Ethanol Production in The United States: how the US public are being misled

Chris Fuller, Bryan Hollis, Julie Kreutz

## Impact of Ethanol Production on U.S. and World Agriculture



## **U.S. Ethanol Production**

- 2003: 2.81 billion gallons
- 2004: 3.4 billion gallons
- 2005: 4 billion gallons
- 2006: 5.5 billion gallons

#### <u>chart</u>

## **U.S. Ethanol Production**

- Currently, there are 118 ethanol production facilities in the U.S.
- 76 more under construction



# Who is supporting ethanol production?

- Today, about 40% of the nation's ethanol facilities are owned by farmers and other local investors.
  - They have driven the growth of the industry over the past decade
- Most of the facilities under construction are made up of farmer cooperatives, though a number of new companies and investors have joined the industry in the last few years.
- The largest producer of ethanol in the U.S. is Archer Daniels Midland Corporation
  - Agricultural giant
  - Made profits of 10.98 billion in 2006

## **Types of Ethanol**

- E10- blend of 10% ethanol and 90% unleaded gasoline
  - Safe to use in all vehicles without modification
- E85- blend of 85% ethanol and 15% unleaded gasoline
  - Can only be used in flexible fuel vehicles (FFVs)
- The American Coalition for Ethanol (ACE) is trying to overcome technical and regulatory obstacles to use blends above 10% such as E20, E30, and E40



## **Corn Production for Ethanol**

#### Corn is the primary feedstock for U.S. ethanol production



## **U.S.** Corn Production for Ethanol

- Less than 5% a decade ago
- 2000: 6%
- 2005: 14%
- 2006: 20% (over 2 billion bushels- nearly equal to the amount of corn exported)



## Corn

 With a corn-to-ethanol conversion rate of 2.7 gallons per bushel, the U.S. ethanol sector will need 2.6 billion bushels per year by 2010 in order to increase their output

- 1.2 billion bushels more than it consumed in 2005.

## Where will the corn come from?

- Divert corn from exports
- Ethanol producers will compete with other buyers in the marketplace and raise the price of corn
- Farmers will increase corn supply
  - Over the past decade, U.S. corn yields averaged 138 bushels per acre, compared with 115 bushels during the previous decade
- U.S. could devote more land to corn

## Where will the corn come from?

- U.S. could grow corn more intensively
  - Producers currently pursuing a corn-soybean rotation, might shift to a corn-corn-soybean rotation, or might produce corn continuously every year



## Brazil

- World's leader in ethanol production
- By law, all gasoline contains a minimum of 25% alcohol
- Ethanol accounts for 40% of all vehicle fuel
- By 2007, 100% of all new Brazilian cars may be able to run on 100% ethanol
- Ethanol is now being used for aviation

## Future of Ethanol in U.S.

- The share of ethanol in total corn use will rise from 12% in 2004/05 to 23% in 2014/15
- In Feb. 2006, annual capacity of U.S. ethanol sector stood at 4.4 billion gallons. U.S. ethanol production could reach 7 billion gallons in 2010, 3.3 billion more than the amount produced in 2005.

#### Deforestation Diesel What will happen to the Environment?

- Increased use of chemicals
  - Soils from lands already in production contain less soil nutrients over time
- Environmental degradation
  - Deforestation
    - Previously uncropped land will be brought into production
  - Increased soil erosion on existing farm land
  - Increased amounts of smog
    - Ethanol increases evaporation rate of gasoline which increase smog amounts
      - EPA confirmed with 14 out of 18 realistic models in California

## How will the United States get enough ethanol to support energy needs?

- The United States will need an additional 135 billion liters of ethanol per year to reach Bushes target of lower gasoline by 20%
  - The world leader in ethanol production, (Brazil) currently produces
     16.5 billion gallons per year
- The United States is currently the largest importer of Brazilian ethanol (58% of total Brazilian export)
- In 2006 Brazil exported almost 70% of the ethanol supply
  - That number will soon increase and is hoped to replace 10% of global gasoline use by 2025
    - Sugarcane planted land will increase from 6 to 30 million hectares

## What is happening in Brazil?

- Brazil attempted to use corn as a source of ethanol
- Brazil now is using sugar cane as their source of ethanol
  - More land is being planted with mono-cropping sugarcane
- Severe labor exploitation is occurring to sugarcane farmers
  - Brazil is the largest producer of sugarcane, but has some of the highest levels of poverty in the world

## Destruction In Brazil

- Only 2.5 % of the original forest in the sugarcane region remains today
- In order to keep up with global demand, Brazil will need to clear an additional 148 million acres of forest
- Sugarcane is generating a increased return
  - Land is converted that was previously used to grow grains and graze cattle
    - Cattle ranchers are forced to deforest the Amazon in order to have ample grazing land for cattle
      - » This could mislead deforestation causes

## Deforestation

- In the United States monoculture farming strips land of natural nutrients.
  - Land use for farming also increases
  - Natural habitats decrease
- Rainforest accounts for less than 2% of land globally, but it is home to more than 50% of species diversity.

## **Deforestation Diesel**

• World Hunger outweighs the fuel needs of one American



 Ethanol demand from places like Europe promote the destruction of vital habitat in places such as South America and Southeast Asia



#### Relevancy



Alternatives

www.pharmaciaretirees.com

Electricity - Wind, Hydropower, Solar

Transportation - Biodiesel, Ethanol, Hydrogen, Electric

## Energy Gain vs. Energy Loss

#### Energy In - Energy Out

- Corn Production
- Transportation
- Ethanol Production

Kyoto





## **Corn Prices**

- High oil prices & low corn prices = happy ethanol producer
  - Break Even Price = \$4.05/bushel (when oil is \$60/barrel) (Elobeid 2006)
- Distance from Plant
  - Farmer owned
  - Conventional business
- Pork and Poultry Farmers suffer

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

## Land Prices

- Long-term effects
  - Farmer & Landowner benefit short-term
  - Both lose out in long-term

• Corn prices entice established farmers

Difficult for new farmers to establish

## Alternatives to Corn Pose Threat

Imported crops displace corn

 Farmers lose out

Volatile market as technology changes
 – Investments fail

• Cheaper to import?

### Bibliography

2006

- Baker, Allen, and Steven Zahniser Ethanol Reshapes the Corn Market. Amber Waves 4(2):30-35.
- Blottnitz, Harro von, and Mary Ann Curran In Press A review of assessments conducted on bio-ethanol as a transportation fuel from a net energy, greenhouse gas, and environmental life-cycle perspective. Journal of Cleaner Production.
- Chan, A. W., R. Hoffman, and B. McInnis. 2004 The role of systems modeling for sustainable development policy analysis: the case of bio-ethanol. Ecology and Society 9(2):6.
- Department of Energy webpage discussing ethanol energy balance: http://www.eere.energy.gov/afdc/altfuel/eth\_energy\_bal.html
- Elobeid, Amani, et. al. 2006 The Long-Run Impact of Corn-Based Ethanol on the Grain, Oilseed, and Livestock Sectors: A Preliminary Assessment. CARD Briefing Paper – www.card.iastate.edu.

- Gallagher, Paul, Hosein Shapouri, and Heather Brubaker 2007 Scale, Organization, and Profitability of Ethanol Processing. Canadian Journal of Agricultural Economics 55(1):63–81.
- Gallagher, Paul, Robert Wisner, and Heather Brubaker 2005 Price Relationships in Processors Input Market Areas: Testing Theories For Corn Prices Near Ethanol Plants. Canadian Journal of Agricultural Economics 53(2-3):117.
- Grewell, J. Bishop 2003 Farm Subsidies are Harm Subsidies. The American Enterprise Oct./Nov. 2003:48-49.
- Hill, Jason, et. al. 2006 Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. PNAS Online 103(30):11206-11210.
- McNew, Kevin, and Duane Griffith 2005 Measuring the Impact of Ethanol Plants on Local Grain Prices. Review of Agricultural Economics 27(2):164–180.
- Patzek, Tad W., et. al.

2005 Ethanol From Corn: Clean Renewable Fuel for the Future, or Drain on Our Resources and Pockets? Environment, Development, and Sustainability 7(3):319-336.

• Pimentel, David

1991 Ethanol fuels: Energy security, economics, and the environment. Journal of Agricultural and Environmental Ethics 4(1):1-13.

• Pimentel, David and Tad W. Patzek

2005 Ethanol Production Using Corn, Switchgrass, and Wood; Biodiesel Production Using Soybean and Sunflower. Natural Resources Research 14(1):65-76.

• Pimentel, David

2003 Ethanol Fuels: Energy Balance, Economics, Environmental Impacts Are Negative. Natural Resources Research 12(2):127-134.

• Pimentel, David, T. Patzek, and G. Cecil

2007 Ethanol Production: Energy, Economic, and Environmental Losses. Electronic Document,http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?CMD=Display&DB=pubme,

accessed April 13<sup>th</sup>, 2007.

| Feedstock and country      | Energy yield<br>ratio |
|----------------------------|-----------------------|
| Sugarcane, Brazil          | 7.9                   |
| Sugarbeet, Great Britain   | 2.0                   |
| Corn, USA                  | 1.3                   |
| Molasses, India            | 48                    |
| Molasses, South Africa     | 1.1                   |
| Corn stover, USA           | 5.2                   |
| Wheat straw, Great Britain | 5.2                   |
| Bagasse, India             | 32                    |



