Development of the Periodic Table (Section 8.1 and 8.2) - In 2002, there were 115 elements known. - The majority of the elements were discovered between 1735 and 1843. - How do we organize 115 different elements in a meaningful way that will allow us to make predictions about undiscovered elements? - Arrange elements to reflect the trends in chemical and physical properties. - First attempt (Mendeleev and Meyer) arranged the elements in order of increasing atomic weight. - Certain elements were missing from this scheme. - Example: In 1871, Mendeleev noted that As properly belonged underneath P and not Si, which left a missing element underneath Si. He predicted a number of properties for this element. In 1886 Ge was discovered. The properties of Ge match Mendeleev's predictions well. - Modern periodic table: arrange elements in order of increasing atomic number. | TABLE 7.8 | Some Properties of the Noble Gases | | | | | | | | | |-----------|------------------------------------|----------------------|------------------|-----------------------|-------------------------|--|--|--|--| | Element | Electron
Configuration | Boiling
Point (K) | Density
(g/L) | Atomic
Radius* (Å) | I ₁ (kJ/mol) | | | | | | Helium | $1s^2$ | 4.2 | 0.18 | 0.32 | 2372 | | | | | | Neon | $[He]2s^22p^6$ | 27.1 | 0.90 | 0.69 | 2081 | | | | | | Argon | $[Ne]3s^23p^6$ | 87.3 | 1.78 | 0.97 | 1521 | | | | | | Krypton | $[Ar]3d^{10}4s^24p^6$ | 120 | 3.75 | 1.10 | 1351 | | | | | | Xenon | $[Kr]4d^{10}5s^25p^6$ | 165 | 5.90 | 1.30 | 1170 | | | | | | Radon | $[Xe]4f^{14}5d^{10}6s^26p^6$ | 211 | 9.73 | _ | 1037 | | | | | $^{^{*}}$ Only the heaviest of the noble-gas elements form chemical compounds. Thus, the atomic radii for the lighter noble-gas elements are predicted, estimated values. ### **Electron Configurations (Section 8.3)** - Electrons ordinarily occupy orbitals of the lowest energy available. - No two electrons in the same atom may have all four quantum numbers alike. - **Pauli exclusion principle**: one atomic orbital can accommodate no more than **two** electrons, and these electrons must have **opposing** spins. - Of a group of orbitals of *identical* energy, electrons enter *empty* orbitals whenever possible (*Hund's rule*). - Electrons in half-filled orbitals have *parallel* spins (same direction). - •Core electrons: electrons in [Noble Gas]. - •Valence electrons: electrons outside of [Noble Gas]. The *spdf notation* uses numbers to designate a principal shell and letters (*s*, *p*, *d*, *f*) to identify a subshell; a superscript indicates the number of electrons in a designated subshell. ## **Electron Configurations and the Periodic Table (Section 8.4)** - The periodic table can be used as a guide for electron configurations. - The period number is the value of n. - Groups 1A and 2A have the *s*-orbital filled. - Groups 3A 8A have the *p*-orbital filled. - Groups 3B 2B have the *d*-orbital filled. - The lanthanides and actinides have the *f*-orbital filled. •Noble-gas-core abbreviation: we can replace the portion that corresponds to the electron configuration of a noble gas with a bracketed chemical symbol. It's easier to write ... 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p 6s 6p 6d 7s 7p Representative s-block elements Transition metals Transition metals (Z = 22) Ti [Ar] $$4s^2$$ $3d^2$ (Z = 22) Ti [Ar] $4s^2$ $3d^2$ Representative p-block elements F-Block metals ### **Orbital Blocks of the Periodic Table** | | Groups | | | | | | | | | | | | | | | | | | |--------------|--|--|--|---|--|--|---|--|--|--|--|---|---|---|---|--|--|--| | | 1
1A | | | | | | | | | | | | | | | | | 18
8A | | 1 | 1
H
1s ¹ | 2
2A | | | | ock elei | | | block e | | | | 13
3A | 14
4A | 15
5A | 16
6A | 17
7A | 2
He
1s ² | | 2 | 3
Li
2s ¹ | 4
Be
2s ² | | u-block elements | | | | | | 5
B
2s ² 2p ¹ | 6
C
2s ² 2p ² | 7
N
2s ² 2p ³ | 8
O
2s ² 2p ⁴ | 9
F
2s ² 2p ⁵ | 10
Ne
2s ² 2p ⁶ | | | | | 3 | 11
Na
3s ¹ | 12
Mg
3s ² | 3
3B | 4
4B | 5
5B | 6
6B | 7
7B | 8 | 9
— 8B — | 10 | 11
1B | 12
2B | 13
Al
3s ² 3p ¹ | 14
Si
3s ² 3p ² | 15
P
3s ² 3p ³ | 16
S
3s ² 3p ⁴ | 17
Cl
3s ² 3p ⁵ | 18
Ar
3s ² 3p ⁶ | | Periods
4 | 19
K
4s ¹ | 20
Ca
4s ² | 21
Sc
4s ² 3d ¹ | 22
Ti
4s ² 3d ² | 23
V
4s ² 3d ³ | 24
Cr
4s ¹ 3d ⁵ | 25
Mn
4s ² 3d ⁵ | 26
Fe
4s ² 3d ⁶ | 27
Co
4s ² 3d ⁷ | 28
Ni
4s ² 3d ⁸ | 29
Cu
4s ¹ 3d ¹⁰ | 30
Zn
4s ² 3d ¹⁰ | 31
Ga
4s ² 4p ¹ | 32
Ge
4s ² 4p ² | 33
As
4s ² 4p ³ | 34
Se
4s ² 4p ⁴ | 35
Br
4s ² 4p ⁵ | 36
Kr
4s ² 4p ⁶ | | 5 | 37
Rb
5s ¹ | 38
Sr
5 <i>s</i> ² | 39
Y
5s ² 4d ¹ | $\frac{40}{Zr}$ $5s^24d^2$ | 41
Nb
5s ¹ 4d ⁴ | 42
Mo
5s ¹ 4d ⁵ | 43
Tc
5s ² 4d ⁵ | 44
Ru
5s ¹ 4d ⁷ | 45
Rh
5s ¹ 4d ⁸ | 46
Pd
4d ¹⁰ | 47
Ag
5s ¹ 4d ¹⁰ | 48
Cd
5s ² 4d ¹⁰ | 49
In
5s ² 5p ¹ | 50
Sn
5s ² 5p ² | 51
Sb
5s ² 5p ³ | 52
Te
5s ² 5p ⁴ | 53
I
5s ² 5p ⁵ | 54
Xe
5s ² 5p ⁶ | | 6 | 55
Cs
6s ¹ | 56
Ba
6s ² | 57
La
6s ² 5d ¹ | 72
Hf
6s ² 5d ² | 73
Ta
6s ² 5d ³ | 74
W
6s ² 5d ⁴ | 75
Re
6s ² 5d ⁵ | 76
Os
6s ² 5d ⁶ | 77
Ir
6s ² 5d ⁷ | 78
Pt
6s ¹ 5d ⁹ | 79
Au
6s ¹ 5d ¹⁰ | 80
Hg
6s ² 5d ¹⁰ | 81
Tl
6s ² 6p ¹ | 82
Pb
6s ² 6p ² | 83
Bi
6s ² 6p ³ | 84
Po
6s ² 6p ⁴ | 85
At
6s ² 6p ⁵ | 86
Rn
6s ² 6p ⁶ | | 7 | 87
Fr
7 <i>s</i> ¹ | 88
Ra
7 <i>s</i> ² | 89
Ac
7s ² 6d ¹ | 104
Rf
7s ² 6d ² | 105
Db
7s ² 6d ³ | 106
Sg
7s ² 6d ⁴ | 107
Bh | 108
Hs | 109
Mt | 110
Ds | Rg | 112 | | 114 | | 116 | Г | Lanth | nanides | 58
Ce
6s ² 4f ² | 59
Pr
6s ² 4f ³ | 60
Nd
6s ² 4f ⁴ | 61
Pm
6s ² 4f ⁵ | 62
Sm
6s ² 4f ⁶ | 63
Eu
6s ² 4f ⁷ | 64
Gd
6s ² 4f ⁷ 5d ¹ | 65
Tb
6s ² 4f ⁹ | 66
Dy
6s ² 4f ¹⁰ | 67
Ho
6s ² 4f ¹¹ | 68
Er
6s ² 4f ¹² | 69
Tm
6s ² 4f ¹³ | 70
Yb
6s ² 4f ¹⁴ | 71
Lu
6s ² 4f ¹⁴ 6d ¹ | | | | | Ac | tinides | 90
Th
7 <i>s</i> ² 6 <i>d</i> ² | 91
Pa
7s ² 5f ² 6d ¹ | 92
U
7s ² 5f ³ 6d ¹ | 93
Np
7s ² 5f ⁴ 6d ¹ | 94
Pu
7s ² 5f ⁶ | 95
Am
7 <i>s</i> ² 5 <i>f</i> ⁷ | 96
Cm
7s ² 5f ⁷ 6d ¹ | 97
Bk
7 <i>s</i> ² 5 <i>f</i> 9 | 98
Cf
7s ² 5f ¹⁰ | 99
Es
7 <i>s</i> ² 5 <i>f</i> ¹¹ | 100
Fm
7 <i>s</i> ² 5 <i>f</i> 12 | 101
Md
7s ² 5f ¹³ | 102
No
7 <i>s</i> ² 5 <i>f</i> ¹⁴ | 103
Lr
7s ² 5f ¹⁴ 6d ¹ | Copyright © 2008 Pearson Prentice Hall, Inc. - •The *valence shell* is the outermost occupied principal shell. The valence shell contains the *valence electrons*. - •For main group elements, the number of valence shell electrons is the same as the periodic table group number (2A elements: two valence electrons, etc.) - •The period number is the same as the principal quantum number *n* of the electrons in the valence shell. - •Electrons in inner shells are called *core electrons*. # **Electron Configurations of Ions (Section 8.5 and 8.7)** - •To obtain the electron configuration of an *anion* by the aufbau process, we simply *add* the additional electrons to the valence shell of the neutral nonmetal atom. - •The number added usually completes the shell. - •A nonmetal monatomic ion usually attains the electron configuration of a noble gas atom. O²⁻: [Ne] Br⁻: [Kr] - •A metal atom loses electrons to form a *cation*. - •Electrons are *removed* from the configuration of the atom. - •The first electrons lost are those of the *highest principal* quantum number. - •If there are two subshells with the same highest principal quantum number, electrons are lost from the subshell with the higher *l*. | Atom | Ion | (or) | |---------------------------------|--|-------------| | $F 1s^2 2s^2 2p^5$ | $F^- 1s^2 2s^2 2p^6$ | [Ne] | | S [Ne] $3s^2 3p^4$ | S^{2-} [Ne] $3s^2 3p^6$ | [Ar] | | Sr [Kr] 5 <i>s</i> ² | $Sr^{2+}[Kr] 5s^2$ | [Kr] | | Ti [Ar] $4s^2 3d^2$ | Ti ⁴⁺ [Ar] 4s² 3d² | [Ar] | | Fe [Ar] $4s^2 3d^6$ | Fe^{2+} [Ar] $4s^2 3d^6$ | $[Ar] 3d^6$ | | Table 8 | Table 8.3 Electron Configurations of Some Metal lons | | | | | | | | | | |--|---|---|--|---|--|------|--|--|--|--| | No | ble Gas | Pseudo-N | oble Gas ^a | 18 + 2 ^b | Var | ious | | | | | | Na ⁺
K ⁺
Rb ⁺ | Be ²⁺ Al ³⁺ Mg ²⁺ Ca ²⁺ Sr ²⁺ Ba ²⁺ | Cu ⁺
Ag ⁺
Au ⁺ | Zn ²⁺
Cd ²⁺
Hg ²⁺ | In ⁺ Tl ⁺ Sn ²⁺ Pb ²⁺ Sb ³⁺ Bi ³⁺ | Cr ²⁺ :
Cr ³⁺ :
Mn ²⁺ :
Mn ³⁺ :
Fe ²⁺ :
Fe ³⁺ :
Co ²⁺ :
Co ³⁺ : | | | | | | ^a In the pseudo-noble gas configuration, all valence electrons are lost and the remaining (n-1) shell has 18 electrons in the configuration $(n-1)s^2(n-1)p^6(n-1)d^{10}$. ^b In the 18+2 configuration, $(n-1)s^2(n-1)p^6(n-1)d^{10}ns^2$, two valence electrons remain. Copyright © 2004 Pearson Prentice Hall, Inc. # **Magnetic Properties (Section 8.7)** - Diamagnetism is the weak repulsion associated with paired electrons. - •Paramagnetism is the attraction associated with unpaired electrons. - -This produces a much stronger effect than the weak diamagnetism of paired electrons. - Ferromagnetism is the exceptionally strong attractions of a magnetic field for iron and a few other substances. A sample of chlorine gas is found to be diamagnetic. Can this gaseous sample be composed of individual Cl atoms? ### **Elements That Form Ions with Predictable Charges** | | 1A | 2A | | | | | | | | | | 3A | 4A | 5A | 6A | 7A | 8A | |---|-----------------|------------------|----|----|----|----|----|--------|--------|----|----|------------------|----|-----------------|------------------|-----------------|----| | 1 | Li ⁺ | | | | | | | | | | | | | N ³⁻ | O ²⁻ | F ⁻ | | | 2 | Na ⁺ | Mg ²⁺ | 3B | 4B | 5B | 6B | 7B | - 8B - | \neg | 1B | 2B | Al ³⁺ | | | S ²⁻ | Cl- | | | 3 | K ⁺ | Ca ²⁺ | | | | | | | | | | | | | Se ²⁻ | Br ⁻ | | | 4 | Rb ⁺ | Sr ²⁺ | | | | | | | | | | | | | Te ²⁻ | I- | | | 5 | Cs ⁺ | Ba ²⁺ | | | | | | | | | | | | | | | | ### **Effective Nuclear Charge (8.3 and 8.6)** - Effective nuclear charge is the charge experienced by an electron on a many-electron atom. - The effective nuclear charge is not the same as the charge on the nucleus because of the effect of the inner electrons. - Electrons are attracted to the nucleus, but repelled by the electrons that screen it from the nuclear charge. - The nuclear charge experienced by an electron depends on its distance from the nucleus and the number of core electrons. - As the average number of screening electrons (S) increases, the effective nuclear charge (Z_{eff}) decreases. - As the distance from the nucleus increases, S increases and Z_{eff} decreases. - •The ns orbitals all have the same shape, but have different sizes and different numbers of nodes. - •Consider: He: $1s^2$, Ne: $1s^2 2s^2 2p^6$, and Ar: $1s^2 2s^2 2p^6 3s^2 3p^6$. - •The radial electron density is the probability of finding an electron at a given distance. Z = # of protonsS = # of core electrons ### Sizes of Atoms and Ions (Sections 8.6 and 8.7) - Consider a simple diatomic molecule. - The distance between the two nuclei is called the bond distance. - If the two atoms which make up the molecule are the same, then half the bond distance is called the covalent radius of the atom. - As the principal quantum number increases, the size of the orbital increases. - Consider the s orbitals. - All s orbitals are spherical and increase in size as n increases. - The spherical symmetry of the orbitals can be seen in the contour plots. - Contour plots are connecting points of equal electron density. ### **Periodic Trends in Atomic Radii** - •As a consequence of the ordering in the period table, properties of elements vary periodically. - •Atomic size varies consistently through the periodic table. - •As we move down a group, the atoms become larger. - •As we move across a period, atoms become smaller. There are two factors at work: - •principal quantum number, n, and - •the effective nuclear charge, Z_{eff} . ### **Trends in the Sizes of Ions (Section 8.7)** - Ion size is the distance between ions in an ionic compound. - Ion size also depends on nuclear charge, number of electrons, and orbitals that contain the valence electrons. - Cations vacate the most spatially extended orbital and are **smaller than the parent ion**. - Anions add electrons to the most spatially extended orbital and are **larger than the** parent ion. - •For ions of the same charge, ion size increases down a group. - •All the members of an **isoelectronic series** have the same number of electrons. - •As nuclear charge increases in an isoelectronic series the ions become smaller: $$O^{2-} > F^- > Na^+ > Mg^{2+} > Al^{3+}$$ ### **Ionization Energy (Section 8.7)** - The first ionization energy, I_1 , is the amount of energy required to remove an electron from a gaseous atom: $Na(g) \rightarrow Na^+(g) + e^-$. - The second ionization energy, I_2 , is the energy required to remove an electron from a gaseous ion: $Na^+(g) \rightarrow Na^{2+}(g) + e^-$. - The larger ionization energy, the more difficult it is to remove the electron. ### **Periodic Trends in Ionization Energies** - •Ionization energy decreases down a group. - •This means that the outermost electron is more readily removed as we go down a group. - •As the atom gets bigger, it becomes easier to remove an electron from the most spatially extended orbital. - •Ionization energy generally increases across a period. - •As we move across a period, Z_{eff} increases. Therefore, it becomes more difficult to remove an electron. - •Two exceptions: removing the first *p* electron and removing the fourth *p* electron. - •The s electrons are more effective at shielding than p electrons. Therefore, forming the s^2p^0 becomes more favorable. - •When a second electron is placed in a p orbital, the electron-electron repulsion increases. When this electron is removed, the resulting s^2p^3 is more stable than the starting s^2p^4 configuration. Therefore, there is a decrease in ionization energy. ### **Electron Configuration of Ions** • Cations: electrons removed from orbital with highest principle quantum number, n, first: Li $$(1s^2 2s^1) \Rightarrow$$ Li⁺ $(1s^2)$ Fe ([Ar]3 $d^6 4s^2$) \Rightarrow Fe³⁺ ([Ar]3 d^5) • Anions: electrons added to the orbital with highest *n*: $$F(1s^2 2s^2 2p^5) \Rightarrow F^-(1s^2 2s^2 2p^6)$$ ### **Variations in Successive Ionization Energies** • There is a sharp increase in ionization energy when a core electron is removed. | TABLE 7.2 | Successive Va | alues of Ioniza | tion Energies, I | , for the Eleme | nts Sodium th | rough Argon (| kJ/mol) | |-----------|---------------|-----------------|------------------|-----------------|---------------|----------------|----------------| | Element | I_1 | I_2 | I_3 | I_4 | I_5 | I_6 | I ₇ | | Na | 496 | 4560 | | | (inner-she | ell electrons) | | | Mg | 738 | 1450 | 7730 | | | | | | Al | 578 | 1820 | 2750 | 11,600 | | | | | Si | 786 | 1580 | 3230 | 4360 | 16,100 | | | | P | 1012 | 1900 | 2910 | 4960 | 6270 | 22,200 | | | S | 1000 | 2250 | 3360 | 4560 | 7010 | 8500 | 27,100 | | Cl | 1251 | 2300 | 3820 | 5160 | 6540 | 9460 | 11,000 | | Ar | 1521 | 2670 | 3930 | 5770 | 7240 | 8780 | 12,000 | ### **Electron Affinities (Section 8.8)** - Electron affinity is the opposite of ionization energy. - Electron affinity is the energy change when a gaseous atom gains an electron to form a gaseous ion: $$Cl(g) + e^- \rightarrow Cl^-(g)$$ • Electron affinity can either be exothermic (as the above example) or endothermic: $$Ar(g) + e^{-} \rightarrow Ar^{-}(g)$$ - Look at electron configurations to determine whether electron affinity is positive or negative. - The extra electron in Ar needs to be placed in the 4s orbital which is significantly higher in energy than the 3p orbital. | H
-73 | | | | | | | He >0 | |---------------|---------------|---------------|----------------|----------------|----------------|-------------------|--------------| | Li -60 | Be >0 | B −27 | C –122 | N >0 | O -141 | F −328 | Ne >0 | | Na -53 | Mg >0 | Al -43 | Si -134 | P −72 | S -200 | Cl -349 | Ar >0 | | K
-48 | Ca –2 | Ga -30 | Ge -119 | As -78 | Se –195 | Br
-325 | Kr >0 | | Rb -47 | S r –5 | In -30 | Sn -107 | Sb -103 | Te -190 | I
-295 | Xe >0 | | 1A | 2A | 3A | 4A | 5A | 6A | 7A | 8A | ### Metals, Nonmetals, and Metalloids (Section 8.8) ### **Metals** - •Metallic character refers to the properties of metals (shiny or lustrous, malleable and ductile, oxides form basic ionic solids, and tend to form cations in aqueous solution). - •Metallic character increases down a group. - •Metallic character decreases across a period. - •Metals have low ionization energies. - •Most neutral metals are oxidized rather than reduced. # Trends in Metallic Character II IA IA I 2A I 2A I 3A 4A 5A 6A 7A IB IB 2B IB 2B IB 2B IB 2B IB 2B IB BI Period 3 Metallic character decreases Copyright @ 2008 Pearson Prentice Hall, Inc. # **A Summary of Trends** Copyright © 2004 Pearson Prentice Hall, Inc. | TABLE 7.4 | Some Properties of the Alkali Metals | | | | | | | | | |-----------|--------------------------------------|-----------------------|------------------------------|----------------------|-------------------------|--|--|--|--| | Element | Electron
Configuration | Melting
Point (°C) | Density (g/cm ³) | Atomic
Radius (Å) | I ₁ (kJ/mol) | | | | | | Lithium | $[He]2s^1$ | 181 | 0.53 | 1.34 | 520 | | | | | | Sodium | [Ne]3s ¹ | 98 | 0.97 | 1.54 | 496 | | | | | | Potassium | $[Ar]4s^1$ | 63 | 0.86 | 1.96 | 419 | | | | | | Rubidium | [Kr]5s ¹ | 39 | 1.53 | 2.11 | 403 | | | | | | Cesium | [Xe]6s ¹ | 28 | 1.88 | 2.60 | 376 | | | | | # **Group 2A: The Alkaline Earth Metals** | TABLE 7.5 Some Properties of the Alkaline Earth Metals | | | | | | | | | | |--|---------------------------|-----------------------|------------------------------|----------------------|----------------------------|--|--|--|--| | Element | Electron
Configuration | Melting
Point (°C) | Density (g/cm ³) | Atomic
Radius (Å) | I ₁
(kJ/mol) | | | | | | Beryllium | [He]2s ² | 1287 | 1.85 | 0.90 | 899 | | | | | | Magnesium | $[Ne]3s^2$ | 650 | 1.74 | 1.30 | 738 | | | | | | Calcium | $[Ar]4s^2$ | 842 | 1.54 | 1.74 | 590 | | | | | | Strontium | $[Kr]5s^2$ | 777 | 2.63 | 1.92 | 549 | | | | | | Barium | [Xe]6s ² | 727 | 3.51 | 2.15 | 503 | | | | | # **Group 7A: The Halogens** | TABLE 7.7 | Some Properties of the Halogens | | | | | | | | | |-----------|---------------------------------|-----------------------|-----------------------|----------------------|----------------------------|--|--|--|--| | Element | Electron
Configuration | Melting
Point (°C) | Density | Atomic
Radius (Å) | I ₁
(kJ/mol) | | | | | | Fluorine | $[He]2s^22p^5$ | -220 | 1.69 g/L | 0.71 | 1681 | | | | | | Chlorine | $[Ne]3s^23p^5$ | -102 | 3.21 g/L | 0.99 | 1251 | | | | | | Bromine | $[Ar]3d^{10}4s^24p^5$ | -7.3 | 3.12 g/cm^3 | 1.14 | 1140 | | | | | | Iodine | $[Kr]4d^{10}5s^25p^5$ | 114 | 4.93 g/cm^3 | 1.33 | 1008 | | | | |