
In our initial contribution to this column, we briefly
commented upon the impact that phylogeny reconstruc-
tion has had on systematic botany. We further indicated
that we feel that plant systematics is currently in a peri-
od of reevaluation of the data we have used as well as the
methodology employed to estimate phylogeny. This is
not to say that issues such as the use of morphological
data versus molecular data or whether or not to combine
data for phylogenetic analyses have not been debated in
the past. Clearly, these and many other issues have
received a considerable amount of debate in the phylo-
genetic literature. 

Possibly one of the most rigorously debated topics is
the choice of an optimality criterion. In general, there are
three basic methods that have been used to estimate phy-
logeny, including distance, maximum parsimony (MP),
and maximum likelihood (ML). The relative merits and
shortcomings of these methods have been debated for a
number of years (e.g., Faith, 1985; Swofford & Olsen,
1990; Kunhner & Felsenstein, 1994; Huelsenbeck, 1995;
Farris & al., 1996; Lewis, 1998; Steel & Penny, 2000),
and it is not within the scope of this column to reiterate
these discussions. However, it is noteworthy that numer-
ous comparative studies employing both known phylo-
genies and simulated data have been very useful in deter-
mining under what set of conditions each of the methods
“out performs” the others. For example, it is now gener-
ally accepted that when rates of change along branches
vary greatly, employing a parsimony optimality criterion
may be misleading due to “long branch attraction”
(Felsenstein, 1978; but see Siddall, 1998); whereas addi-
tional studies have shown that ML may be inconsistent in
other situations, such as when the chosen model of evo-
lution is inappropriate (e.g., Farris, 1999). Simulation
studies indicate that distance methods (especially
UPGMA) are highly susceptible to variations in evolu-
tionary rates and typically perform more poorly than
either MP or ML (e.g., Huelsenbeck & Hillis, 1993).
Studies such as these have been important in laying a the-
oretical foundation for making decisions on how best to
estimate phylogeny given the data in hand. However,

under most sets of realistic conditions, comparison of
ML and MP indicates that these methods perform simi-
larly and often result in highly concordant topologies
(e.g., Reed & al., 2002; Kimball & al., 2003). Recently,
another round of comparative studies has begun to
address a new approach for phylogeny reconstruction
(e.g., Suzuki & al., 2002; Wilcox & al., 2002; Alfaro &
al., 2003; Douady & al., 2003).

This new approach, Bayesian analyses, was pro-
posed in 1996 (Rannala & Yang, 1996; Mau, 1996; Li,
1996) and is now receiving much attention in the litera-
ture [e.g., see Systematic Biology 51 (5)]. Several excel-
lent technical reviews have recently been provided by
Huelsenbeck & al. (2001, 2002) and Lewis (2001).
Although this approach is now a “hot” topic in systemat-
ics, Bayesian statistics actually dates back to the 18th cen-
tury and its utility for reconstructing phylogeny was sug-
gested initially in 1968 by Felsenstein (see Huelsenbeck
& al., 2002). It is only recently, however, that these meth-
ods have become more widely known and that relevant
computer programs have become available. Internet
links for downloadable programs for Bayesian analyses
(and other methods) are available from the websites of J.
Felsenstein (http://evolution.genetics.washington.edu/
phylip/software.html), and P. Lewis (http://lewis.
eeb.uconn.edu/lewishome/), or directly from the
MrBayes (http://morphbank.ebc.uu.se/mrbayes/; Huel-
senbeck & Ronquist, 2001) or BAMBE (http://www.
mathcs.duq.edu/larget/bambe.html; Simon & Larget,
1998) websites. A helpful introduction on how to use
MrBayes is provided by Hall (2001). Here we attempt to
provide a basic introduction to Bayesian approaches to
phylogeny reconstruction. In doing so, we point out what
we feel are some of the most significant attributes of this
new approach. It is important to note that we do not con-
sider ourselves to be experts on this topic, but merely are
interested in how this approach differs from other meth-
ods and how to implement this methodology into our
own research, should we feel it appropriate. Thus, we
hope this column will serve as a primer for those of you
curious about Bayesian methods. 
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How does Bayesian inference differ from other
methods of phylogenetic inference? Perhaps this ques-
tion is best answered by first noting the major differences
between Bayesian and classical statistics. We are all
familiar with the use of classical statistics to examine a
current set of data to test specific hypotheses; Bayesian
statistics differs in that in addition to the current data,
prior knowledge is included in the testing of the hypoth-
esis. To illustrate how prior knowledge can affect one’s
conclusions, we will use an hypothetical example involv-
ing a medical test for an illness (C. P. Randle, pers.
comm.). Assume that previous studies have evaluated the
accuracy of this test and have shown that, if you are in
fact ill, there is a 99% likelihood that the test will give a
true positive result (and thus, a 1% likelihood that the test
will give a false negative). It was also found that if you
are healthy, there is a 0.1% likelihood of a false positive
result from the test. If we were simply using the “data”
(i.e., the test result), we would then conclude that a pos-
itive test result had approximately a 99% chance of being
correct. How does this conclusion change with the incor-
poration of prior knowledge? If we were to examine this
question in a Bayesian framework, we could incorporate
prior knowledge—in this case that other studies have
shown that the base rate of this illness is 0.1% in the pop-
ulation. Thus, of a population of 100,000 individuals,
100 would be ill and 99,900 would be healthy. Using the
likelihood values mentioned above, we could conclude
that a positive test result would be seen in 99% of the ill
individuals (99 true positives) and 0.1% of the healthy
individuals (approximately 100 false positives). This
leaves us with a conclusion that if a person has a positive
test result, there is a 99/199 or approximately 50%
chance that the test is correct and this person is actually
ill. Therefore, by including prior knowledge of the base
rate of the illness in the population, the perceived chance
that a positive result indicates that an individual actually
has the illness drops from 99% to 50%. Thus, the incor-
poration of prior knowledge has the potential to greatly
influence our interpretation of results.

When applied to phylogeny reconstruction, Bayesian
inference is similar to maximum likelihood (ML) in that
it employs a likelihood function and an explicitly stated
model of nucleotide substitution. Thus, this approach
most likely exhibits many of the positive and negative
attributes of ML. However, as noted above, to the best of
our knowledge, the performance of Bayesian analyses is
only beginning to be rigorously tested in a manner simi-
lar to ML or MP. An attribute of Bayesian inference that
sets it apart from ML is the ability (at least theoretically)
to include prior information regarding relationships into
the process of phylogeny estimation. This is accom-
plished by stating a prior probability distribution of trees
and can be viewed as either a positive or negative attrib-

ute, depending upon the strength and legitimacy of the
prior expectation. In practice, implementing realistic pri-
ors is not yet possible, so most analyses use a simplistic
prior, such as according all trees equal prior probabilities
(“flat priors”). Ironically, it is the ability to incorporate
prior information that makes this approach truly
Bayesian in nature, but it is not yet possible to incorpo-
rate this information. However, it is likely that in the
future, inclusion of prior beliefs will be possible, and it
should be noted that this has the potential to affect the
resulting “best” topology. In our opinion the ability to
state priors is a double-edged sword in that valid priors
could assist in obtaining the “true” phylogeny, whereas
invalid priors could lead to an inaccurate estimate of
phylogeny. The degree to which incorrect priors could
affect the outcome of phylogenetic analyses remains to
be tested rigorously (discussed below).

Bayesian inference of phylogeny utilizes Markov
Chain Monte Carlo (MCMC) simulation (Metropolis &
al., 1953; Green, 1995) in combination with the chosen
model and data to produce a posterior probability distri-
bution of trees. A technical description of this method is
outside the scope of this paper, but an excellent explana-
tion is given in Huelsenbeck & al. (2002). While the
prior probability distribution describes the probability of
different trees given previous knowledge, the posterior
probability distribution describes the probability of trees
considering the prior distribution, the model, and, hope-
fully most importantly, the data. This distribution of trees
is the main product of Bayesian phylogenetic analyses.
There are several ways to summarize the posterior prob-
ability distribution into a tree-like form that is more eas-
ily interpreted. One option is to show the maximum pos-
terior probability estimate of phylogeny (MAP). This is
the single tree that was deemed most probable. Another
of the several options that have been used is to summa-
rize the distribution of trees as a majority rule consensus
tree. Regardless of the exact tree displayed, the majority
rule consensus is used to determine support values. Thus
the values seen on Bayesian phylogenies are the posteri-
or probabilities for a particular clade, that is, the proba-
bility that the clade is “true” given the priors, model, and
data.

In this regard, another aspect of Bayesian inference
that has received attention involves the apparent discrep-
ancy between posterior probabilities and non-parametric
bootstrap values (Suzuki & al., 2002; Wilcox & al.,
2002; Alfaro & al., 2003; Douady & al., 2003). Regard-
less of one’s personal opinion on their utility, bootstrap
analyses (Felsenstein, 1985) have become one of the
standard ways in which relative support values for clades
are estimated. Multiple studies using both methods have
shown that posterior probabilities are often higher than
bootstrap values estimated under either MP or ML (e.g.,
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Reed & al., 2002; Wilcox & al., 2002; Alfaro & al.,
2003). This has been alternatively interpreted to mean
that bootstrap values are overly conservative (Wilcox &
al., 2002) or posterior probabilities are overly liberal
(Suzuki & al., 2002). As is often the case with hypothe-
sis testing, this appears to be a choice between accepting
increased type I or type II errors. Although bootstrap val-
ues might be more likely to fail to strongly support a true
node (type I error), posterior probabilities might instead
fail to reject a false node (type II error). Regardless of the
interpretation, it is important to note that these two meas-
ures of support are not directly comparable. A relatively
lower bootstrap value could indicate the same level of
support as a higher posterior probability. Thus, it is not
appropriate to claim that you have a more strongly sup-
ported Bayesian phylogeny than a previous ML or MP
phylogeny simply because the posterior probabilities are
higher than the bootstrap values. As noted by Alfaro & al.
(2003) and Douady & al. (2003), it appears that both
measures of support can be useful as long as their respec-
tive limitations and differences are kept in mind. The dif-
ferences between these two measures, and reasons for
those differences, will no doubt continue to be investi-
gated. However, if one is inclined to use model-based
phylogeny reconstruction, posterior probabilities have
the clear benefit of being much more temporally feasible
(discussed below under Computational Abilities). When
interpreting posterior probabilities, in addition to the lack
of comparability to bootstrap values, it is also important
to remember that they are not simply the probability that
a clade is “true”, but rather the probability that it is true
given the model and parameters used, the priors, and the
data. This becomes evident in studies (e.g., Rydin &
Källersjö, 2002) that show alternate datasets or models
strongly supporting the “truth” of conflicting clades, for
example 100% posterior probability support for
((A,B)C) using model 1 and 100% support for ((B,C)A)
using model 2.

GENERAL CONSIDERATIONS
As with any new (or even well established) method-

ology, there are numerous potentially positive and nega-
tive attributes that must be considered. Bayesian
approaches to phylogeny reconstruction are clearly in
their infancy, and thus it is difficult to thoroughly review
the pluses and minuses at this time. In the future, many
concerns will undoubtedly be addressed; however, given
our collective history as a systematic community, it
seems safe to say that as these concerns are set aside, oth-
ers will arise. At this point, several aspects of Bayesian
analyses (although not all are unique to this approach)
deserve mention. Other aspects of Bayesian analyses that

are currently being discussed in the literature, such as
problems with convergence and mixing, will likely be
the topics of future columns. For now, we will limit our
discussion to three of the considerations that we feel are
important.

Model choice. — As with any model-based
method of phylogenetic inference, Bayesian analyses
could be negatively affected if an invalid model of evo-
lution is implemented. A number of methods are current-
ly available to assist in estimating the “best” model to use
for ML analyses (e.g., Modeltest; Posada & Crandall,
1998) and many of these same approaches are being used
for Bayesian analyses (Huelsenbeck & al., 2002; Reed &
al., 2002). However, whether or not it is appropriate to
use these tests in a Bayesian framework has not yet been
clearly addressed. Bayesian methods of model testing are
also being investigated. These methods have several
potential benefits such as not requiring nested hypothe-
ses and having the ability to incorporate uncertainty by
integrating over model parameters (Huelsenbeck & al.,
2001, 2002; Bollback, 2002). There is no current con-
sensus on the best way to choose a model; however, this
issue is worthy of future work because, among other con-
cerns, it appears that posterior probability values could
be especially sensitive to model choice (Buckley, 2002;
Douady & al., 2003).

Computational abilities. — One clear benefit of
Bayesian inference of phylogeny is the increased speed
of analyses (relative to ML), which permits more exten-
sive searches to be performed than previously possible in
a model-based system. This is due to the implementation
of MCMC to estimate the posterior probability distribu-
tion, which eliminates much of the complex summation
and integration and leaves comparatively simple calcula-
tions (described in detail by Huelsenbeck & al., 2002).
Although the analyses are still slower than MP, they are
much faster than traditional ML analyses. For example,
Reed & al. (2002) spent approximately nine days con-
ducting Bayesian analyses while it took approximately
93 days to conduct a comparable set of ML analyses
(with nearly identical topologies found from each set of
analyses). In this same study, the MP topology, inferred
using two different weighting schemes, was highly con-
gruent with both the Bayesian and ML topology and was
estimated in only two days (including bootstrap analy-
ses). Obviously, the amount of time needed for Bayesian
analyses will vary greatly depending on the dataset and
methodology, but it is clear that if one wants to use
model-based phylogeny reconstruction, Bayesian analy-
ses can be conducted in a much more feasible period of
time than ML. This could also allow for a more thorough
exploration of tree space (using more complex models,
for example) as well as allowing the investigation of
types of questions that were not previously practicable.
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Priors. — As demonstrated in the medical-test
example, including prior information can affect the out-
come of statistical analyses. The degree to which this
could affect the outcome of phylogenetic inference is still
poorly understood. As stated by Huelsenbeck & al.
(2002: 681): “In a typical Bayesian analysis of phyloge-
ny, the results are likely to be rather insensitive to the
prior”. However, as implied by the vague phrasing of this
statement, we do not currently know what effect realistic
priors will have on phylogenetic analyses since we are
not yet able to implement them. As the systematic com-
munity is able to include more realistic priors, it seems
likely that this issue will become more widely evaluated
and discussed. Including valid prior information, if it
exists, into the estimation of phylogenetic relationships
could be reasonable. In fact, despite our drive for objec-
tivity in systematics, decisions such as which taxa to
include, or what data to use, often require consideration
of our prior knowledge of the taxa studied. However,
these decisions do differ from stating a prior probability
distribution of trees. Clearly, several questions need to be
addressed in the future. For example, what type of
“knowledge” is valid versus invalid for use as priors?
How are conflicts among different sets of prior informa-
tion resolved? Does including priors strongly bias the
results of phylogenetic inference? An optimistic view of
priors is that including more information is a good thing
and that inferences of evolutionary relationships will
only be strengthened by including as much biological
information as possible. A less optimistic, but equally
valid, point of view is that including prior “knowledge”
has the potential to bias the resulting topology towards
the answer that we “believed” was correct before doing
the analyses. The use of priors is the defining character-
istic of Bayesian analyses, yet at the moment we are
unable to implement realistic priors into phylogenetic
analyses and in fact are not certain whether or not it is
something that should be done. Clearly, much future
work is needed regarding the use of Bayesian analyses in
phylogenetics. It is yet to be seen if this currently popu-
lar methodology will rise to dominance, fall to obscurity,
or settle somewhere in between as one of several
methodological options available for phylogenetic analy-
ses.
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