Chapter 3 - Molecules, Compounds and Chemical Equations

Mixtures and Compounds

Section 3.2

•two general types of bonding between atoms found in compounds, **ionic** and **covalent**

•ionic bonds result when electrons have been transferred between atoms, resulting in oppositely charged ions that attract each other

 \checkmark generally found when metal atoms bonded to nonmetal atoms

•covalent bonds result when two atoms share some of their electrons

 \checkmark generally found when nonmetal atoms bonded together

Lowest potential energy (most stable)

Section 3.3 - Chemical Formulas and Molecular Models

Copyright © 2008 Pearson Prentice Hall, Inc.

What is the empirical formula for H₂O₂ and C₂H₆O₂?

Section 3.4 Molecular and Atomic Elements

•Certain elements occur as 2 atom molecules

•Other elements occur as polyatomic molecules

 $\checkmark P_4, S_8, Se_8$

Molecular Elements

	1A																	8A
1	1 1 H	2A 2		Ele	Elements that exist as diatomic molecules								3A 13	4A 14	5A 15	6A 16	7A 17	2 He
2	3 Li	4 Be		Ele	Elements that exist as polyatomic molecules 5 6 7 8 9 10 B C N O F Ne							10 Ne						
3	11 Na	12 Mg	3B 3	4B 4	5B 5	6B 6	7B 7	8	-8B- 9	10	1B 11	2B 12	13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
6	55 Cs	56 Ba	57 La	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra	89 Ac	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112	Γ	114		116		

CaCl₂

Hydrogen

Phosphorous

CO₂

Lanthanides	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
Actinides	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Copyright © 2008 Pearson Prentice Hall, Inc.

Section 3.5 Ionic Compounds

Writing Formulas for Ionic Compounds

- 1. Write the symbol for the metal cation and its charge
- 2. Write the symbol for the nonmetal anion and its charge
- 3. Charge (without sign) becomes subscript for other ion
- 4. Reduce subscripts to smallest whole number ratio
- 5. Check that the sum of the charges of the cation cancels the sum of the anions

What are the formulas for compounds made from the following ions?

potassium ion with a nitride ion calcium ion with a bromide ion aluminum ion with a sulfide ion Al⁺³ column 3A O²⁻ column 6A Al⁺³ O²⁻ Al₂ O₃ Al = (2)·(+3) = +6 O = (3)·(-2) = -6 Naming Binary Ionic Compounds for Metals with Invariant Charge
Contain Metal Cation + Nonmetal Anion
Metal listed first in formula and name

- 1.name metal cation first, name nonmetal anion second
- 2.cation name is the metal name
- 3.nonmetal anion named by changing the ending on the nonmetal name to *-ide*

Copyright © 2008 Pearson Prentice Hall, Inc

TABLE 3.2 Metals Whose Charge Is Invariant from One Compound to Another						
Metal	lon	Name	Group Number			
Li	Li^+	Lithium	1A			
Na	Na ⁺	Sodium	1A			
Κ	K^+	Potassium	1A			
Rb	Rb^+	Rubidium	1A			
Cs	Cs ⁺	Cesium	1A			
Be	Be ²⁺	Beryllium	2A			
Mg	Mg^{2+}	Magnesium	2A			
Ca	Ca ²⁺	Calcium	2A			
Sr	Sr^{2+}	Strontium	2A			
Ba	Ba ²⁺	Barium	2A			
Al	Al^{3+}	Aluminum	3A			
Zn	Zn^{2+}	Zinc	*			
Sc	Sc ³⁺	Scandium	*			
Ag**	Ag^+	Silver	*			

Naming Binary Ionic Compounds for Metals with Variable Charge

•Contain Metal Cation + Nonmetal Anion

•Metal listed first in formula and name

1.name metal cation first, name nonmetal anion second

2.metal cation name is the metal name followed by a Roman numeral in parentheses to indicate its charge

 \checkmark determine charge from anion charge

✓ common ions Table 3.4

3.nonmetal anion named by changing the ending on the nonmetal name to *-ide*

with Different Charges					
Metal	lon	Name	Older Name [*]		
Chromium	Cr^{2+}	Chromium(II)	Chromous		
	Cr^{3+}	Chromium(III)	Chromic		
Iron	Fe ²⁺	Iron(II)	Ferrous		
	Fe ³⁺	Iron(III)	Ferric		
Cobalt	Co^{2+}	Cobalt(II)	Cobaltous		
	Co^{3+}	Cobalt(III)	Cobaltic		
Copper	Cu ⁺	Copper(I)	Cuprous		
	Cu^{2+}	Copper(II)	Cupric		
Tin	Sn^{2+}	Tin(II)	Stannous		
	Sn^{4+}	Tin(IV)	Stannic		
Mercury	$\mathrm{Hg_2}^{2+}$	Mercury(I)	Mercurous		
	Hg^{2+}	Mercury(II)	Mercuric		
Lead	Pb^{2+}	Lead(II)	Plumbous		
	Pb^{4+}	Lead(IV)	Plumbic		

TABLE 3.4 Some Metals That Form Cations

What are the formulas for compounds made from the following ions? copper (II) nitride and iron (III) bromide. Compounds Containing Polyatomic Ions

•Polyatomic ions are single ions that contain more than one atom

•Often identified by (ion) in formula

•Name and charge of polyatomic ion do not change

•Name any ionic compound by naming cation first and then anion

Name	Formula
acetate	$C_2H_3O_2^-$
carbonate	CO ₃ ^{2–}
hydrogen carbonate (aka bicarbonate)	HCO ₃ -
hydroxide	OH-
nitrate	NO ₃ ⁻
nitrite	NO ₂ ⁻
chromate	CrO ₄ ^{2–}
dichromate	Cr ₂ O ₇ ^{2–}
ammonium	NH ₄ ⁺

Name	Formula
hypochlorite	C10-
chlorite	ClO ₂ ⁻
chlorate	ClO ₃ -
perchlorate	ClO ₄ -
sulfate	SO ₄ ^{2–}
sulfite	SO ₃ ^{2–}
hydrogen sulfate (aka bisulfate)	HSO ₄ -
hydrogen sulfite (aka bisulfite)	HSO ₃ ⁻

Formulas and Names of Binary Ionic Compounds

•Binary ionic compounds are made up of monatomic cations and anions.

- •These combinations must be electrically neutral.
- •The formula unit is the simplest collection of cations and anions that represents an electrically neutral unit.
- •*Formula unit* is to *ion* as ______ is to *atom*.
- •To write a formula, combine the proper number of each ion to form a neutral unit.
- •To name a binary ionic compound, name the cation, then the anion.
- •Monatomic anion names end in -ide.

Determine the formula for (a) calcium chloride and (b) magnesium oxide.

What are the names of (a) MgS and (b) $CrCl_3$?

Write the formula for (**a**) sodium sulfite and (**b**) ammonium sulfate.

What is the name of (a) NaCN and (b) $Mg(ClO_4)_2$?

Naming Binary Molecular Compounds (Section 3.6)

•The name consists of two words.

10

- •First word: name of the element that appears first in the formula.
- •Second word: *stem* of the name of the second element, ending with *-ide*.
- •Names are further modified by adding prefixes to denote the numbers of atoms of each element in the molecule.
- •Rule of thumb: the element that is farthest *down* and to the *left* on the periodic table is usually written first.

	prefix name of 1st element	base name of 2nd element + -ide
ble 2.3 Numeri	c Prefixes in Name	es of Binary Molecular Compounds
Number of Atoms	Prefix	Examples ^a
1	mono	NO nitrogen monoxide
2	di	NO ₂ nitrogen dioxide
3	tri	N ₂ O ₃ dinitrogen trioxide
4	tetra	N ₂ O ₄ dinitrogen tetroxide
5	penta	N ₂ O ₅ dinitrogen pentoxide
6	hexa	SF ₆ sulfur hexafluoride
7	hepta	IF ₇ iodine heptafluoride
8	octa	P ₄ O ₈ tetraphosphorus octoxide
9	nona	P_4S_0 tetraphosphorus nonasulfide

^a When the prefix ends in "a" or "o" and the element name begins with "a" or "o," the final vowel of the prefix is usually dropped for ease of pronunciation. For example, nitrogen *mon*oxide and not nitrogen *mon*oxide, and Copyright © 2004 Pearson Prentice Hall, Inc.

deca

As₄O₁₀ tetraarsenic decoxide

Hydrates

•hydrates are ionic compounds containing a specific number of waters for each formula unit

•water of hydration often "driven off" by heating

•in formula, attached waters follow •

✓CoCl₂•6H₂O

•in name attached waters indicated by suffix *-hydrate* after name of ionic compound

✓ $CoCl_2 \cdot 6H_2O = cobalt(II)$ chloride hexahydrate ✓ $CaSO_4 \cdot \frac{1}{2}H_2O = calcium sulfate$

hemihydrate

Acids

•Contain H^{+1} cation and anion

 ✓ in aqueous solution
 •Binary acids have H⁺¹ cation and nonmetal anion

•Oxyacids have H⁺¹ cation and polyatomic anion

•write a **hydro** prefix

•follow with the nonmetal name

- •change ending on nonmetal name to -ic
- •write the word **acid** at the end of the name

•if polyatomic ion name ends in *-ate*, then change ending to *-ic* suffix

•if polyatomic ion name ends in *–ite*, then change ending to *–ous* suffix

•write word acid at end of all names

Molecular Masses and Formula Masses (Section 3.7)

•Molecular mass: sum of the masses of the atoms represented in a molecular formula.

- •Simply put: the mass of a molecule.
- •*Molecular* mass is specifically for *molecules*.

Sulfur dioxide - SO_2

= **32.066 u** + 2(**15.9994 u**) = **64.065 u**

= 6(12.0107 u) + 12(1.0079 u) + 6(15.9994 u) = 180.1154 u •Ionic compounds don't exist as molecules; for them we use ...

•Formula mass: sum of the masses of the atoms or ions present in a formula unit.

The formula
 (N H 4) 2
 S O 4

 Atomic masses

$$\{[14.0067 u + (1.00794 u \times 4)] \times 2\} + \{32.066 u + (15.9994 u \times 4)\}$$

 Formula mass 132.141 u

Copyright © 2004 Pearson Prentice Hall, Inc.

One Na⁺ and one Cl⁻ make a formula unit for sodium chloride

Crystal of sodium chloride

The mass of one formula unit is: = 22.9898 u + 35.4527 u = **58.4425** u •*Molar mass* is the mass of *one mole* of a substance.

•Molar mass is *numerically* equal to atomic mass, molecular mass, or formula mass. However ...

•... the *units* of molar mass are grams (g/ mol).

•Examples:

O2 molecule CO₂ molecule One: C atom One dozen: One mole: 6.02214×10^{23} 6.02214×10^{23} 6.02214×10^{23} CO2 molecules C atoms O2 molecules 12.011 g C 31.9988 g O₂ 44.010 g CO₂ Copyright © 2004 Pearson Prentice Hall, Inc.

1 *atom* Na = 22.99 *u*

1 *mol* Na = 22.99 *g*

1 *molecule* $CO_2 = 44.01 u$

1 *formula unit* KCl = 74.56 *u*

 $1 mol CO_2 = 44.01 g$

1 *mol* KCl = 74.56 g

Avogadro's Number, N_A

The *number* of elementary entities in one mole of <u>anything</u>

 $N_{\rm A} = 6.02214199 \text{ x } 10^{23} \text{ entities mol}^{-1}$

-or- 1 mole $\approx 6.022 \text{ x } 10^{23}$ entities

A **mole** (mol) is an amount of substance that contains as many elementary entities as there are atoms in exactly 12 g of the carbon-12 isotope.

mole of stars in the universe
 mole of pennies

mole of tennis balls
 mole of glucose molecules
 mole of helium atoms
 mole of potassium ions (K⁺)

= 6.022×10^{23} stars = 6.022×10^{23} pennies (beats the lottery!) = 6.022×10^{23} tennis balls = 6.022×10^{23} molecules = 6.022×10^{23} atoms = 6.022×10^{23} ions

Determine (a) the mass of a 0.0750-mol sample of Na, (b) the number of moles of Na in a 62.5-g sample, (c) the mass of a sample of Na containing 1.00×10^{25} Na atoms, and (d) the mass of a single Na atom.

Conversions involving Mass, Moles, and Number of Atoms/ Molecules

1 mol Na = 6.022×10^{23} Na atoms = 22.99 g Na

We can use these equalities to construct conversion factors, such as:

Copyright © 2004 Pearson Prentice Hall, Inc.

Chemical Formulas from Mass Percent Composition (Section 3.9)

•We can "reverse" the process of finding percentage composition.

- •First we use the percentage or mass of each element to find *moles* of each element.
- •Then we can obtain the empirical formula by finding the smallest *whole-number ratio* of moles.

-Find the whole-number ratio by dividing each number of moles by the *smallest* number of moles.

A compound is comprised of 40.01% carbon, 6.72% hydrogen, and 53.27% oxygen. Calculate the empirical formula of the compound.

1) Given the percent composition, assume a mass of sample - use 100.00 g for convenience

Relating Molecular Formulas to Empirical Formulas

•A molecular formula is a simple integer multiple of the empirical formula.

•That is, an empirical formula of CH_2 means that the molecular formula is CH_2 , or C_2H_4 , or C_3H_6 , or C_4H_8 , etc.

•So: we find the molecular formula by:

molecular formula mass

= integer (nearly)

empirical formula mass

Elemental Analysis ...

- •... is one method of determining empirical formulas in the laboratory.
- •This method is used primarily for simple organic compounds (that contain carbon, hydrogen, oxygen).
 - -The organic compound is burned in oxygen.
 - –The products of combustion (usually CO_2 and H_2O) are weighed.
 - -The amount of each element is determined from the mass of products.

Copyright © 2004 Pearson Prentice Hall, Inc.

Writing Chemical Equations (Section 3.10)

A chemical equation is a shorthand description of a chemical reaction, using symbols and formulas to represent the elements and compounds involved.

•If an element is present in just one compound on each side of the equation, try balancing that element *first*.

•Balance any reactants or products that exist as the *free* element last.

•In some reactions, certain groupings of atoms (such as polyatomic ions) remain unchanged. In such cases, treat these groupings as a unit.

•At times, an equation can be balanced by first using a fractional coefficient(s). The fraction is then cleared by multiplying each coefficient by a common factor.

