Tro Chpt 13

Chemical Kinetics

•Rate of a chemical reaction

•Effect of concentration on reaction rate

•Integrated rate laws: How concentrations change with time

•Effect of temperature on rate

•Reaction mechanisms

End of chapter problems Chapter 13: 25, 29, 35, 37, 38, 39, 41, 43, 49, 51, 53, 57, 59, 63, 65, 69, 71, 75, 85, 93, 97

Copyright © 2008 Pearson Prentice Hall, Inc.

0	$_{2} + 2NO$	2NO ₂		
Initia Expo Betv	al Rates for a seriments in the veen O ₂ and N	Series of e Reaction O		
	ctant tions (mol/L)	Initial Pate		
Experiment	02	NO	(mol/L • s)	
Experiment	O ₂ 1.10×10 ⁻²	NO	(mol/L • s)	
Experiment	O ₂ 1.10×10 ⁻² 2.20×10 ⁻²	NO 1.30×10 ⁻² 1.30×10 ⁻²	(mol/L • s) <u>3.21×10⁻³</u> 6.40×10 ⁻³	
Experiment 1 2 3	O ₂ 1.10×10 ⁻² 2.20×10 ⁻² 1.10×10 ⁻²	NO 1.30×10 ⁻² 1.30×10 ⁻² 2.60×10 ⁻²	(mol/L • s) <u>3.21×10⁻³</u> <u>6.40×10⁻³</u> 12.8×10 ⁻³	
Experiment 1 2 3 4	0 ₂ <u>1.10×10⁻²</u> <u>2.20×10⁻²</u> <u>1.10×10⁻²</u> <u>3.30×10⁻²</u>	NO 1.30×10 ⁻² 1.30×10 ⁻² 2.60×10 ⁻² 1.30×10 ⁻²	$\frac{(mol/L \cdot s)}{3.21 \times 10^{-3}}$ $\frac{6.40 \times 10^{-3}}{12.8 \times 10^{-3}}$ 9.60×10 ⁻³	

The Rate Law - experimentally determined!				
Rate = k[concentration] Rate = k[concentration] ²	(first order reaction) (second order reaction)			
$NO + O_3 \longrightarrow NO_2 + O_2 \text{ rate} = k$	NO][O ₃]			
$2NO + H_2 \longrightarrow N_2 + 2H_2O \text{ rate} = k$	[NO] ² [H ₂]			
$(CH_3)_3C$ -Br + $H_2O \rightarrow (CH_3)_3$ -Ol	$\mathbf{H} + \mathbf{H}^+ + \mathbf{B}\mathbf{r}^- \mathbf{rate} = k[(\mathbf{CH}_3)_3\mathbf{C} - \mathbf{B}\mathbf{r}]$			
$CHCl_3 + Cl_2 \longrightarrow CCl_4 + HC$	Cl rate = $k[CHCl_3][Cl_2]^{1/2}$			
$2O_3 \longrightarrow 3O_2$ rate = $k[O$	₃] ² [O ₂] ⁻¹			

<u>Relationship between time elapsed and reactant</u> (or product) concentration: Integrated Rate Laws

Rate = $-\Delta[A]/\Delta t = k[A]$ (a first order reaction)

Integrate this differential rate law...

 $ln\frac{[A]_0}{[A]_t} = kt$ $ln[A]_0 - ln[A]_t = kt$

Rate = $-\Delta[x]/\Delta t = k[x]^2$ (a second order reaction)

 $\frac{1}{[\mathbf{A}]_t} - \frac{1}{[\mathbf{A}]_0} = kt$

Sample problem using the integrated rate law...

$$2HI \longrightarrow H_2 + I_2$$

Rate = k[HI]² and k = 2.4 x 10⁻²¹ Lmol⁻¹s⁻¹

Suppose 0.0100 mol of HI is placed in a 1 liter flask; how long before [HI] = 0.009 M?

$$\frac{1}{[A]_t} - \frac{1}{[A]_0} = kt$$

 $\frac{1}{[0.009]_t} - \frac{1}{[0.010]} = (2.4 \times 10^{-21} \text{Lmol}^{-1} \text{s}^{-1}) \text{t}$

Tro 13	.5	The Effect of Temperature on				
	Reaction Rate					
Expt	[Ester]	[H2O]	<i>т</i> (к)	Rate (mol/L ⋅ s)	k (L/mol⋅s)	
1	0.100	0.200	288	1.04×10-3	0.0521	
2	0.100	0.200	298	2.02×10-3	0.101	
3	0.100	0.200	308	3.68×10 ⁻³	0.184	
4	0.100	0.200	318	6.64×10 ⁻³	0.332	
A				0.400-		
				ගි 0.300-		1
				0.200-		
				¥ 0.100-		
				2	88 298 30	8 318
				в	Temperature	e (K)

Rate Laws of Elementary Steps

TABLE 13.3 Rate Laws for Elementary Step Elementary Step Molecularity Rate Law $A \longrightarrow products$ 1 Rate = k[A] $\begin{array}{ccc} A &+ & A & \longrightarrow & \text{products} \\ A &+ & B & \longrightarrow & \text{products} \end{array}$ 2 2 Rate = $k[A]^2$ Rate = k[A][B] $\begin{array}{ccc} A + A + A & \longrightarrow & \text{products} \\ A + A + B & \longrightarrow & \text{products} \end{array} & 3 (rare) \\ 3 (rare) \end{array}$ Rate = $k[A]^3$ Rate = $k[A]^2[B]$ $A + B + C \longrightarrow products$ Rate = k[A][B][C]3 (rare) Copyright © 2008 Pearson Prentice Hall, Inc

NOT the slow	step			
203 —		30 ₂	rate = $k \frac{[O_3]^2}{[O_2]}$	Observed rate law
Step 1: O ₃ + N	1,		$O_2 + O + M$	fast
Step 2: O + O	3 —		2O ₂	slow
Overall: 20 ₃ -	,	· 30 ₂		

203	→ 3O ₂	rate = $k \frac{[O_3]^2}{[O_2]}$	Observed rate law
Step 1: O ₃ + M	$\rightarrow 0_2 + 0$) + M	fast
Step 2: O + O ₃ –		2O ₂	slow
Steady-state approx Rate=k ₁ [O ₃][M] is t Rate = k ₋₁ [O ₂][O][M	imation: i.e. "C he rate of form I] is the rate of)" as an intermedia ation of "O" consumption of "O	"
$k_1[O_3][M] = k_1[O_2]$	[O][M]		
$\frac{k_1[O_3]}{k_{-1}[O_2]} = [O]$			
rate = $k_2 \frac{k_1[O_3]}{k_{-1}[O_2]}[O_3]$	$= k \frac{[O_3]^2}{[O_2]}$		

5. Consider the gas-pha	se reaction between nitrogen mor	noxide and bron	nine:
$2NO(g) + Br_2(g) -$	► 2NOBr (g)		
Could the following r [NO] ² [br ₂]? EXPLA from the mechanism	mechanism be valid if the observe IN (note: N_2O_2 is an intermediate n!	ed rate law is: ra	te = k $the rate law$
(1) NO (g) + NO (g)	<u>→</u>	$N_2O_2(g)$	fast
(2) $N_2O_2(g) + Br_2(g)$	•	2NOBr (g)	slow

Review of	of sample	problems fr	om Chapter	13

For the gas phase reaction CH₃CH₂I _____ CH₂CH₂ + HI

The activation energy is 221 kJmol⁻¹ and the frequency factor A is 1.2 x 10¹⁴ s⁻¹. If the concentration of CH₃CH₂I is 0.012 mol L⁻¹, what is the rate of the reaction at 400 °C?

Order	Rate Law	Units of k	Integrated Rate Law	Straight-Line Plot	Half-Llfe Expression
0	Rate = $k[A]^0$	M·s ⁻¹	$[\mathbf{A}]_t = -kt + [\mathbf{A}]_0$	$\mathbf{E} \qquad \begin{array}{c} \mathbf{p} \cdot \text{intercept} = [\mathbf{A}]_0 \\ \text{Slope} = -k \\ \text{Time } t \end{array}$	$t_{1/2} = \frac{[\mathbf{A}]_0}{2k} = \frac{1}{k} \frac{[\mathbf{A}]_0}{2}$
1	Rate = $k[A]^1$	s ⁻¹	$\ln[\mathbf{A}]_{t} = -kt + \ln[\mathbf{A}]_{0}$ $\ln \frac{[\mathbf{A}]_{t}}{[\mathbf{A}]_{0}} = -kt$	y-intercept = $\ln[A]_0$ Slope = $-k$ Time t	$t_{1/2} = \frac{0.693}{k} = \frac{1}{k} \ (0.693)$
2	Rate = $k[A]^2$	M ⁻¹ s ⁻¹	$\frac{1}{[A]_t} = kt + \frac{1}{[A]_0}$	Slope = k y-intercept = $1/[A]_0$ Time t	$t_{1/2} = \frac{1}{k[A]_0} = \frac{1}{k} \frac{1}{[A]_0}$