Mean Demand} = 350 \\
\sigma & = \text{Standard Deviation} = 10 \\
X & = \text{Mean Demand} + \text{Safety Stock} \\
SS & = \text{Safety Stock} = X - \mu \\
Z & = \frac{X - \mu}{\sigma}
\end{align*}
\]
A safety stock level is determined for each service level.

The relationship between service level and carrying cost is nonlinear.

Let’s assume that Hinsdale has a carrying cost of $1 per unit per year. What is the carrying cost for service levels that range from 90% to 99.99%? To compute this cost, we first compute the safety stock for each service level (as discussed earlier) and then multiply the safety stock by the unit carrying cost. The Z value, safety stock, and total carrying cost for different service levels for Hinsdale are summarized in Table 12.4. A graph of the total carrying cost as a function of the service level is given in Figure 12.9.

Note from Figure 12.9 that the relationship between service level and carrying cost is nonlinear. As the service level increases, the carrying cost increases at an increasing rate. Indeed,

<table>
<thead>
<tr>
<th>SERVICE LEVEL</th>
<th>Z VALUE FROM NORMAL CURVE TABLE</th>
<th>SAFETY STOCK (UNITS)</th>
<th>CARRYING COST ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>90%</td>
<td>1.28</td>
<td>12.8</td>
<td>$12.80</td>
</tr>
<tr>
<td>91%</td>
<td>1.34</td>
<td>13.4</td>
<td>$13.40</td>
</tr>
<tr>
<td>92%</td>
<td>1.41</td>
<td>14.1</td>
<td>$14.10</td>
</tr>
<tr>
<td>93%</td>
<td>1.48</td>
<td>14.8</td>
<td>$14.80</td>
</tr>
<tr>
<td>94%</td>
<td>1.55</td>
<td>15.5</td>
<td>$15.50</td>
</tr>
<tr>
<td>95%</td>
<td>1.65</td>
<td>16.5</td>
<td>$16.50</td>
</tr>
<tr>
<td>96%</td>
<td>1.75</td>
<td>17.5</td>
<td>$17.50</td>
</tr>
<tr>
<td>97%</td>
<td>1.88</td>
<td>18.8</td>
<td>$18.80</td>
</tr>
<tr>
<td>98%</td>
<td>2.05</td>
<td>20.5</td>
<td>$20.50</td>
</tr>
<tr>
<td>99%</td>
<td>2.33</td>
<td>23.3</td>
<td>$23.20</td>
</tr>
<tr>
<td>99.99%</td>
<td>3.72</td>
<td>37.2</td>
<td>$37.20</td>
</tr>
</tbody>
</table>

Copyright ©2013 Pearson Education, Inc. publishing as Prentice Hall
at very high service levels, the carrying cost becomes very large. Therefore, as you are setting service levels, you should be aware of the additional carrying cost that you will encounter. Although Figure 12.9 was developed for a specific case, the general shape of the curve is the same for all service-level problems.

USING EXCELMODULES TO COMPUTE THE SAFETY STOCK We select the choice titled Safety Stock (Normal DDLT) from the Inventory Models menu in ExcelModules (refer to Screenshot 12-1A on page 12-8). The options for this procedure include the problem title and a box to specify whether we want a graph of carrying cost versus service level. After we specify these options, we get the worksheet shown in Screenshot 12-7A. We now enter values for the mean DDLT (μ), standard deviation of DDLT (σ), service level desired, and carrying cost, C_h, in cells B6 to B9, respectively.

The worksheet calculates and displays the following output measures:

- Safety stock, SS (Z × σ), in cell B12
- Reorder point (μ + Z × σ), in cell B13
- Safety stock carrying cost (C_h × Z × σ), in cell B15

If requested, ExcelModules will draw a plot of the safety stock carrying cost for different values of the service level. This graph, shown in Screenshot 12-7B, is drawn on a separate worksheet. As expected, the shape of this graph is the same as that shown in Figure 12.9.
12.9 ABC Analysis

So far, we have shown how to develop inventory policies using quantitative decision models. There are, however, some very practical issues, such as **ABC analysis**, that should be incorporated into inventory decisions. ABC analysis recognizes the fact that some inventory items are more important than others. The purpose of this analysis is to divide all of a company’s inventory...
items into three groups: A, B, and C. Then, depending on the group, we decide how the inventory levels should be controlled. A brief description of each group follows, with general guidelines as to which items are A, B, and C.

The inventory items in the A group are critical to the functioning of the company. As a result, their inventory levels must be closely monitored. These items typically make up more than 70% of the company’s business in monetary value but only about 10% of all inventory items. That is, a few inventory items are very important to the company. As a result, the inventory control techniques discussed in this chapter should be used where appropriate for every item in the A group (see Table 12.5).

The items in the B group are important to the firm but not critical. Thus, it may not be necessary to monitor all these items closely. These items typically represent about 20% of the company’s business in monetary value and constitute about 20% of the items in inventory. Quantitative inventory models should be used only on some of the B items. The cost of implementing and using these models must be carefully balanced with the benefits of better inventory control. Usually, less than half of the B group items are controlled through the use of inventory control models.

The items in the C group are not as important to the operation of the company. These items typically represent only about 10% of the company’s business in monetary value but may constitute 70% of the items in inventory. Group C could include inexpensive items such as bolts, washers, screws, and so on. They are usually not controlled using inventory control models because the cost of implementing and using such models would far exceed the value gained.

We illustrate the use of ABC analysis using the example of Silicon Chips, Inc.

Silicon Chips, Inc., Example

Silicon Chips, Inc., maker of super-fast DRAM chips, has organized its 10 inventory items on an annual dollar-volume basis. Table 12.6 shows the items (identified by item number and part number), their annual demands, and unit costs. How should the company classify these items into groups A, B, and C? As discussed next, we use the worksheet provided in ExcelModules to answer this question.

USING EXCELMODULES FOR ABC ANALYSIS We select the choice titled ABC Analysis from the Inventory Models menu in ExcelModules (refer to Screenshot 12-1A on page 12-8). The options for this procedure include the problem title and boxes to specify the number and names of the items we want to classify. After we specify these options for the Silicon Chips example,
we get the worksheet shown in Screenshot 12-8. We now enter the volume and unit cost for each item in cells B7:C16 of this worksheet.

When we enter the input data, the worksheet computes the dollar volume and percentage dollar volume (based on total dollar volume) for each item. These values are shown in cells E7:F16 of Screenshot 12-8. After entering the data for all items, we click the Analyze button. The worksheet now sorts the items, in descending order of percentage dollar volume. These values are shown in descending order in cells F21:F30 of Screenshot 12-8.

The sorted results for the Silicon Chips, Inc., problem are shown in cells A21:C30 of Screenshot 12-8. Items 3 and 7, which constitute only 20% ($= 2/10$) of the total number of items, account for 71.97% of the total dollar volume of all items. These two items should therefore be classified as group A items.

Items 9, 6, and 4, which constitute 30% ($= 3/10$) of the total number of items, account for 23.20% ($= 95.17 - 71.97$) of the total dollar volume of all items. These three items should therefore be classified as group B items.
Inventory Modeling at Teradyne

Teradyne, a huge manufacturer of electronic testing equipment for semiconductor plants worldwide, asked the Wharton School of Business to evaluate its global inventory parts system. Teradyne’s system is complex because it stocks over 10,000 parts with a wide variety of prices (from a few dollars to $10,000) because its customers are dispersed all over the world, and because customers demand immediate response when a part is needed.

The professors selected two basic inventory models they felt could be used to improve the current inventory system effectively. An important consideration in using basic inventory models is their simplicity, which improved the professors’ communication with Teradyne executives. In the field of modeling, it is very important for managers who depend on the models to thoroughly understand the underlying processes and a model’s limitations.

Input data to the inventory models included actual planned inventory levels, holding costs, observed demand rates, and estimated lead times. The outputs included service levels and a prediction of the expected number of late part shipments. The first inventory model showed that Teradyne could reduce late shipments by over 90% with just a 3% increase in inventory investment. The second model showed that the company could reduce inventory by 37% while improving customer service levels by 4%.

The remaining items constitute 50% (= 5/10) of the total number of items. However, they account for only 4.83% (= 100 − 95.17) of the total dollar volume of all items. These five items should therefore be classified as group C items.

Summary

This chapter presents several inventory models and discusses how we can use ExcelModules to analyze these models. The focus of all models is to answer the same two primary questions in inventory planning: (1) how much to order and (2) when to order. The basic EOQ inventory model makes a number of assumptions: (1) known and constant demand and lead times, (2) instantaneous receipt of inventory, (3) no quantity discounts, (4) no stockouts or shortages, and (5) the only variable costs are ordering costs and carrying costs. If these assumptions are valid, the EOQ inventory model provides optimal solutions.

If these assumptions do not hold, more complex models are needed. For such cases, the economic production quantity and quantity discount models are necessary. We also discuss the computation of safety stocks when demand during lead time is unknown for two cases: (1) Cost of stockout is known and (2) Cost of stockout is unknown. Finally, we present ABC analysis to determine how inventory items should be classified based on their importance and value. For all models discussed in this chapter, we show how Excel worksheets can be used to perform the computations.

Glossary

ABC Analysis An analysis that divides inventory into three groups: Group A is more important than group B, which is more important than group C.

Average Inventory The average inventory on hand. Computed as (Maximum inventory + Minimum inventory)/2.

Carrying Cost The cost of holding one unit of an item in inventory for one period (typically a year). Also called holding cost.

Demand during Lead Time (DDLDT) The demand for an item during the lead time, between order placement and order receipt.

Economic Order Quantity (EOQ) The amount of inventory ordered that will minimize the total inventory cost. It is also called the optimal order quantity, or Q^*.

Economic Production Quantity (EPQ) Model An inventory model in which the instantaneous receipt assumption has been eliminated. The inventory build-up, therefore, occurs over a period of time.

Instantaneous Inventory Receipt A system in which inventory is received or obtained at one point in time and not over a period of time.

Lead Time The time it takes to receive an order after it is placed.

Ordering Cost The cost of placing an order.

Purchase Cost The cost of purchasing one unit of an inventory item.

Quantity Discount The cost per unit when large orders of an inventory item are placed.
Reorder Point (ROP) The number of units on hand when an order for more inventory is placed.
Safety Stock Extra inventory that is used to help avoid stockouts.
Service Level The chance, expressed as a percentage, that there will not be a stockout. Service level = 1 − Probability of a stockout.

Setup Cost The cost to set up the manufacturing or production process.
Stockout A situation that occurs when there is no inventory on hand.
Total Cost The sum of the total ordering, total carrying, and total purchasing costs.

Solved Problems

Solved Problem 12-1

Patterson Electronics supplies microcomputer circuitry to a company that incorporates microprocessors into refrigerators and other home appliances. Currently, Patterson orders a particular component in batches of 300 units from one of its suppliers. The annual demand for this component is 2,000.

a. If the carrying cost is estimated at $1 per unit per year, what would the ordering cost have to be to make the order quantity optimal?

b. If the ordering cost is estimated to be $50 per order, what would the carrying cost have to be to make the order quantity optimal?

Solution

a. Recall from Equation 12-8 on page 12-10 that the ordering cost can be computed as

\[C_o = \frac{Q^2}{2D} \times C_h \]

In Patterson’s case, \(D = 2,000 \), \(Q = 300 \), and \(C_h = 1 \). Substituting these values, we get an ordering cost, \(C_o \), of $22.50 per order.

b. Recall from Equation 12-9 that the carrying cost can be computed as

\[C_h = \frac{2DC_o}{Q^2} \]

In Patterson’s case, \(D = 2,000 \), \(Q = 300 \), and \(C_o = 50 \). Substituting these values, we get a carrying cost, \(C_h \), of $2.22 per unit per year.

Solved Problem 12-2

Flemming Accessories produces paper slicers used in offices and in art stores. The minislicer has been one of its most popular items: Annual demand is 6,750 units. Kristen Flemming, owner of the firm, produces the minislicers in batches. On average, Kristen can manufacture 125 minislicers per day. Demand for these slicers during the production process is 30 per day. The setup cost for the equipment necessary to produce the minislicers is $150. Carrying costs are $1 per minislicer per year. How many minislicers should Kristen manufacture in each batch? Assume that minislicers cost $10 each to produce.

Solution

To solve this problem, we select the choice titled Economic Production Quantity (EPQ) from the Inventory Models menu in ExcelModules. The input entries, as well as the resulting computations, are shown in Screenshot 12-9.

The results show that Flemming Accessories has an EPQ of 1,632 units. The annual total setup and carrying costs are $620.28 each. The annual total cost, including the cost of production, is $68,740.56.

File: 12-9.xls
Solved Problem 12-3

Dorsey Distributors has an annual demand for a metal detector of 1,400. The cost of a typical detector to Dorsey is $400. Carrying cost is estimated to be 20% of the unit cost, and the ordering cost is $25 per order. If Dorsey orders in quantities of 300 or more, it can get a 5% discount on the cost of the detectors. Should Dorsey take the quantity discount?

Solution

To solve this problem, we select the choice titled Quantity Discount option from the Inventory Models menu in ExcelModules. There are two discount levels in this case. The input entries...
and the resulting computations are shown in Screenshot 12-10. The results show that Dorsey should order 300 units each time, at a discounted unit cost of $380. The annual total ordering cost is $116.67, and the annual total carrying cost is $11,400. The annual total cost, including the total purchase cost, is $543,516.57.

Discussion Questions and Problems

Discussion Questions

12-1 Why is inventory an important consideration for managers?
12-2 What is the purpose of inventory control?
12-3 Why wouldn’t a company always store large quantities of inventory to eliminate shortages and stockouts?
12-4 Describe the major decisions that must be made in inventory control.
12-5 What are some of the assumptions made in using the EOQ?
12-6 Discuss the major inventory costs that are used in determining the EOQ.
12-7 What is the ROP? How is it determined?
12-8 What is the purpose of sensitivity analysis?
12-9 What assumptions are made in the EPQ model?
12-10 What happens to the EPQ model when the daily production rate becomes very large?
12-11 In the quantity discount model, why is the carrying cost expressed as a percentage of the unit cost, I, instead of the cost per unit per year, C_h?
12-12 Briefly describe what is involved in solving a quantity discount model.
12-13 Discuss the methods that are used in determining safety stock when the stockout cost is known and when the stockout cost is unknown.
12-14 Briefly describe what is meant by ABC analysis. What is the purpose of this inventory technique?

Problems

12-15 Shakina Harris, who works in her brother’s hardware store, is in charge of purchasing. Shakina has determined that the annual demand for #6 screws is 150,000 and is fairly constant over the 200 days that the store is open each year. She estimates that it costs $30 every time an order is placed. This cost includes her wages, the cost of the forms used in placing the order, and so on. Furthermore, she estimates that the cost of carrying one screw in inventory for a year is 0.6 cents.

(a) How many #6 screws should Shakina order at a time?

(b) It takes 8 working days for an order of #6 screws to arrive once the order has been placed. Because the demand is fairly constant, Shakina believes that she can avoid stockouts completely if she orders the screws only when necessary. What is the ROP?

(c) Shakina’s brother believes that she is placing too many orders for screws each year. He believes that orders should be placed only twice per year. If Shakina follows her brother’s policy, how much more would this cost every year over the ordering policy that she developed in part (a)? If only two orders are placed each year, what effect would this have on the ROP?

(d) Shakina now believes that her estimate of an ordering cost of $30 per order is too low. Although she does not know the exact cost, she believes that it could be as high as $60 per order. How would the optimal order quantity in part (a) change if the ordering cost were $40, $50, or $60?

12-16 Neha Shah is the purchasing agent for a firm that sells industrial valves and fluid control devices. One of the most popular valves is the KA1, which has an annual demand of 6,000 units. The cost of each valve is $120, and the inventory carrying cost is estimated to be 8% of the cost of each valve. Neha has made a study of the costs involved in placing an order for any of the valves that the firm stocks, and she has concluded that the average ordering cost is $45 per order. Furthermore, it takes about two weeks for an order to arrive from the supplier, and during this time the demand for KA1 valves is approximately 120. Compute the EOQ, ROP, optimal number of orders per year, and total annual cost for KA1 valves.

12-17 Keith Smart has been in the building business for most of his life. Keith’s biggest competitor is Delta Birch. Through many years of experience, Keith knows that the ordering cost for an order of plywood is $150 and that the carrying cost is 25% of the unit cost. Both Keith and Delta receive plywood in loads that cost $600 per load. Furthermore, Keith and Delta use the same supplier of plywood, and Keith was able to find out that Delta orders in quantities of 300 loads at a time. Ken also knows that 300 loads is the EOQ for Delta. What is Delta’s annual demand, in loads of plywood?

12-18 Shoes R Us is a local shoe store located in Camden. Annual demand for a popular sandal is 1,000 pairs...
of sandals, and Gary Cole, the owner of Shoes R Us, has been in the habit of ordering 200 pairs of sandals at a time. Gary estimates that the ordering cost is $20 per order. The cost of a pair of sandals is $10.

(a) For Gary’s ordering policy to be correct, what would the carrying cost have to be as a percentage of the unit cost?

(b) If the carrying cost were 20% of the unit cost, what would be the optimal order quantity?

12-19 Annual demand for the Dobbs model airplane kit is 80,000 units. Albert Dobbs, president of Dobbs’ Terrific Toys, controls one of the largest toy companies in Nevada. He estimates that the ordering cost is $40 per order. The carrying cost is $7 per unit per year. It takes 25 days between the time that Albert places an order for the model airplane kit and the time when they are received at his warehouse. During this time, the daily demand is estimated to be 450 units.

(a) Compute the EOQ, ROP, and optimal number of orders per year.

(b) Albert Dobbs now believes that the carrying cost may be as high as $14 per unit per year. Furthermore, Albert estimates that the lead time may be 35 days instead of 25 days. Redo part (a), using these revised estimates.

12-20 Floral Beauty, Inc., is a large floral arrangements store located in Eastwood Mall. Bridal Lilies, which are a specially created bunch of lilies for bridal bouquets, cost Floral Beauty $17 each. There is an annual demand for 24,000 Bridal Lilies. The manager of Floral Beauty has determined that the ordering cost is $120 per order, and the carrying cost, as a percentage of the unit cost, is 18%. Floral Beauty is now considering a new supplier of Bridal Lilies. Each lily would cost only $16.50, but to get this discount, Floral Beauty would have to buy shipments of 3,000 Bridal Lilies at a time. Should Floral Beauty use the new supplier and take this discount for quantity buying?

12-21 Cameron Boats, a supplier of boat equipment, sells 5,000 WM-4 diesel engines every year. These engines are shipped to Cameron in a shipping container of 100 cubic feet, and Cameron Boats keeps the warehouse full of these WM-4 motors. The warehouse can hold 5,000 cubic feet of boat supplies. Cameron estimates that the ordering cost is $400 per order and that the carrying cost is $100 per motor per year. Cameron Boats is considering the possibility of expanding the warehouse for the WM-4 motors. How much should Cameron Boats expand, and how much would it be worth it for the company to make the expansion?

12-22 Tarbutton Lawn Distributors is a wholesale organization that supplies retail stores with lawn care and household products. One building is used to store FirstClass lawn mowers. The building is 50 feet wide by 40 feet deep by 8 feet high. Andrea Dormer, manager of the warehouse, estimates that only 90% of the warehouse can be used to store the FirstClass lawn mowers. The remaining 10% is used for walkways and a small office. Each First-Class lawn mower comes in a box that is 5 feet by 4 feet by 2 feet high. The annual demand for these lawn mowers is 48,000, and the ordering cost for Tarbutton Lawn Distributors is $75 per order. It is estimated that it costs Tarbutton Lawn $45 per lawn mower per year for storage. Tarbutton Lawn Distributors is thinking about increasing the size of the warehouse. The company can do this only by making the warehouse deeper. At the present time, the warehouse is 40 feet deep. How many feet of depth should be added on to the warehouse if they wish to minimize the total annual costs? How much should the company be willing to pay for this addition? Remember that only 90% of the total space can be used to store FirstClass lawn mowers.

12-23 Morgan Arthur has spent the past few weeks determining inventory costs for Armstrong, a toy manufacturer located near Cincinnati, Ohio. She knows that annual demand will be 30,000 units per year and that carrying cost will be $1.50 per unit per year. Ordering cost, on the other hand, can vary from $45 per order to $50 per order. During the past 450 working days, Morgan has observed the following frequency distribution for the ordering cost:

<table>
<thead>
<tr>
<th>ORDERING COST</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>$45</td>
<td>85</td>
</tr>
<tr>
<td>$46</td>
<td>95</td>
</tr>
<tr>
<td>$47</td>
<td>90</td>
</tr>
<tr>
<td>$48</td>
<td>80</td>
</tr>
<tr>
<td>$49</td>
<td>55</td>
</tr>
<tr>
<td>$50</td>
<td>45</td>
</tr>
</tbody>
</table>

Morgan’s boss would like Morgan to determine an EOQ value for each possible ordering cost and to determine an EOQ value for the expected ordering cost.

12-24 Blaine Abrams is the owner of a small company that produces electric scissors used to cut fabric. The annual demand is for 75,000 scissors, and Blaine produces the scissors in batches. On average, Blaine can produce 1,000 pairs of scissors per day during the production process. Demand for scissors has been about 250 pairs of scissors per day. The cost to set up the production process is $800, and it costs Blaine $0.90 to carry 1 pair of
scissors for one year. How many scissors should Blaine produce in each batch?

12-25 Carter Cohen, inventory control manager for Raydex, receives wheel bearings from Wheel & Gears, a small producer of metal parts. Unfortunately, Wheel & Gears can produce only 5,000 wheel bearings per day. Raydex receives 100,000 wheel bearings from Wheel & Gears each year. Because Raydex operates 200 working days each year, the average daily demand of wheel bearings by Raydex is 500. The ordering cost for Raydex is $400 per order, and the carrying cost is $6 per wheel bearing per year. How many wheel bearings should Raydex order from Wheel & Gears at one time? Wheel & Gears has agreed to ship the maximum number of wheel bearings that it produces each day to Raydex when an order has been received.

12-26 Chandler Manufacturing has a demand for 1,000 pumps each year. The cost of a pump is $50. It costs Chandler Manufacturing $40 to place an order, and the carrying cost is 25% of the unit cost. If pumps are ordered in quantities of 200, Chandler Manufacturing can get a 3% discount on the cost of the pumps. Should Chandler Manufacturing order 200 pumps at a time and take the 3% discount?

12-27 Arms of Steel is an organization that sells weight training sets. The carrying cost for the AS1 model is $5 per set per year. To meet demand, Arms of Steel orders large quantities of AS1 seven times a year. The stockout cost for AS1 is estimated to be $50 per set. Over the past several years, Arms of Steel has observed the following demand during the lead time for AS1:

<table>
<thead>
<tr>
<th>LEAD TIME</th>
<th>PROBABILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>0.1</td>
</tr>
<tr>
<td>50</td>
<td>0.2</td>
</tr>
<tr>
<td>60</td>
<td>0.2</td>
</tr>
<tr>
<td>70</td>
<td>0.2</td>
</tr>
<tr>
<td>80</td>
<td>0.2</td>
</tr>
<tr>
<td>90</td>
<td>0.1</td>
</tr>
</tbody>
</table>

The reorder point for AS1 is 60 units. What level of safety stock should be maintained for the AS1 model?

12-28 Victoria Blunt is in charge of maintaining hospital supplies at Mercy Hospital. During the past year, the mean lead time demand for bandage BX-5 was 600. Furthermore, the standard deviation for BX-5 was 70. Ms. Blunt would like to maintain a 95% service level.

(a) What safety stock level do you recommend for BX-5?

(b) Victoria has just been severely chastised for her inventory policy. Dwight Seymour, her boss, believes that the service level should be 99%. Compute the safety stock levels for a 99% service level.

(c) Victoria knows that the carrying cost of BX-5 is $0.50 per unit per year. Compute the carrying cost associated with 95% and 99% service levels.

12-29 Finn simply does not have time to analyze all the items in his company’s inventory. As a young manager, he has more important things to do. The following is a table of six items in inventory, along with the unit cost and the demand, in units:

<table>
<thead>
<tr>
<th>IDENTIFICATION CODE</th>
<th>UNIT COST</th>
<th>DEMAND (UNITS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1</td>
<td>$2.00</td>
<td>1,110</td>
</tr>
<tr>
<td>V2</td>
<td>$5.40</td>
<td>1,110</td>
</tr>
<tr>
<td>W3</td>
<td>$2.08</td>
<td>961</td>
</tr>
<tr>
<td>X4</td>
<td>$74.54</td>
<td>1,104</td>
</tr>
<tr>
<td>Y5</td>
<td>$5.84</td>
<td>1,200</td>
</tr>
<tr>
<td>Z6</td>
<td>$1.12</td>
<td>896</td>
</tr>
</tbody>
</table>

Which item(s) should be carefully controlled using a quantitative inventory technique, and what item(s) should not be closely controlled?

12-30 The demand for barbeque grills has been fairly large in the past several years, and Estate Supplies, Inc., usually orders new barbeque grills five times a year. It is estimated that the ordering cost is $60 per order. The carrying cost is $10 per grill per year. Furthermore, Estate Supplies, Inc., has estimated that the stockout cost is $50 per unit. The reorder point is 650 units. Although the demand each year is high, it varies considerably. The demand during the lead time is as follows (see Table for Problem 12-30 at the top of the next page).

The lead time is 12 working days. How much safety stock should Estate Supplies, Inc., maintain?

12-31 Omar Haaris receives 5,000 tripods annually from Top-Grade Suppliers to meet his annual demand. Omar runs a large photographic outlet, and the tripods are used primarily with 35mm cameras. The ordering cost is $15 per order, and the carrying cost is $0.50 per unit per year. Weekly demand is 100 tripods.

(a) What is the optimal order quantity?

(b) Top-Grade is offering a new shipping option. When an order is placed, Top-Grade will ship one-third of the order every week for three weeks instead of shipping the entire order at one time. What is the order quantity if Omar
chooses to use this option? To simplify your calculations, assume that the average inventory is equal to one-half of the maximum inventory level for Top-Grade’s new option.

(c) Suppose Top-Grade Suppliers offers to ship one-fifth of the order every week for five weeks. What is the order quantity under this option? Make the same assumption as in part (b).

(d) Calculate the total cost for each option. What do you recommend?

12-32 Amco Convenience Store purchases 500 hammers a year for its inventory from its supplier, who offers pricing at quantity discounts. The quantities and pricing from this supplier are shown in the following table:

<table>
<thead>
<tr>
<th>ORDER QUANTITY</th>
<th>UNIT PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–149</td>
<td>$12.00</td>
</tr>
<tr>
<td>150–349</td>
<td>$11.50</td>
</tr>
<tr>
<td>350–599</td>
<td>$10.50</td>
</tr>
<tr>
<td>600 or more</td>
<td>$ 9.80</td>
</tr>
</tbody>
</table>

The cost for Amco to place an order is $60, and the cost to store a hammer in inventory for a year is $2. What quantity should Amco order?

12-33 Asbury Products offers the following discount schedule for its 4- by 8-foot sheets of good-quality plywood:

<table>
<thead>
<tr>
<th>ORDER QUANTITY</th>
<th>UNIT PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>99 sheets or less</td>
<td>$18.00</td>
</tr>
<tr>
<td>100 to 500 sheets</td>
<td>$17.70</td>
</tr>
<tr>
<td>More than 500 sheets</td>
<td>$17.45</td>
</tr>
</tbody>
</table>

The cooperative will sell a minimum of 100 cans of fruit concentrate to citrus processors such as Tropic. The cost per can is $9.90.

Last year, a cooperative developed an incentive bonus program (IBP) to give an incentive to its large customers to buy in quantity. Here is how it works: If 200 cans of concentrate are purchased, 10 cans of free concentrate are included in the deal. In addition, the names of the companies purchasing the concentrate are added to a drawing for a new personal computer. The personal computer has a value of about $3,000, and currently about 1,000 companies are eligible for this drawing. At 300 cans of concentrate, the cooperative will give away 30 free cans and will also place the company name in the drawing for the personal computer. When the quantity goes up to 400 cans of concentrate, 40 cans of concentrate will be given away free with the order. In addition, the company is also placed in a drawing for the personal computer and a free trip for two. The value of the trip for two is approximately $5,000. About 800 companies are expected to qualify and to be in the running for this trip.

Tropic estimates that its annual demand for fruit concentrate is 1,000 cans. In addition, the ordering cost is estimated to be $10.00, and the carrying cost is estimated to be 10%, or about $1.00 per unit. The firm is intrigued with the IBP. If the company decides that it will keep the trip or the computer if they are won, what should it do?

12-35 Lindsay Hawkes sells discs that contain 25 software packages that perform a variety of financial functions typically used by business students. Depending on the quantity ordered, Lindsay offers the following price discounts:

<table>
<thead>
<tr>
<th>ORDER QUANTITY</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 to 600</td>
<td>$10.00</td>
</tr>
<tr>
<td>601 to 1,100</td>
<td>$ 9.92</td>
</tr>
<tr>
<td>1,101 to 1,550</td>
<td>$ 9.86</td>
</tr>
<tr>
<td>1,551 and up</td>
<td>$ 9.80</td>
</tr>
</tbody>
</table>
The annual demand is 3,000 units on average. Lindsay’s setup cost to produce the discs is $350. She estimates holding costs to be 10% of the price, or about $1 per unit per year. What is the optimal number of discs to produce at a time?

12-36 Demand during lead time for one brand of TV is normally distributed with a mean of 56 TVs and a standard deviation of 18 TVs. What safety stock should be carried for a 95% service level? What is the appropriate ROP?

12-37 Based on available information, lead time demand for CD-ROM drives averages 250 units (normally distributed), with a standard deviation of 25 drives. Management wants a 98% service level. How many drives should be carried as safety stock? What is the appropriate ROP?

12-38 A product is delivered to Monica’s company once a year. The ROP, without safety stock, is 300 units. Carrying cost is $25 per unit per year, and the cost of a stockout is $80 per unit per year. Given the following demand probabilities during the reorder period, how much safety stock should be carried?

DEMAND DURING REORDER PERIOD AND PROBABILITY

<table>
<thead>
<tr>
<th>Demand During Reorder Period</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>0.3</td>
</tr>
<tr>
<td>200</td>
<td>0.1</td>
</tr>
<tr>
<td>300</td>
<td>0.3</td>
</tr>
<tr>
<td>400</td>
<td>0.2</td>
</tr>
<tr>
<td>500</td>
<td>0.1</td>
</tr>
</tbody>
</table>

12-39 Barb’s company has compiled the following data on a small set of products:

<table>
<thead>
<tr>
<th>ITEM</th>
<th>ANNUAL DEMAND</th>
<th>UNIT COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>410</td>
<td>$0.75</td>
</tr>
<tr>
<td>2</td>
<td>330</td>
<td>$17.00</td>
</tr>
<tr>
<td>3</td>
<td>300</td>
<td>$3.00</td>
</tr>
<tr>
<td>4</td>
<td>200</td>
<td>$0.90</td>
</tr>
<tr>
<td>5</td>
<td>240</td>
<td>$110.00</td>
</tr>
<tr>
<td>6</td>
<td>625</td>
<td>$0.75</td>
</tr>
<tr>
<td>7</td>
<td>85</td>
<td>$25.00</td>
</tr>
<tr>
<td>8</td>
<td>75</td>
<td>$2.00</td>
</tr>
<tr>
<td>9</td>
<td>100</td>
<td>$125.00</td>
</tr>
<tr>
<td>10</td>
<td>125</td>
<td>$1.50</td>
</tr>
</tbody>
</table>

12-40 The Century One Store has 10 items in inventory, as shown in the following table. The manager wants to divide these items into ABC classifications. What would you recommend?

<table>
<thead>
<tr>
<th>ITEM NUMBER</th>
<th>UNIT COST</th>
<th>DEMAND (UNITS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>$4</td>
<td>1,500</td>
</tr>
<tr>
<td>B</td>
<td>$1</td>
<td>1,500</td>
</tr>
<tr>
<td>C</td>
<td>$3</td>
<td>700</td>
</tr>
<tr>
<td>D</td>
<td>$1</td>
<td>1,200</td>
</tr>
<tr>
<td>E</td>
<td>$8</td>
<td>200</td>
</tr>
<tr>
<td>F</td>
<td>$6</td>
<td>500</td>
</tr>
<tr>
<td>G</td>
<td>$2</td>
<td>1,000</td>
</tr>
<tr>
<td>H</td>
<td>$7</td>
<td>800</td>
</tr>
<tr>
<td>I</td>
<td>$8</td>
<td>1,200</td>
</tr>
<tr>
<td>J</td>
<td>$4</td>
<td>800</td>
</tr>
</tbody>
</table>

12-41 Lea Ash opens a new cosmetics store. There are numerous items in inventory, and Lea knows that there are costs associated with inventory. Lea wants to classify the items according to dollars invested in them. The following table provides information about the 10 items that she carries:

Use ABC analysis to classify these items into categories A, B, and C.
The following table shows the inventory data for the six items stocked by Apex Enterprises:

<table>
<thead>
<tr>
<th>ITEM CODE</th>
<th>UNIT COST</th>
<th>ANNUAL DEMAND (UNITS)</th>
<th>ORDERING COST</th>
<th>CARRYING COST AS A PERCENTAGE OF UNIT COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$150.00</td>
<td>560</td>
<td>$40</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>$4.10</td>
<td>490</td>
<td>$40</td>
<td>17</td>
</tr>
<tr>
<td>3</td>
<td>$2.25</td>
<td>500</td>
<td>$50</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>$10.60</td>
<td>600</td>
<td>$40</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>$4.00</td>
<td>540</td>
<td>$35</td>
<td>16</td>
</tr>
<tr>
<td>6</td>
<td>$11.00</td>
<td>450</td>
<td>$30</td>
<td>25</td>
</tr>
</tbody>
</table>

Lynn Robinson, Apex’s inventory manager, does not feel that all the items can be controlled. What ordered quantities do you recommend for which inventory product(s)?

Case Study

Sturdivant Sound Systems

Sturdivant Sound Systems manufactures and sells stereo and CD sound systems in both console and component styles. All parts of the sound systems, with the exception of speakers, are produced in the Rochester, New York, plant. Speakers used in the assembly of Sturdivant’s systems are purchased from Morris Electronics of Concord, New Hampshire.

Jason Pierce, purchasing agent for Sturdivant Sound Systems, submits a purchase requisition for the speakers once every four weeks. The company’s annual requirements total 5,000 units (20 per working day), and the cost per unit is $60. (Sturdivant does not purchase in greater quantities because Morris Electronics, the supplier, does not offer quantity discounts.) Rarely does a shortage of speakers occur because Morris promises delivery within 1 week following receipt of a purchase requisition. (Total time between date of order and date of receipt is 10 days.)

Associated with the purchase of each shipment are procurement costs. These costs, which amount to $20 per order, include the costs of preparing the requisition, inspecting and storing the delivered goods, updating inventory records, and issuing a voucher and a check for payment. In addition to procurement costs, Sturdivant Sound Systems incurs inventory carrying costs, which include costs of insurance, storage, handling, taxes, and so on. These costs equal $6 per unit per year.

Beginning in August of this year, management of Sturdivant Sound Systems will embark on a companywide cost control program in an attempt to improve its profits. One of the areas to be scrutinized closely for possible cost savings is inventory procurement.

Discussion Questions

1. Compute the optimal order quantity.
2. Determine the appropriate ROP (in units).
3. Compute the cost savings that the company will realize if it implements the optimal inventory procurement decision.
4. Should procurement costs be considered a linear function of the number of orders?

Source: Jerry Kinard, Western Carolina University, and Brian Kinard, University of North Carolina–Wilmington.

Case Study

Martin-Pullin Bicycle Corporation

Martin-Pullin Bicycle Corporation (MPBC), located in Dallas, is a wholesale distributor of bicycles and bicycle parts. Formed in 1981 by cousins Ray Martin and Jim Pullin, the firm’s primary retail outlets are located within a 400-mile radius of the distribution center. These retail outlets receive the order from Martin-Pullin within two days after notifying the distribution center, provided that the stock is available. However, if an order is not fulfilled by the company, no backorder is placed; the retailers arrange to get their shipment from other distributors, and MPBC loses that amount of business.

The company distributes a wide variety of bicycles. The most popular model, and the major source of revenue to the company, is the AirWing. MPBC receives all the models from a single manufacturer overseas, and shipment takes as long as four weeks from the time an order is placed. With the cost of communication, paperwork, and customs clearance included, MPBC estimates that each time an order is placed, it incurs a
cost of $65. The purchase price paid by MPBC, per bicycle, is roughly 60% of the suggested retail price for all the styles available, and the inventory carrying cost is 1% per month (12% per year) of the purchase price paid by MPBC. The retail price (paid by the customers) for the AirWing is $170 per bicycle.

MPBC is interested in making the inventory plan for 2012. The firm wants to maintain a 95% service level with its customers to minimize the losses on the lost orders. The data collected for the past two years are summarized in the following table:

A forecast for AirWing model sales in the upcoming year 2012 has been developed and will be used to make an inventory plan for MPBC.

Discussion Questions

1. Develop an inventory plan to help MPBC.
2. Discuss ROPs and total costs.
3. How can you address demand that is not at the level of the planning horizon?

Source: “Martin-Pullin Bicycle Corporation” by Professor Kala Chand Seal, Loyola Marymount University. Copyright © Kala Chand Seal. Reprinted with permission.

<table>
<thead>
<tr>
<th>MONTH</th>
<th>2010</th>
<th>2011</th>
<th>FORECAST FOR 2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>February</td>
<td>12</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>March</td>
<td>24</td>
<td>27</td>
<td>31</td>
</tr>
<tr>
<td>April</td>
<td>46</td>
<td>53</td>
<td>59</td>
</tr>
<tr>
<td>May</td>
<td>75</td>
<td>86</td>
<td>97</td>
</tr>
<tr>
<td>June</td>
<td>47</td>
<td>54</td>
<td>60</td>
</tr>
<tr>
<td>July</td>
<td>30</td>
<td>34</td>
<td>39</td>
</tr>
<tr>
<td>August</td>
<td>18</td>
<td>21</td>
<td>24</td>
</tr>
<tr>
<td>September</td>
<td>13</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>October</td>
<td>12</td>
<td>13</td>
<td>15</td>
</tr>
<tr>
<td>November</td>
<td>22</td>
<td>25</td>
<td>28</td>
</tr>
<tr>
<td>December</td>
<td>38</td>
<td>42</td>
<td>47</td>
</tr>
<tr>
<td>Total</td>
<td>343</td>
<td>391</td>
<td>439</td>
</tr>
</tbody>
</table>

Internet Case Studies

See the Companion Website for this textbook, at www.pearsonhighered.com/balakrishnan, for additional case studies.